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Gro� chenig and Madych showed that a Haar-type orthonormal wavelet basis of
L2(Rn) can be constructed from the characteristic function /Q of a set Q if and only
if Q is an affine image of an integral self-affine tile T which tiles Rn using the integer
lattice Zn. An integral self-affine tile T=T(A, D) is the attractor of an iterated func-
tion system T=�m

i=1 A&1(T+di) where A # Mn(Z) is an expanding n_n integer
matrix and the digit set D=[d1 , d2 , ..., dm]�Zn has m=|det(A)|, provided that
the Lebesgue measure +(T )>0. Two necessary conditions for T(A, D) to tile Rn

with the integer lattice Zn are that D be a complete set of coset representatives of
Zn�A(Zn) and that Z[A, D]=Zn, where Z[A, D] is the smallest A-invariant lattice
containing all [di&dj : i{ j]. These two conditions are necessary and sufficient in
the special case that |det(A)|=2. We study these two conditions for an arbitrary
matrix A # Mn(Z). We prove that a digit set D satisfying the two conditions exists
whenever |det(A)|�n+1. When |det(A)|=2 there are number-theoretic obstruc-
tions to the existence of such D. Using these we exhibit a (non-expanding)
A # M2(Z) for which no digit set has Z[A, D]=Z2. However we show that for all
expanding integer matrices A in dimensions 2 and 3, there exists some digit set D

that satisfies the two conditions. Could this be true for all expanding integer
matrices in dimensions n�4? A necessary condition is that the (non-Galois) field
Q( n

- 2) have class number one for all n�4. � 1996 Academic Press, Inc.

1. Introduction

In 1910 Haar [8] constructed an orthonormal basis of L2([0, 1]) which
consists of certain dilations and translations of a single function �(x). The
function �(x) is the step function

1 0�x<1�2,

�(x)={&1 1�2<x�1,

0 otherwise,
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and the Haar basis of L2([0, 1]) is [2m�2�(2mx+n): m # Z�0 , n # Z].
There is also a Haar basis of L2(R), which consists of the enlarged set of
functions [2m�2�(2mx+n): m # Z, n # Z].

Haar bases of L2(Rn) are orthonormal wavelet bases that are higher
dimensional analogues of the Haar basis of L2(R). As explained in 92, they
are defined to be those wavelet bases of L2(Rn) constructed by a multi-
resolution analysis whose scaling function is the characteristic function /Q

of a set Q. Gro� chenig and Madych [7] studied the problem of finding all
such bases, and showed that Q must necessarily be an affine image of an
integral self-affine tile T. Integral self-affine tiles T are constructed using
certain data (A, D), in which A is an n_n integer matrix which is expanding,
i.e. its characteristic polynomial has all its roots |*i |>1, and D=
[d1 , ..., dm]�Zn is a set of m=|det (A)| digits. The set T=T(A, D) is the
unique compact set satisfying the (set-valued) functional equation:

A(T )= .
m

i=1

(T+di). (1.1)

In fact T is also given by

T={ :
�

j=0

A&jdij : all dij # D= . (1.2)

Such a T is an integral self-affine tile if its Lebesgue measure +(T)>0. This
name is justified by the property that, if +(T )>0, then T always tiles Rn

by translation by some subset S of Zn, and we call any such S a tiling set
for T. The condition +(T )>0 always holds when D=[d1 , ..., dm]�Zn is a
complete set of coset representation of Zn�A(Zn), see Bandt [2]. Gro� chenig
and Madych [7] show that a further necessary condition for an integral
self-affine tile T to give rise to a Haar basis is that T tile Rn with the
full integer lattice Zn.

This paper addresses the question: Does every expanding integer matrix
A possess some integer digit set D�Zn whose tile T(A, D) gives rise to a
Haar-type wavelet basis of L2(Rn)? This question was raised by Gro� chenig
and Haas [6]. It has an affirmative answer for dimension n=1, as shown
by Kenyon [9] and Gro� chenig and Haas [6], and for dimension n=2, as
shown by Lagarias and Wang [13]. It is unresolved for dimensions n�3,
and this paper presents results bearing on this case.

