INTEGRAL SELF-AFFINE TILES IN R" II. LATTICE TILINGS

JEFFREY C. LAGARIAS AND YANG WANG

ABSTRACT. Let A be an expanding n x n integer matrix with | det(A4)| = m. A standard
digit set D for A is any complete set of coset representatives for Z"/A(Z"). Associated to
a given D is a set T(A, D), which is the attractor of an affine iterated function system,
satisfying T' = Ugep (T +d). It is known that T'(A, D) tiles R” by some subset of Z". This
paper proves that every standard digit set D gives a set T'(A, D) which tiles R* with a
lattice tiling.

1. INTRODUCTION

Suppose that A is an n X n real matrix which is ezpanding, i.e. all its eigenvalues \;
have |\;| > 1, and that |det(A)| = m is an integer. Associated to any finite set D C R”
with |D| = m there is then a unique compact set 7' = T'(A, D) which satisfies the set-valued
functional equation

A(T) = |J (T +4d), (1.1)
deD
which is given explicitly by
T(4,D):={}" A7*dy : alldyeD }. (1.2)
k=1

We call the vectors d € D digits, based on the viewpoint that (1.2) gives a multidimensional
generalization of a radix expansion for the members of T'. The set T(A, D) is called a self-
affine tile if it has positive Lebesgue measure. For most pairs (A4, D) the set T'(A, D) has
Lebesgue measure 0, and only special pairs (A, D) yield self-affine tiles.

The name “self-affine tile” refers to a geometric interpretation of the functional equation
(1.1): it says that the affinely dilated set A(T') is perfectly tiled by the m translates T'+D of
T, and that the overlaps (T+d)N(T+d') have measure zero for distinct d, d’ € D. Moreover
it can then easily be shown using the functional equation that T tiles R" by translation.
Many examples of such tiles have fractal boundaries, cf. Falconer [9], Section 8.3.

A lattice self-affine tile is a self-affine tile T' = T'(A, D) produced by a pair (A, D) such
that the difference set A(D) = D — D is contained in a lattice A which is A-invariant in the
sense that

A(A) CA . (1.3)

Such self-affine tilings always give a tiling of R" by a set of translations S contained in A.
An integral self-affine tile! is a special case of lattice self-affine tile where 7' = T'(A, D) has
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an integer matrix A € M, (Z) and an integer digit set D C Z"; in this case one can take
A = Z"™. The study of lattice self-affine tiles can always be reduced to the special case of
integral self-affine tiles by an affine transformation, cf. Lemma 2.1 below.

This paper continues a study of integral self-affine tiles, and studies the question: which
integral self-affine tiles can tile R" with a lattice tiling?

One motivation for studying the structure of tilings concerns the construction of or-
thonormal wavelet bases in R”. Grochenig and Madych [12] (cf. Theorem 1) showed that
the characteristic function x7(z) of an integral self-affine tile 7" is a scaling function of
a multiresolution analysis that produces an orthonormal wavelet basis of L?(R") if and
only if T tiles R® with the lattice Z". This is equivalent to that the Lebesgue measure
W(T(4,D)) = 1.

In studying lattice tilings for integral self-affine tiles, without loss of generality we may
restrict consideration to a special subclass of (A, D) which we call primitive. Associate to
any integral pair (A4, D) the A-invariant sublattice Z[A, D] of Z™ that contains the difference
set D —D. When 0 € D this is:

Z[A,D] = Z[D, A(D),... , A" 1(D)] .

A pair (A, D) is primitive if Z[A, D] = Z", and we then call D a primitive digit set for A.
Part I observed that if 7' = T'(A, D) is an integral self-affine tile there is another integral
self-affine tile 7' = T'(A, D) with (A, D) primitive and 0 € D, such that

T=B(T)+wv, (1.4)
for some? B € M,,(Z) with | det(B)| # 0 and some v € Z". This shows that T has a lattice
tiling of R™ if and only if 7" does. Consequently it suffices to study primitive digit sets.

Part I [18] introduced a distinction between standard digit sets and nonstandard digit sets.
A primitive digit set is called standard if it forms a complete residue system (mod A), i.e.
a complete set of coset representatives of the group Z"/A(Z™), otherwise it is nonstandard.
(The extension of this definition to imprimitive digit sets is given in part I.) All standard
digit sets give self-affine tiles, i.e. the measure pu(7(A,D)) > 0. However most nonstandard
digit sets have (T (A, D)) = 0. Part I showed that if | det(A)| = p is prime and A?Z" 2 pZ",
then all nonstandard digit sets have pu(7T(A,D)) = 0. However when |det(A)| # p there
exist nonstandard digit sets with u(7(A4,D)) > 0. Part I also proved that the measure
condition p(T(A, D)) = 1 necessary to get a multiresolution analysis giving a wavelet basis
can never hold for nonstandard digit sets.

The distinction between standard and nonstandard digit sets is important for tiling ques-
tions. This paper considers only standard digit sets and proves:

Theorem 1.1. Every integral self-affine tile T coming from a standard digit set gives a
lattice tiling of R"™ with some lattice I' C Z™.

This result was first conjectured by Grochenig and Haas [11], who proved that it is true
in the one-dimensional case. The hypothesis of a standard digit set cannot be removed from
this conjecture, for there are integral self-affine tiles T' coming from non-standard digit sets
that have no lattice tilings, e.g. A =[4] and D = {0,1,8,9} has T'=[0,1] U [2, 3].

To indicate why establishing Theorem 1.1 is a nontrivial problem in higher dimensions, we
observe that iterating the functional equation (1.1) does not necessarily find lattice tilings.
The functional equation (1.1) can be used to directly produce self-replicating tilings of R™,

>The columns of B then form a basis of the lattice Z[A, D).
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which are translation tilings of R” consistent with (1.1) in the sense that for each tile T+ v
in the tiling, the inflated tile A(T + v) is a finite union of tiles in the tiling. (The concept
of self-replicating tiling is due to Kenyon [16].) However the primitive pair (4, D) with

o= () GLIL G oo

0 2

has a standard digit set D, and the tile T (A, D) has the property that all self-replicating
tilings using T'(A, D) are non-periodic tilings, hence are not lattice tilings, cf. Lagarias and
Wang [18], Example 2.3. Nevertheless, this particular tile does have a lattice tiling, using
the lattice 3Z @ Z = {[3¢] : a,b € Z}.