As remarked above, not all pairs (A, D) give Haar-type wavelet bases
of L2(Rn). More precisely, Gro� chenig and Madych [7] show that the
characteristic function /T (x) of the tile T is the scaling function for a multi-
resolution analysis and an associated wavelet basis of L2(Rn) if and only if
the digit set D is a complete set of coset representatives of Zn�A(Zn) and
the whole lattice Zn is a tiling set for T, see Theorem 2.1 in Section 2.
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There are two simple necessary conditions for an integral self-affine tile
T(A, D) to have a Zn-tiling, stated as Theorem 1.1 below. A digit set D is
complete if it is a complete set of residues of Zn�A(Zn). A lattice 1 is
A-invariant if A(1)�1. The containment lattice Z[A, D] of a pair (A, D)
is the smallest A-invariant lattice containing all differences of digits
[di&dj : 1�i, j�n], i.e.

Z[A, D]=Z[Ak(dj&d1): 2�j�m, k�0]. (1.3)

An integer digit set D is primitive (for A) if Z[A, D]=Zn. Lagarias and
Wang [11] showed:

Theorem 1.1. Let A # Mn(Z) be an expanding integer matrix in Rn. If a
digit set D�Zn with |D|=det (A) gives a tile T(A, D) that Zn-tiles Rn,
then:

(i) D is a complete set of residues (mod A(Zn)).

(ii) Z[A, D]=Zn.

These two necessary conditions assert that (A, D) is a primitive complete
digit set, or, in the terminology of [11], a primitive standard digit set.1

These necessary conditions are sufficient for n=1 as was proved by
Kenyon [9], and Gro� chenig and Haas [6]. In dimensions n�2 they are
not sufficient, as shown by the example A=[ 2

0
1
2] , D=[[ 0

0], [ 3
0], [ 0

1],
[ 3

1]] which has Z[A, D]=Z2 but does not tile with the lattice Z2, see
Lagarias and Wang [10], Example 2.3. The structure of exceptional pairs
(A, D) having Z[A, D]=Zn but no Zn-tiling is classified in Lagarias and
Wang [12], 96. In particular Corollary 6.2 of [12] implies that if
|det (A)|=p is prime then the conditions (i) and (ii) of Theorem 1.1 are
necessary and sufficient for T(A, D) to Zn-tile Rn.

There remains the possibility that there are expanding integer matrices
which have no Haar-type wavelet bases because the necessary conditions of
Theorem 1.1 fail to hold for every digit set. Motivated by this possibility,
this paper studies the problem: Which integer matrices A have a primitive
complete digit set? This question makes sense for any A # Mn(Z), so we do
not require that A be an expanding matrix.

In Section 2 we prove the following simple fact.

183HAAR BASES
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set, but primitive complete digit set # primitive standard digit set.
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Theorem 1.2. (i) If there exists a primitive complete digit set D for the
integer matrix A and if A� is similar to A over Z, then there is a primitive
complete digit set for A� .

(ii). For every integer matrix A there is some integer matrix A� similar
to A over Q such that A� has a primitive complete digit set.

Thus the property of having a complete primitive digit set is a
Z-similarity invariant of A.

In Section 3 we show that primitive complete digit sets exist for most
integer matrices.

Theorem 1.3. Let A be any integer matrix with |det(A)|�n+1. Then A
has a digit set D/Zn consisting of a complete set of residues of Zn�A(Zn)
such that Z[A, D]=Zn.

The hypothesis |det (A)|�n+1 cannot be removed, for there are exam-
ples of 2_2 matrices A with |det (A)|=2 having no primitive complete
digit set.

In Section 4 we treat matrices A with |det (A)|=2, which have a charac-
teristic polynomial fA (x) that is irreducible over Q. This case covers all
expanding integer matrices with |det (A)|=2, because the characteristic
polynomial of any such matrix is irreducible.2 We show that there are num-
ber theoretic conditions which must be satisfied for a primitive complete
digit set to exist.

Theorem 1.4. Let f (x) # Z[x] be a monic polynomial of degree n
irreducible over Q with | f (0)|=2, and let % be a root of f (x). Then every
matrix A # Mn(Z) with characteristic polynomial f (x) has a primitive com-
plete digit set if and only if the ring R% : =Z[1, %, %2, ..., %n&1] has class
number one.

For the (nonexpanding) polynomial f (x)=x2&11x&2 the ring R%=
[1, (1+- 129)�2] has class number 2, so there exists a (nonexpanding)
matrix A with characteristic polynomial f (x) that has no primitive com-
plete digit set, e.g. A=[ 17

10
&10
&6 ].

An expanding integer matrix A for which the class number of the
corresponding ring R% is greater than one would give an example of an A
having no associated Haar-type wavelet bases. We do not know of any
expanding integer matrix A having this property. The results of section 5
below show that any such expanding matrix must have dimension n�4.
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An infinite family of expanding matrices with |det (A)|=2 is provided by
the family of matrices A having characteristic polynomials f (x)=xn&2, for
n�2. Concerning these, Theorem 1.4 yields the following result.

Corollary 1.4. For n�3, let n
- 2 denote the positive real n-th root of

2. If the (non-Galois) field Q( n
- 2) has class number hn greater than 1, then

there is an n_n expanding integer matrix |A| with |det(A)|=2 such that no
digit set D�Zn which is a complete set of residues of Zn�A(Zn) has
Z[A, D]=Zn. If so, then there are no integer digit sets D for A giving a
Haar-type wavelet basis of L2(Rn).

By analogy with cyclotomic fields, one might guess that the class number
hn of Q( n

- 2) will become large as n � �. However Michael Pfeifer (private
communication) has computed that hn=1 for for 2�n�29, using the
algebraic number theory package KANT.3 Thus we still have the:

Open Question. Is the class number hn of the (non-Galois) field Q( n
- 2)

equal to 1 for all n�3?

How strongly does the evidence of Pfeifer's computations support the
belief that all hn=1? The discriminant bounds of Odlyzko, assuming the
Generalized Riemann Hypothesis, would force the class number to be 1 up
to perhaps nr20, see Odlyzko [18]. If further numerical work shows that
hn=1 for all n�50, then the possibility that all hn=1 might well be taken
seriously. We note that it is a well-known open problem to show that there
are infinitely many different algebraic number fields whose ring of integers
has class number one.

In 95 we treat expanding integer matrices in dimensions 2 and 3. We first
prove that, in any dimension, there are only finitely many Z-similarity
classes of expanding integer matrices A having |det(A)|=p, when p is
prime (Lemma 5.1). By computation we determine the complete list of such
similarity classes in dimension n=2 for p=2, and in dimension 3 for p=2
and 3. Combining this with Theorem 1.3 and 1.4 we obtain the following
result.

Theorem 1.5. For n=1, 2 and 3 every expanding n_n integer matrix A
has a digit set D�Zn consisting of a complete set of residues of Zn�A(Zn)
such that Z[A, D]=Zn.

The result for n=3 is new, while the result for n=1 is deducible from
the results of Kenyon [9] and Gro� chenig and Haas [6] and for n=2 from
the results of Lagarias and Wang [13].
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Finally, we note that Haar-type wavelet bases make up the families of
wavelets of compact support in Rn with the least amount of smoothness,
i.e., they are discontinuous. An important unresolved issue concerns the
existence and construction of smoother wavelets of compact support, which
are in Ck(Rn) for some k�0, for general matrices A, cf. Strichartz [19].

We are indebted to I. Daubechies, K. H. Gro� chenig, A. Haas and
A. M. Odlyzko for helpful comments and references.

2. Haar-Type Wavelet Bases and Primitive Complete Digit Sets

We describe in more detail the notion of Haar-type wavelet basis, and
then prove Theorem 1.2.

Multiresolution analysis is a general procedure for constructing
orthonormal wavelet bases of L2(Rn), due to Meyer [16] and Mallat [15].
A multiresolution analysis in Rn is done with respect to a pair (1, A), where
1 is a (full rank) lattice 1 in Rn and A # Mn(R) is a matrix which has the
two properties:

(i) A is an expanding matrix, i.e. all its eigenvalues |*i |>1.

(ii) 1 is an invariant lattice of A, i.e. A(1 )�1.

Such an A is called an acceptable dilation for 1 and condition (ii) implies
that m=|det(A)| is an integer. The main ingredient in a multiresolution
analysis is a scaling function ,(x) # L2(Rn). Necessary and sufficient condi-
tions for ,(x) to give a multiresolution analysis are:

(i) The scaling function , satisfies a dilation equation

,(x)= :
# # 1

a# |det(A)| 1�2 ,(Ax&#),

and [,(x&#): # # 1] is an orthonormal basis of the linear space V0 that it
spans.