-]

To place these results in a more general context, we remark that it remains an open
question whether every tile 7' which tiles R" by translation has a periodic tiling. (A tile is
a compact set of positive measure, which is the closure of its interior, and has a boundary
of measure zero.) Venkov [29] proved that every convex set T' that tiles R” by translation
has a lattice tiling, and his result was also found by McMullen [22]. Nonconvex tiles need
not have any lattice tilings, e.g. on R, take 7' = [0, 1] U [2, 3].

The contents of the paper are as follows. §2 describes a Fourier-analytic tiling criterion
taken from Grochenig and Haas [11], which implies that a lattice tiling exists only when a
certain scaling operator has a nonconstant eigenfunction of eigenvalue 1. In §3 we suppose
that such a nonconstant eigenfunction exists, and introduce a notion of special eigenfunc-
tion f(x). A key to our approach is a result showing that the zero set Z; of a special
eigenfunction, when projected onto the torus T" = R™/Z", is invariant under the linear
map AT (Lemma 3.2). The general idea of obtaining information from zero sets of spe-
cial eigenfunctions goes back to Conze and Raugi [6]. In §4 we introduce the notion of of
stretched tile, which is a tile whose smallest A-invariant lattice generated by the differenced
digit set D — D is Z", but which has u(T(A,D)) > 1. Stretched tiles T'(A, D) essentially
correspond to the case where special eigenfunctions exist for (4, D). We use a recent result
of Cerveau, Conze and Raugi [4], together with Lemma 3.2, to prove that the zero sets of
special eigenfunctions of stretched tiles contain translates of an A”-invariant vector space
of dimension > 1 (Theorem 4.1). In §5 we explicitly construct a class of stretched tiles
whose digit sets have a quasi-product form (Theorem 5.1). In §6 we use Theorem 4.1 to
prove a structure theorem for those (A, D) giving stretched tiles, which shows that they all
essentially arise from the construction of §4 (Theorem 6.1). §6 uses this structure theorem
to prove that all stretched tiles T'(A, D) give lattice tilings by some sublattice of Z". Lattice
tiling property of self-affine tiles is also discussed in a recent preprint of Conze, Hervé and
Raugi [7].

We are indebted to K.-H. Grochenig, A. Haas, and D. Hacon for helpful conversations.

2. FOURIER-ANALYTIC TILING CRITERION

It is known that T'(A, D) tiles R" by translation with some tiling set I" satisfying
I C 2[4, D), (2.1)

cf. Grochenig and Haas [11], or Lagarias and Wang [17]. If ' = Z[A, D], then T'(A, D) tiles
R"™ with a lattice tiling, and this occurs if and only if the Lebesgue measure u(7'(A, D) of

#Kenyon [16] states a result (Theorem 12) which would imply the truth of the Lattice Tiling Conjecture,
and which furthermore asserts that there always is a lattice tiling with an A-invariant lattice. However this
result is false. The tile (4, D) in (1.5) is a counterexample to it, as is shown in Lagarias and Wang [18],
Section 4.
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the tile is
w(T(A, D)) =[Z" : Z[A,D]] = det(Z[A, D)) . (2.2)

Vince [30] and Grochenig and Haas [11] give criteria for the equality I' = Z[A, D]. We follow
the latter, see Lemma 2.3 below.

As a preliminary fact we recall that the study of general lattice self-affine tiles can be
reduced to the study of integral self-affine tiles that are primitive.

Lemma 2.1. Let T = T(A,D) be an integral self-affine tile in R*. Then there is an
invertible affine transformation L(z) = Bz + v such that L(T) =T, where T = T(A, D) is
an integral self-affine tile with 0 € D and (A, D) primitive, i.e. A € M,(Z), D C Z" and
Z[A, D] = Z™. Furthermore A is similar to A over Q.

Proof. This is Lemma 2.1 of Lagarias and Wang [18]. O

For a digit set D we define the digit function gp : R* — C by

1 .
gp(z) == D Z exp(2mi(d, z)). (2.3)
deD
We also define the correlation function up : R® — R by
1 .
up(z) = |gp(2)]” = =5 Y. exp(2mi{d—d, z)). (2.4)
PP azo

In the rest of this section, we always assume that D is a complete residue system (mod A).

We also assume that DT is some complete residue system (mod AT).

Lemma 2.2. For all z € R", we have

> up((AT) Nz +1) = 1. (2.5)

leDpT

Proof. See Grochenig and Haas [11], Lemma 5.1. O

We now define a linear operator C‘A,p on the space Q(R"™) of exponential polynomials,
where (R") consists of all

flx) = Z am exp(2mi(m,x)), am € R, (2.6)
meL™

with only finitely many a,, # 0. Define the transfer operator éAyD : Q(R™) — Q(R™) by
Capf(@) = up((A") (z+ 1) f((AT)  (z +1)). (2.7)
leDT

It is easy to check that C A,p s a linear operator that maps Q(R") into itself, by expanding
the terms up(-) using (2.4), and C4 p is independent of the choice of DT

We will be concerned with the action of C 4,p on the space QT (R") of real cosine poly-
nomials

flz) = Z apm, cos(2m(m, x)), apy € R, (2.8)
mezZn"
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with only finitely many a,, # 0. This is exactly the set of functions f(z) in Q(R™) left
fixed by the involution Jf(z) = f(—z). It is easy to check that C4p commutes with the
involution J, hence it has QT (R") as an invariant subspace.

Lemma 2.2 shows that the constant functions are eigenfunctions of C A,p With eigenvalue
1. Grochenig and Haas [11] (Proposition 5.3) give the following eigenfunction criterion for
T(A, D) to have a Z"-tiling:
Lemma 2.3 (Z"-Tiling Criterion). T(A, D) tiles R™ with a Z"-tiling if and only if the only
solutions f(x) € QT (R") of

Capf(z) = f(x) (2.9)

are constant functions.