(ii) Let Vj be the linear space spanned by [,(A jx&#): # # 1]. Then

,
j # Z

Vj=[0] and .
j # Z

Vj=L2(Rn).

When these two conditions are satisfied, there are m&1 associated
wavelets constructed from ,, which have the form

�i (x)= :
# # 1

b (i)
# |det(A)|1�2 ,(Ax&#), 1�i�m&1,
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for certain coefficient sets [b (i)
# ]. (They form a basis of the orthogonal

complement of V0 in V1 .) The associated orthonormal wavelet basis of
L2(Rn) is then

[ |det(A)| j�2 �i (A
jx&#): 1�i�m&1, j # Z, # # 1].

Not all orthonormal wavelet bases come from a multiresolution analysis.
However it may be that all compactly supported orthonormal wavelet
bases do come from a multiresolution analysis. This has been proved in
dimension 1 by Lemarie� [14]. For more details on multiresolution
analysis, see Daubechies [3, Chap. 5] or Mallat [15].

The Haar basis [2m�2�(2mx+n): m, n # Z] of L2(R) provides the
simplest example of a multiresolution analysis, with A=[2] and 1=Z.
The scaling function is

,(x) :=/[0, 1](x)={1
0

x # [0, 1]
otherwise,

(2.1)

and the associated wavelet is

�(x)=,(2x)&,(2x+1). (2.2)

The scaling function ,(x) satisfies the dilation equation

,(x)=,(2x)+,(2x&1), (2.3)

and the orthonormality conditions

|
R

,(x) ,(x&n) dx={1
0

if n=0,
if n # Z"[0].

(2.4)

These orthonormality conditions express the fact that the interval [0, 1]
tiles R using the lattice Z, and the orthonormality of the Haar basis of
L2(R) follows from (2.2)�(2.4).

A Haar-type wavelet basis of L2(Rn) is one arising from a multiresolution
analysis in which the scaling function ,(x) is the characteristic function
/Q(x) of a compact set Q�Rn. Haar-type wavelet bases consist of compactly-
supported functions.

One can always convert any multiresolution analysis to a case where the
lattice 1=Zn and the matrix A # Mn(Z) is an expanding integer matrix, by
making a suitable linear change of variable. This reduction preserves the
Haar-type wavelet basis property, so without loss of generality we suppose
that 1=Zn and A # Mn(Z).

Let T1=T2 mean that T1 and T2 agree up to a set of measure zero.
Gro� chenig and Madych [7] proved:

187HAAR BASES
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Theorem 2.1 (Gro� chenig and Madych). Suppose that a multiresolution
analysis associated with (Zn, A) has a scaling function ,(x)=cQ/Q(x) where
Q is a measurable set of finite measure and cQ is chosen so that &,(x)&2=1.
Then there is a compact set T with Q&T such that:

(i) T=T(A, D) is an integral self affine tile with digit set D�Zn.

(ii) The digit set D=[d1 , ..., dm]�Zn is a primitive complete set of
residue classes of Zn�A(Zn).

(iii) T tiles Rn with a Zn-tiling.

Conversely if a set Q=T for a set T having properties (i), (ii), (iii) then
/Q(x) is the scaling function for a multiresolution analysis associated with
(Zn, A).

Proof. This is Theorem 1 of Gro� chenig and Madych [7], combined
with some remarks they make just after the theorem statement. Note that
condition (ii) implies that necessarily cQ=+(T)&1�2=1. K

Theorem 1.1 shows that condition (ii) can be omitted in this theorem��it
is implied by condition (iii). Also using Theorem 1.1 we see that a Haar-
type wavelet basis can only arise from a pair (A, D) where D is a primitive
complete digit for A. We now prove some properties of primitive complete
digit sets.

Proof of Theorem 1.2. (i) For any matrix B # Mn(R), the formula
(1.2) yields

T(BAB&1, B(D))=B(T(A, D)) (2.5)

and (1.3) yields

Z[BAB&1, B(D)]=B(Z[A, D]). (2.6)

Here A� =BAB&1 # Mn(R) is not necessarily an integral matrix. However if
A� is integrally similar to A, then A� =UAU&1 for some U # GL(n, Z), and
if Z[A, D]=Zn, then (2.2) yields

Z[A� , U(D)]=U(Z[A, D])=Zn.

Finally if D is a primitive complete set of digits for Zn�A(Zn), then U(D)
is a complete set of digits for Zn�A� (Zn), so (i) follows.

(ii) Take any complete set of digits D for A having 0 # D. If
Z[A, D]=Zn we are done, so suppose Z[A, D]{Zn. Let B # Mn(Z) be a
matrix whose columns form a basis of the lattice Z[A, D], so that

Z[A, D]=B(Zn), (2.7)

188 LAGARIAS AND WANG
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and |det (B)|=[Zn: Z[A, D]]>1. Let [e1 e2 } } } en] denote the standard
basis of unit column vectors giving the identity matrix. The vectors ABei

are all in Z[A, D] because it is A-invariant, hence ABej=Ba~ j for some
a~ j # Zn. Thus

AB=BA�

where A� =[a~ 1 } } } a~ n] # Mn(Z), and A� is similar to A over Q.

Now define D� =[d� i : 1�i�m] by di=Bd� i , so D=B(D� ). We will show
that D� is a primitive complete digit set for A� .

We first observe that D� �Zn because di=di&0 # Z[A, D]=B(Zn). Now
(2.2) gives

Z[A, D]=B(Z[A� , D� ]),

whence (2.7) gives Z[A� , D� ]=Zn. Finally we show that D� is a complete
digit set for Zn�A� (Zn). Suppose not, and that d� i&d� j=A� v for some v # Zn.
Then (2.4) gives

di&dj=BA� v=ABv # A(Zn),

which contradicts D being a complete digit set for Zn�A(Zn). K

3. Primitive Complete Digit Sets: det(A)>n

We construct a primitive complete digit set for all matrices A # Mn(Z)
with |det(A)|>n.

Proof of Theorem 1.3. Without loss of generality, suppose D=[0,
d1 , ..., dm&1], so Z[A, D]=Z[Akdi : 1�i�m&1, k�0]. Since |det(A)|�
n+1, there are at least n nonzero digits. We assert that one can already
choose the first n of them so that

Zn=Z[d1 , ..., dn]�Z[A, D].

If so, then completing the set d1 , ..., dn in any way whatsoever to a com-
plete set of coset representatives of Zn�A(Zn) yields a primitive complete
digit set.

This assertion is equivalent to the following:

Claim. If A # Mn(Z) has |det(A)|�n+1, then there is a basis
[d1 , ..., dn] of Zn whose elements lie in distinct nonzero residue classes of
Zn�A(Zn).

189HAAR BASES
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Since [0, d1 , ..., dn] are then distinct residue classes of Zn�A(Zn), one cer-
tainly needs the hypothesis |det(A)|�n+1 in this claim.

It remains to prove the claim. We make use of the Smith normal form
for A: there exist UV # GL(n, Z) such that

UAV=diag(s1 , s2 , ..., sn)=_
s1

& , (3.1)
s2

. . .

sn

in which the si are positive integers such that si+1 divides si . (See Newman
[17], Theorem II.9; it is easy to reverse the order of diagonal elements
by using permutation matrices, and all si�1 because det(A){0.) Set
M=UAV, and

Zn�A(Zn)$Zn�M(Zn)$(Z�s1Z)� (Z�s2Z)� } } } � (Z�snZ).

We first show that M has a basis [b� 1 , ..., b� n] with the required property.
Suppose that si>1 for 1�i�k and si=1 for k+1�i�n. A complete set
of coset representatives of Z�M(Zn) is:

a1 e1+a2e2+ } } } +akek , (3.2)

where [e1e2 . . .en] is the standard basis of unit column vectors and each
integer ai has 0�ai�si&1. Totally order this set of |det(M)| elements in
order of increasing value of t=�k

i=1 ai , using the lexicographic ordering of
(a1 , ..., ak) to break ties for representatives having the same value of t.
Denote the reordered set of vectors x0 , x1 , ..., xm&1 , where m=|det(M)|, in
which case x0=0 and xi=ei for 1�i�k. We then set

b� i :=ei , 1�i�k,
(3.3)

b� i :=ei+xi , k+1�i�n.

Since m�n the vectors b� 0 :=0, b� 1 , b� 2 , ..., b� n lie in distinct cosets of
Zn�M(Zn), because b� i&xi # M(Zn) for 1�i�n. Also [b� 1 , ..., b� n] form a
basis for Zn because the change of basis from e i to b� i is lower triangular
with 1's on the diagonal.