3. ZERO SET OF EIGENFUNCTIONS

Througout this section, A denotes an expanding matrix in M,(Z) and D denotes a
complete residue system (mod A).

If u(T(A, D)) = 1 then T'(A, D) lattice tiles R” with the lattice Z", so we need only study
the case when u(7(A,D)) > 1. Our basic approach to finding a lattice tiling is to study
the structure of the zero set of a specially chosen nonconstant eigenfunction f(z). This
approach was used by Grochenig and Haas in the one-dimensional case; they attribute the
idea to Conze and Raugi [6].

Lemma 3.1. Suppose that there exists a nonconstant f(x) € QT (R™) satisfying

Capf(@) = f(2). (3.1)
Then there exists such an eigenfunction f(x) satisfying
f(z) >0 and f(0) >0, (3.2)

which has a nonempty (real) zero set Zy = {x € R* : f(x) = 0}.

Proof. Suppose that f(z) € Q@+ (R") is nonconstant and satisfies (3.1). Define
filz) = f(z) - Inin fy), falz) = max fly) = f(z).
Clearly both f;(z) > 0 for all x € R", and

fo(z) + fi(z) = ;ré%)éf(y) — yn&glt f(y) > 0.

Now we define f(z) to be any one of the fi(x), fo(x) that satisfies f;(0) > 0. The zero
set Zy is nonempty by construction, and our choice of f(z) guarantees that f(z) > 0 and
f(0) > 0, proving the lemma. O

Remark. We call an f(x) having the properties of Lemma 3.1 a special eigenfunction of
(A,D). The property f(0) > 0 and the periodicity of f(z) (mod Z") guarantees that
Z"NZg =0, a fact that will be important later.

Lemma 3.2. Let f(x) be a special eigenfunction of (A, D). Then
Zy CAY(Zp) + 2™ (3.3)
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Proof. If x € Z; then Capf(z) = f(r) = 0. Let DT be a complete residue system
(mod AT). Then by definition

> up((A") 7 @ + D) F(AT) = +1) =0. (3-4)

lepT

Since f(z) > 0 everywhere, every term on the right-hand sum must be zero. Now Lemma
2.2 implies that some z* = (A7)~} (z +1) gives

U/D(Z*) > 07

hence f(z*) = 0. Now AT (2*) =z + 1, so z € AT(Z;) + Z". Thus Zy C AT(Z;)+2Z". O

Now, for each [ € Z" define the map 7, : R* — R" by
ni(z) = (A)~ Nz +1). (3.5)

Definition 3.1. Let DT be a complete residue system (mod AT). We call a subset Y of
R™ 7-invariant with respect to D if for any z € Y,

1€Dl and up(m(z)) >0 = 7(z)eY. (3.6)

Y is minimal if it does not contain a proper subset which is also T-invariant with respect to
DT,

We shall simply call such a set Y 7-invariant when there is no ambiguity. If Y is periodic,
ie. Y =Y +Z" then Y is 7-invariant with respect to some D’ implies that Y is 7-
invariant with respect to all complete residue systems (mod A'). The zero set Z rof a
special eigenfunction f is always 7-invariant as a result of (3.4). Let T" := R"/Z"™ be the
n-dimensional torus. We call Y C T" r-invariant if 7, 1(Y) C R" is 7-invariant, where
7 : R* — T™ is the cannonical covering map.

Grochenig and Haas [11] settled the one-dimensional case of Theorem 1.1 by showing
that u(T'(A,D)) > 1 can never occur for primitive pair (A4, D) when n = 1. The essential
part of their proof is contained in the following lemma.

Lemma 3.3. If there exists a uniformly discrete nonempty invariant subset Y; with Yy =
Yy +Z", then we have Z(A,D) C T, where I' is a proper A-invariant lattice, and D is not
primitive.

Proof. We argue by contradiction. Suppose not, and let Yy C Z; be a uniformly discrete
nonempty 7-invariant set with Y; = Y; + Z". Let Yy := m,(Yf). Suppose that D’ is a
complete residue system (mod A1). By Lemma 2.2, for each y € Yy there exists at least
one | € DT such that up(7(y)) > 0, and so 7(y) € Y. Because AT (7(y)) =y (mod ZP),
we have therefore AT (Yy) + Z" D Y;. Hence AT (Y;) D Yy, where AT : T" — T" is the
induced map from AT. This implies AT (Y;) = Y} because Y7 is finite, and so AT acts as a
permutation on Y. Thus for any y € Y; we have (A7)¥(y) =y (mod Z") for some finite k.
Solving this equation shows that y is rational, i.e. y € Q".

We show that for each y € Y there exists exactly one | € DT such that 7(y) € Y;.

Suppose there were distinct [;,lo € DT such that 7,(y), 71,(y) € Y;. Then we have
AT (1, (y)) = A" (71, (y)) = y (mod Z"). But 7, (y) # 7,(y) (mod Z"). This contradicts the
fact that AT is a permutation on Y;.
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So now for any y € Y; there exists an [* € DT such that up (7« (y)) > 0 and up(7(y)) = 0
for all [ € DT and [ # I*; hence up(7+(y)) = 1. Since y € Yy is arbitrarily chosen, we have

up(y) = lgp()? =1,  ally €Y. (3.7)

Using the definition (2.3) of gp(z), and that 0 € D, (3.7) holds if and only if
(d,y) =0 (mod 1), alld € D and all y € Y}.
We use this fact to define a new lattice
I'={w: weZ" and (w,y) € Z for all y € Y;}. (3.8)

Because Y} lies in finitely many Z"-equivalence classes, I' is a full rank sublattice of Z".
Also Yy NZ" = (), because Zy NZ™ = (), hence we have I" # Z". We next show that

A(l) CT. (3.9)
To see this, given w € I and y € Yy, there is a y; € Y} such that A”(y) =y, + 1 for some
I € 7", and
(Aw,y) = (w, ATy) = (w,y1 +1) = (w,y1) + (w,1) € Z,
since (w,y) € Z by definition of I', and (w,[) € Z since both w,l € Z™.

Now (3.7) implies that D C I" hence A(D) = D—D C T, so (3.9) implies that Z[A, D] C T
But I' is a proper subset of Z", contradicting Z[A, D] = Z". O

We now can settle the one-dimensional case, where A = [+m] with m > 2, and a standard
digit set D = {dy,... ,dn} C Z is just a complete residue system (mod m). The primitivity
condition Z[A, D] = Z is equivalent to

ged(d—d': d,d' € D) =1. (3.10)
Theorem 3.4 (Grochenig and Haas). Suppose that A = [£m] and D is a complete residue

system (mod m). Set d =ged(d—d': d,d" € D). Then T(A,D) tiles R by the lattice dZ,
and u(T'(A, D)) =d.

Proof. We reduce to the case that d = 1 using Lemma 2.1. Now Lemma 3.3 applies to
show that ;(T'(A,D)) = 1, because the real zero set Z; of any nonconstant trigonometric
polynomial must be discrete. O

When the dimension n > 2 the case u(T(A,D)) > 1 can occur, as in the example (1.5)
of §1.

4. STRETCHED TILES AND HYPERPLANE ZEROS OF SPECIAL EIGENFUNCTIONS

To prove that all standard digit sets give tiles having lattice tilings, it suffices to study
the case of (A, D) such that Z[A, D] = Z" and u(T(A,D)) > 1.

Definition 4.1. We call T(A, D) a stretched tile if
u(T(A,D)) > [Z": Z[A, D))
Lemma 2.3 and Lemma 3.1 combine to show that a stretched tile has a special eigen-
function. The proof of Theorem 1.1 rests on a special property of the real zero set of a

special eigenfunction Z; of a stretched tile which is that it contains translates of certain
linear subspaces of R", stated as Theorem 4.1 below.
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It appears that the global structure of the set Z; is a union of translates of rational
subspaces of R" of various dimensions. A rational subspace V of R" is a linear space having
a basis consisting of rational vectors v € Q. This would follow from:

Hyperplane Zeros Conjecture. Let h: R" — C be an analytic function that is periodic
(mod Z"). Suppose that there is an expanding integer matriz A such that

Zy C A(Zp) + 2.
Then

m
Zy = J (@i + Vi) + 27, (4.1)
=1
in which each z; € R and each V; is a rational subspace of R*. (The V; need not all have
the same dimension.)

We derive a weak result in the direction of this conjecture for a special eigenfunction of
a stretched tile, which will suffice to prove our main result.

Theorem 4.1. Let A € M, (Z) be expanding and D be a primitive complete residue system
(mod A). Let DT be a complete residue system (mod AT). Suppose that u(T(A, D)) > 1,
and let f(x) be a special eigenfunction for (A, D). Then the real zero set Zy contains a
finite number of translates {y; + W : 0 < i < k — 1} of an AT -invariant proper rational
subspace W of R* such that:

(i) ATy, 11 =y (mod Z") for all 0 < i < k — 1, where yi := yo.
(ii) For every z € y; + W we have
Z up(m(x)) = 1. (4.2)

lepT
7(2)EYit1+WHL"

The main ingredient in the proof of this theorem is a result of Cerveau, Conze and Raugi
[4]. First, we prove:

Lemma 4.2. Let V be a subspace of R". Then 7, (V) is closed in T™ if and only if V is a
rational subspace of R™.

Proof. We first show that if V' is a rational subspace of R" then m, (V') is closed in T". Let
wy, we, ..., w, € Z" form a basis of V. Suppose that z* € T" is in the closure of m, (V).
Then we may find a sequence {z;} in V such that lim;_,o m,(z;) = z*. Write

T
zj = ) bjgwg.
k=1

Since all wy, € Z", we may choose all b;; € [0,1). Therefore we can find a subsequence
{jm} of {j} such that
. s
n}l_r)rloo bj,..k = by, all 1 <k <.
Let * = Y}, bjwy. Clearly, m,(z*) = z*. Hence z* € 1, (W). Therefore m,(V) is closed
in T".

We next prove the following hypothesis: If v € R™ then the closure of 7, (Rv) in T" is a
rational subspace. To see this, let v = [y, ... ,,Bn]T. Without loss of generality we assume
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that Gq,..., 5, are linearly independent over (Q while g = 2921 a, ;B with ay ; € Q for all
1 <k <n. The set
B
fm]
Br
is dense in T" (see Cassels [3], Theorem I, p.64). Now let Vy = {Az : x € R"} where
A = [aj]. Then Vj is a rational subspace of R", and m,(Vp) is contained in the closure of
mn(Rv). But m,(Vp) is closed and Vj O Ru. Hence the closure of 7, (Rv) is 7, (Vy), proving
the hypothesis.

l(mod VAR mEZ}

Finally, let vy,...,v, be a basis of V. Suppose that Wj is the closure of 7, (Rv;) in T".
Then the closure of m,(V) contains Wy + --- + W,. But Wy + --- + W, is closed in T"
because it is a rational subspace, and it contains 7,(V). Hence the closure of m, (V) is
Wi+ -+ + W,, proving the lemma. O

Corollary 4.3. Let f : R* — C be continuous and periodic (mod Z"). Suppose that V is
a subspace of R" such that vo+V C Zy where vg € R". Then vo +W C Z; where W is the
smallest rational subspace of R* containing V .

Proof. First, let {V,} be a set of rational subspaces of R”. Then 7, (N, Va) = No ™n(Va)
is closed in T"; so [, Vo must be a rational subspace of R". This implies that the minimal
rational subspace W containing V' exists. Since f(z) is periodic (mod Z") we may view it as
a continuous function defined on T". Now, 7y, (vg) + 7, (W) is the closure of 7, (vo) + 7, (V)
in T". Hence 7, (vo) + 7, (W) is in the zero set of f : T® — C. Thus vo + W C Zj. O

Proof of Theorem 4.1. We construct a nonempty minimal compact 7-invariant set Y
with respect to DT in Z; as follows, where f(z) is a special eigenfunction of (4, D). Take
any point zo € Zy and set Xy = {zo} and recursively define the finite sets {X; : j > 0} by
letting X; consist of all points x; such that «; = 7(z;—1) with ;1 € X;_; and [ € pT
such that up(z;) > 0. Then the T-invariance of Z; with respect to DT gives X; C Z; for
all 5 > 0. The set Uﬁo X lies in a bounded region in R" because the mappings 7; are
uniformly contracting with respect to a suitable norm in R" (cf. Lagarias and Wang [18],
Section 3 or Conze and Raugi [4]). Now let Y{ be the set of all cluster points of sequences
{z} : 27 € X;}. Then Yy is a compact set, and we show that Yy is 7-invariant with respect
to DT, If y € Yy and up(7(y)) > 0 where [ € DT, take a subsequence z;, € Xj, that
converges to y, so that 7(z;,) — 7(y). Now up(7r(z;,)) > 0 for k sufficiently large, hence
7(z;,) € Xj,+1; so we may construct a sequence having 7;(y) as a cluster point, proving
71(y) € Yy. The existence of a nonempty minimal compact 7-invariant set Y with respect
to DT contained in Yy follows by a Zorn’s Lemma argument.

It follows from Theorem 2.8 of Cerveau et al [4] that there exists an AT -invariant subspace
Vand {y; €Y : 0 < ¢ < k — 1} satisfying (i) such that

k-1
YC Jwi+V)C<Z, (4.3)
i=0

with the property that the set U¥=) (y; + V) is 7-invariant with respect to DT. Now let
W be the smallest rational subspace of R" containing V. Since AT (W) is also a rational
subspace containing V' and it has the same dimension as W, we must have AT (W) = W.
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By Corollary 4.3,
YCJwi+W)CZ. (4.4)

Moreover, since , (-1 (y; + W)) is the closure of m, (U} (y; + V)) in T", we conclude
that U (y; + W) is 7-invariant with respect to D’

We now prove property (ii). Let z € y; 1 +W. We show that for any | € DT, up(r(z)) >
0 only if 7j(z) € y; + W + Z". Suppose this is false, then there exists an {* € DT with
up(m(x)) > 0 such that 7« (z) & y; + W + Z™. The 7-invariance of J¥"{ (y; + W) with
respect to DT implies then that 7i(x) € y; + W for some j where y; + W # y; + W. Hence
z € AT (y; + W + Z") C yj—1 + W + Z™. But this could happen only if

Yi—1 +W+Zn:yj71+W+Zn.
By applying the operator (A”7)*~! to the above equation, we obtain
v + W+ 2" =y + W + 72",

a contradiction. property (2) now follows immediately from Lemma 2.2. O

5. STRETCHED TILES AND QUASI-PrODUCT FORM DIGIT SETS

Our object in this section is to present a large class of pairs (A, D) giving stretched tiles
T(A,D). In §6 we shall then prove a structure theorem asserting that all pairs (A, D) with
Z[A, D] =Z" and pu(T(A,D)) > 1 essentially arise from this class.

Suppose now that A is an expanding integer matrix having the block-triangular form

A 0]

A:{o A,

(5.1)
where A and Ay are r x r and (n —r) X (n —r), respectively, with 1 <7 <n — 1. We say
that a digit set D for A is of quasi-product form if it has the form

D= {3 |+ go, | 1S i AN 1< <deran) . (52

with the properties:

i. {a;} CZ" is a complete residue system (mod A;), and {b;} C Z" .
ii. ¢;; € Z"" for all 4,5 and for each i the set {Qc;; : 1 < j < |det(A2)|} is a complete
residue system (mod Ag).
ili. @ € M,,_.(Z) has | det(Q)| > 2 and A2Q = QA for some A, € M, (Z).

The conditions (1), (2) imply that D is necessarily a standard digit set.

Theorem 5.1. Let A be an expanding integer matriz of block-triangular form

A 0]

oA (5.3)

A= {
where Ay and Az are v X r and (n — 1) X (n — 1), respectively. Suppose that D is a prim-
itive standard digit set for A which is of quasi-product form (5.2). Then |det(Q)| divides
w(T(A, D)), so that u(T(A, D)) > 1.
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Proof. Suppose that D is of quasi-product form. Consider the block-diagonal matrix

- [ A 0
A= [ v oa }
together with the new digit set
B = {[ “ ] L1 <i<|det(A))], 1<j< |det(A2)|}.
Qcij
We pair the digits of D and D by
a; 5 a; =
d= 5 ]ED = d:[ Z]ED.
[ bi + Qci Qci
There is a simple relationship between T'(4, D) and T'(A, D), which implies that
W(T(A4,D)) = u(T(4, D)), (5.4)
Define a map ¢ : T(A, D) — T(A, D) by ¢(z) = &, where if
o
_ | ™ —k
o= |8 | =Y atd de,
k=1
then
- Z1 o~ ik 7 i
r = 5:2:|:ZA ks, dr €D,
k=1
where dj, and dj, are paired digits (cf. (1.2)). Now
ATF 0 i ATF 0
A—k — 1 A—k — 1
lck AR l 0 AQk]’
hence
~ T Tl
=| 2 | = 5.5
T [ zy — P(x1) ] (5:5)
where
o

k=1
The function ¢ : T'(A1, {a;}) = R*" is easily checked to be a measurable function, hence

(5.4) follows from (5.5) using Fubini’s theorem.
Next we define the expanding matrix
~ A 0
A= [ 0 A ] ’
where Ay € M,,_,(Z) and A,Q = QAj, together with the digit set
D= {| & | 1si<]denan)l, 1< < |det(4z)]}

ci 7j

Set
=[5 8]

and we then have
A=QAQ™', D=Q(D).



12 JEFFREY C. LAGARIAS AND YANG WANG

So it follows from Lemima 2.1 that

T(A,D) = QT(4,D), (5.6)
and hence
n(T(4,D)) = | det(Q)|u(T (4, D)),
since | det(Q)| = | det(Q)|. Combining this with (5.4) completes the proof. O

Remark. The name stretched tile is suggested by (5.6), which shows that in a weak sense
the tile T'(A, D) is stretched by the matrix @ along the R"~"-coordinate directions. See
Theorem 6.1 for the general case.

As an example of Theorem 5.1, consider the pair (A, D) of (1.5). Let P = [9}]. The the
digit set DT = P(D) for the matrix AT = PAP~! is a standard digit set of quasi-product
form with @Q = [3]. Theorem 5.1 asserts that 3 divides u(T(A”, D)), and so 3 divides
w(T(A,D)). In fact, u(T'(A,D)) = 3.

6. STRUCTURE THEOREM FOR STRETCHED TILES

We now use Theorem 4.1 to prove a structure theorem concerning stretched tiles, which
is a converse to Theorem 5.1.

Theorem 6.1. Let D be a primitive standard digit set for the expanding matriz A € M, (Z),
and suppose that u(T(A,D)) > 1. Then there exists a matriz P € GL(n,Z) such that the
following two conditions hold.

1. There is some r with 1 <r <n —1 such that

By 0

2 ol (6.1)

PAP™! = [

where By, By are r x r and (n —r) X (n —r) expanding integer matrices, respectively,
and C is an (n —r) X r integer matriz.
2. The digit set P(D) of PAP~' is of quasi-product form.

Before proving this result, we derive a corollary. Write A; ~z As to mean A; is integrally
similar to A, i.e. there exists some Q € GL(n,Z) such that Ay = QA;Q~'. We say that
A is (integrally) reducible if

Ar 0 ] , (6.2)

A~z { C A
where A; and Ay are nonempty. We call A irreducible if it is not integrally reducible.
Corollary 6.2. Suppose that the expanding matriz A € M, (Z) is irreducible. Then for all
primitive standard digit sets D the tile T(A, D) lattice tiles R with lattice Z"™.

Proof. If u(T(A,D)) > 1 then (6.1) shows that A is integrally reducible, which contradicts
the irreducibility of A. Thus u(T'(A,D)) = 1. O

A sufficient condition for irreducibility of A is that the characteristic polynomial of A is
irreducible over Q. Using this criterion any expanding matrix A with |det(A)| = p a prime is
irreducible, because if a decomposition (6.2) existed then |det(A;)| > 1 and |det(A4s)| > 1.
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Lemma 6.3. Let D be a primitive standard digit set for A. Suppose that P € M,(Z) is
unimodular. Then P(D) is a primitive standard digit set for PAP~. Furthermore,

gp@)(@) = gp(PTz),  up(p)(z) = up(P'z). (6.3)

Proof. Since D is a complete residue system (mod A), for distinct di,d, € D we have
dy — dy & A(Z™). Hence P(dy — dy) € PAP~Y(Z"), so P(D) is a complete residue system
(mod PAP~!). It is primitive because

Z[PAP™', P(D)]| = PZ[A, D] = 2"
Now for any x € R”,

1 . 1 )
gpp)(z) = D] > exp(2mi(Pd, x)) = D[ > exp(2ri(d, P"'z)) = gp(P" ).
deD deD

So gp(p)(z) = gp(PTz). Similarly, up(p)(z) = up(PTz). .

Proof of Theorem 6.1. Since pu(7'(A,D)) > 1 there exists a special eigenfunction f(z)
for (A,D) by Lemma 3.1. Now Theorem 4.1 states that there exists a rational subspace
W of R* having dim(W) = r with 1 <7 < n — 1, and with AT(W) = W such that Z;
contains at least one translate of W. It is well-known that one can choose a unimodular
matrix P, € GL(n,Z) that maps a given rational subspace W onto the first k-coordinate
axes, i.e.

Ty

P (W) =E, = {[ 0

This directly follows from the Hermite normal form decomposition for a rational basis of the
vector space W, see Schrijver [25], Theorem 4.1 and Corollary 4.3b. Now W is an invariant
subspace of AT, hence

DXy € Rr} . (6.4)

_ B CT
Tp—1 _ 1
PA P = [ 0 BT ] , (6.5)
for integer matrices BY, B and C”. Therefore, taking the transpose yields
By 0
-1 _ 1
PAP™ = [ C B |

with P = (P[')T. Both B; and By are expanding because A is expanding. This proves (1).
We now prove (2). Let

_ B 0

— 1_ 1

B:=PAP " = { C B, }

and € := P(D). Then £ is a primitive standard digit set for B. We have ug (z) = up (P’ z).

Our object is to analyze the structure of the digit set £, to eventually prove that it is
of quasi-product form. For any vector v € R" the notation v = [,}] always means that
v1 € R" and vy € R*".

Let &', £F be complete residue systems (mod B}) and (mod Bj ), respectively. Let

by

ST:ZEIT@SQT:{b:[b
2

];bleng, ngBg}. (6.6)
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Then the fact that B” is block upper-triangular implies that £’ a complete residue system
(mod BY). Let DT = (P1)=1&T. Then D" a complete residue system (mod A'), because
AT — PTBT(PT)fl.

Now, let {y; + W : 0 < j < k — 1} satisfy the properties of Theorem 4.1. We have

AT o 7, (yj41) = mn(y;) where yj, := yo, and

> up(AN)y Mz +1) =1, zey +W. (6.7)

lepT
(AT)"Y(z+)eyj41+W+Z

Applying the transformations v; = (P?)"ly; and [ = (P*)~'b with b € €7 in (6.7), we may
rewrite (6.7) as

Z ug(BT) Yz + b)) =1, r €v; + E,, (6.8)
beeT

(BT)~Y(z+b)€vjt1+E-+2"
using (6.4) and Lemma 6.3.
We proceed to simplify the formula (6.8). Choose z € v; + E, and define
Aji={meZ": (B Yz +m)€vji1 + E, +Z"}. (6.9)

We show that A; is well-defined independent of the choice of x € v; + E,. More precisely,
denote

w=|g ] osisk
where oy := ag and G := By. Then
0
A = [ - ] +A (6.10)

in which A is the lattice Z" ® B (Z"~") and
n;‘ = Bgﬁj+1 - /6]" (611)

To prove these facts, let z = [2;] € vj + E,. Then m € A; if and only if
@j+1

] e lmD =]+ (2]

for some z € R" and ky € Z"™". So the condition for m € A; is

(B2) (B +m2) =B (mod Z™7).

The above is equivalent to
Bj+ma =By B (mod By (Z")),
i.e. mg =nf (mod B¥(z")), which gives (6.10) and (6.11).
Using these formulae, the identity (6.8) becomes

2 > ue(BN)Me+ [R]) =1 (6.12)

breel bye€f
by—n;EBY (Z"")
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for x € v; + E,. Note that for each 0 < 7 < k — 1 there is exactly one by € &L such that
by = nj (mod BJ (Z")); denote this by € £F by b5 ;. Then (6.12) is reduced further to

> ue(w+ (BN 4 ]) =1, (6.13)

bieel
where w := (BT)"!(z + [bEO,j ) and = € vj + E,.
We now use (6.12) to establish a series of claims.
Claim 1. Suppose that d = [g;] and d' = [j:;] are two digits in € such that dy —d} € By(Z").
Then dy = dY and
(dy — db,8;) =0 (mod 1), 0<j<k-1. (6.14)

Proof of Claim 1. We make use of the orthogonality relations * on the abelian group Z" /By (Z"):
For all m = [, ] € Z", we have

= et (22]. (07 -

bleng

| det(By)|  if my € Bi(Z7),
0 if mq g BI(ZT)
Define
F = {(da dl) € EXE:d— d, c BI(ZT‘) @anr}.

Using the orthogonality relation above and the definition

LS exp(@ri(d — ),

ug () = =5
| det(B)|2 d,d' €€

we obtain

5 8 o [0)

bicel d,d' €€
- e I, 2, (= e [P])
[T zz< ~daw [T])
= det(Bl)||1det B)E (d,dz’):ef exp(2mi(d — d', w)).

Now, the above equation combines with (6.12) to give
> exp(2mi(d — d',w)) = |det(By)||det(By)[. (6.15)
(d,d)eF
We next show that
|F| = [ det(B1)| | det(By)[?, (6.16)

which will force all the exponentials on the left side of (6.15) to be 1. To prove (6.16)
note that £ is a complete residue system (mod B); hence the set F viewed as a subset of

“The functions xp, (m1) := exp(2mi{m1, (BY)"*b1)) for b1 € & form a complete set of characters on

77| By (Z).
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Z™|B(Z™) x 2"/ B(Z") is a subgroup. Its quotient group is isomorphic to Z"/B1(Z"), which
has size | det(B1)|, so (6.16) follows.

Now we know that exp(27i{d — d’',w)) = 1 for all pairs (d,d') € F, so
(d—d' w)=0 (mod1). (6.17)

For z € vj + E,, write x = [2 ] Then
Z1

i
0 21
1" [ 55 ]) - [ (BE)™(8; +b3) ]
for some z; € R". Notice that b5 ; —n% € BJ (Z""). By (6.11),
(B2)™H(B; +b5;) = (B3)™H(B; +nj + Byma) = Bj1 +m

for some my € Z™~". Hence

w = (BT)—I(

o= g |
L Bjt1+me |
(6.17) now becomes
(dy — dj, 1) + (d2 — dy, Bj+1) =1 (mod 1).

But (dy —d}, z1) is a continuous function of z; € R", and as z; runs through R" so does z;.
Hence we must have dy — d} = 0, and

(d2 —dy, Bj41) =1 (mod 1),
proving Claim 1. O

Claim 2. There ezists a Bo-invariant proper sublattice I' of Z"~" such that for all d = [g;]
and d' = [Z%] in &, if (d,d') € F then
dy — dy € T. (6.18)

Proof of Claim 2. Define the lattice I in Z"~" by
[:={me€Z"":(my,B;) =0 (mod 1), 0 <j<k—1}.
Then I is a sublattice of Z"~", and it is full rank because all 3; € Q*~". Claim 1 gives
(da —d5,Bj) =0 (mod1l), 0<j<k-—1L1
Hence dy — dfy € T

It remains to check that I' is a proper sublattice of Z"~" and By(I') C I'. First, all y; + W
are contained in Zy for some special eignefunction f(z) of (4,D), so (y; + W) NZ" = 0.
Since vj + E, are the images of y; + W under a unimodular linear map, (v; + E,) NZ" = {).

But v; = [gj |. Hence §8; € Z""; so I must be a proper sublattice of Z"~". Next, we show
that I' is By-invariant. (6.11) states that

By Bjy1 =P (mod Z"7"),
hence for any mg € I,

(Bama, Bjy1) = (ma, By Bj41)
<m2716j> (mOd 1)
0 (mod 1),
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proving By(I') C T O

Claim 3. The digit set £ = P(D) is of quasi-product form.

Proof of Claim 3. For a given residue class my + B1(Z") we pick a digit [(ZZ] € & with
a; = mq (mod By (Z")), which exists since & is a complete residue system (mod B). Consider

all other digits [Z,;] € &€ having

a; =a; (mod By(Z")).
It follows from Claim 1 and Claim 2 that a} = a; and b; — b € I'. Taking a basis matrix
Q € M,,_,(Z) for I, we can write
b; — bg = Qc;j
for some ¢; j € Z"~". Since £ is a complete residue system (mod B), the set of such [Z,;] €&

has cardinality | det(B2)|, and {Qc;; : 1 < j < |det(Bs)|} forms a complete residue sgfstem
(mod Bg). Now because I' is By-invariant, there exists a By € M,,_,(Z) such that

ByQ = QB.
Finally, |det(Q)| > 1 because I is a proper sublattice of Z" . O
Finally, Theorem 6.1 follows from Lemma 6.3 and Claim 3. O

7. LATTICE TILINGS

We now use Theorem 6.1 to prove Theorem 1.1.

Proof of Theorem 1.1. We prove the theorem by induction on the Lebesgue measure
u(T(A,D)) of the tile T(A,D), where D is a standard digit set for A € M,(Z). This
measure is an integer, by Theorem 1.1 of part I. The base case is therefore u(T'(A4,D)) = 1,
in which case T'(A, D) tiles by Z".

For the induction step, suppose that it is true for all tiles of measure less than k, with
k > 2, and that u(T(A,D)) = k. We consider first the case that Z[A, D] # Z™. The proof
of Lemma 2.1 shows that

where A € M, (Z) is similar to A over Q, and Q € M,,(Z) with | det(Q)| > 2, hence
iy HIAD)
u(r(d,p) = K <

The induction hypothesis applies to (4, D), so T(A,D) tiles with a lattice I' C Z,, and
(7.1) then shows that T'(A, D) tiles R" using the lattice ' = Q(T") C Z"™.

Next suppose that Z[A,D] = Z". Since pu(T'(A,D)) = k > 2, the tile T(A,D) is a
stretched tile. Theorem 6.1 shows that there exists a P € GL(n,Z) with

By 0}

— -1 _
B:=PAP —[ C B,

(7.2)
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where B; € M,(Z) and By € M, ,(Z) with 1 < r < n —1, and £ := P(D) has the
quasi-product form

ai . . .
€= {[ b; +Qci,j :| rl<i< |det(Bl)|7 1<7< |det(32)|} (73)

with |det(Q)| > 2. Since
T(A,D) = P~'T(PAP~!', P(D)) = P7'T(B,€),
we only need to show that T'(B, £) lattice tiles R".
Consider the new pair (B, &) where
& ={a;: 1<i<|det(B1)]}.

&1 is a complete residue system (mod Bj). Furthermore, Z[B,£] = Z" implies that
Z|B1,&1] = Z". Hence & is a primitive standard digit set for Bj.

We claim that we can always find a factorization (7.2), (7.3) with the additional property
that

u(T'(B1,61)) = 1. (7.4)

To see this, assume that 7 is the smallest positive integer with which the factorization (7.2),
(7.3) exists. If r =1 then we already have p(7T'(B1,€1)) = 1 by Theorem 3.4. Suppose that
w(T(B1,£1)) > 1. Then r > 1 and by Theorem 6.1 there exists a P, € GL(r,Z) such that

B 0
Ci By |’

where By, € M,,(Z), By € M,_,,(Z) with 1 < r; < r, and P;(£) has the quasi-product
form. Now if we let
p_ { P, 0 ]P,

0 In—y

PB P = l

then ]
San-1 | Br 0
par=[ B 9

for some integer matrices Bj and C’, with P(D) having the quasi-product form. This is a
contradiction because 1 < r. Hence we have u(T'(B1,&1)) = 1, proving the claim.

We next associate to the pair (B, &) a new pair (B, &) given by

é:ﬁl é’?], (7.5)
e={| gu |- 1<i<ideml 1<) < denm)] |- (7.)

The proof of Theorem 5.1 already shows that
w(T(B,€)) = w(T(B,E)) = k,
and it also shows that the new pair (BT, &T) given by

B 0
BT:l 01 Bg]’ -
t = ai | o . . |
& _{[Cz’,j:|' 1 <|det(By)], 1§j§|dt(B2)|} (7.8)
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where ByQ) = QB; has

T(B,&) = [ o g ] T(BT, €M), (7.9)
Note that N
ur(teh) = et <

and it is easy to check that £ is a complete residue system (mod Bf). So the induction
hypothesis applies to show that T'(Bf, &) lattice tiles R?, and hence T(B & ) also lattice
tiles R" as a result of (7.9).

Assume that T'(B, ) tiles R with the lattice I'. We now come to the main point of the
proof: we show that T(B,&) also tiles R with a (possibly different) lattice I'* which is a
direct sum Z" @'} where I'y C Z™". We start by observing that the orthogonal projection
of T(E, 5) to its first r-coordinate plane is T'(B1,&1). So since I' C Z,,, every tile

T(B,€)+v, 7yeT,
in the tiling by I' orthogonally projects to
T(Bi,&)+m, MmeL

where 7 := [73]. These projections are measure-disjoint for different ;’s. Thus the tiling
T(B,E) + I of R” using I naturally divides up into cylinders

U(n) := (T(B1,&) +71) @ R (7.10)
Look at the tiling of the particular cylinder U(0), which is given by T'(B, &) + I'" where
I'=rn{o}ezZ""). (7.11)

Clearly I" is a sublattice of Z™, Write I = {0}®T'; where F1 Z"~". Now I'y is a sublattice
of Z" ", and T(B, &) tiles U(y1) by {y1} @ T'1. Hence T(B, &) tiles R* by I'* := Z" @ I';.

Next we claim that the tile 7'(B, £) also tiles R” using the lattice I'* = Z"@®T";. To prove
this claim we note that the orthogonal projection of T'(B, £) onto its first r-coordinate plane
is also T'(B1,&1) as a result of the triangular form of B and the quasi-product form of €.
Hence T'(B, £) also tiles the cylinder U(y;) for each 1 € Z". It thus suffices to prove that
T(B,E) + T tiles the cylinder U(0), where I" is defined in (7.11). Recall that the proof of
Theorem 5.1 shows that

T

Ty — P(71)

where 9 : T(B1,£) — R'" is a certain measurable function, see (5.5). This relation
shows that translates of T'(B,£) by I inherit the measure-disjointness property from that
of translates of T(B, &) by F' It also yields the covering property for the cylinder U(0),
since the map [1] — [,,_% 1/, z,)] maps U(0) one-to-one onto itself. Thus T'(B,&) tiles R"
using the lattice Z" @ I'y. This proves the Theorem. O

xTr =

! ] eT(B,E) — &=
T

} e T(B,&),
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