Now set A� :=V&1AV, so that

M=UAV=UVA� , (3.4)

and also set

d� i :=V&1U&1b� i , 1�i�n. (3.5)
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Clearly [d� 1 , ..., d� n] is a basis of Zn because V&1U&1 # GL(n, Z). Also d� 0=0
and all residues of d� 0 , d� 1 , ..., d� n are distinct in Zn�A� (Zn), since

d� i&d� j # A� (Zn) � V&1U&1(b� i&b� j) # A� (Zn)

� b� i&b� j # UVA� (Zn)=M(Zn).

Thus A� has a basis D� =[d� 1 , ..., d� n] of the required kind. Finally A=
VA� V&1 has the basis D=V(D� ) of the required kind, as in Theorem 1.2.
This proves the claim, which completes the proof. K

4. Primitive Complete Digit Sets: det(A)=2

Suppose that A # Mn(Z) is a (not necessarily expanding) matrix with
|det(A)|=2. In this case any primitive digit set for A is automatically a
complete digit set. To see this, without loss of generality reduce to the case
that D=[0, d], and note that if d # A(Zn) then

Z[A, D]=Z[Akd: k�0]�A(Zn). (4.1)

Theorem 1.2 says that the existence of a primitive complete digit set for
A is determined by the Z-similarity class of A. The Z-similarity classes of
matrices A having a fixed characteristic polynomial f (x) irreducible over Q
are classified by the Lattimer�MacDuffee theorem, cf. Newman [17],
Sect. III.16. This theorem says that there is a one-to-one correspondence
between Z-similarity classes and ideal classes of the ring R% :=
Z[1, %, ..., %n&1], where % is a root of f (x)=0. More precisely, choose a
right eigenvector v=(&1 , ..., &n)T for the eigenvalue %, which has all
&i # Q(%). This can always be done. Then set

a=a(v) :=Z[&1 , ..., &n]. (4.2)

It is an R%-ideal, because Av=%v, and it depends on the choice of v. The
set IA =[:a: : # Q(%] specifies an ideal class of (fractional) ideals in R% ,
which is independent of the choice of eigenvector v, so depends only on A.
The Lattimer�MacDuffee theorem then says that if A and A� both have the
same irreducible characteristic polynomial, then A is Z-similar to A� if and
only if IA=IA� .

Theorem 1.4 is an easy consequence of the following result.

Theorem 4.1. Suppose that A # Mn(Z) has |det(A)|=2, and that its
characteristic polynomial fA (x) is irreducible over Q. Let % be a root of
fA (x). Then A has a digit set D=[d1 , d2]/Zn with Z[A, D]=Zn if and
only if AT corresponds to a principal ideal of the ring Z[1, %, ..., %n] under
the Lattimer�MacDuffee correspondence.
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Proof. Without loss of generality, we may suppose 0 # D, so that
D=[0, d]. We claim that

Z[A, D]=Z[d, Ad, A2d, ..., An&1d]. (4.3)

By the Cayley-Hamilton theorem An is a Z-linear combination of
[Ak: 0�k�n&1], hence all [Akd; k�n] are in the lattice given by the
right side of (4.3). The vectors [Aid: a�i�n&1] span Rn, because they
generate an A-invariant rational subspace, and no nonzero rational sub-
space except Rn is A-invariant, because fA (x) is irreducible. Thus Z[A, D]
has full rank and has the basis matrix

B=[d Ad . . .An&1d], (4.4)

so Z[A, D]=Zn if and only if det(B)=\1.
Now AT has the same characteristic polynomial as A, so it has a right-

eigenvector v~ =(&~ 1 , ..., &~ n)T with eigenvalue % and with all &~ i # Q(%).
Furthermore we can scale it to have all &~ i # Z[1, %, ..., %n&1]. By the
Lattimer�MacDuffee theorem the R% -ideal a(v)=Z[&~ 1 , ..., &~ n] is in the
ideal class associated to AT. A simple calculation gives

BTv~ =_
dTv~
dTATv~
} } }
dT (AT )n&1 v~ &=(d, v~ ) _

1
%
b

%n&1& , (4.5)

with (d, v~ ) # R% and (d, v~ ){0 because BT has full rank and v~ {0. If,
however, det(B)=\1 then (4.5) says that a(v~ ) spans the same R%-module
as the principal ideal ((d, v~ ) ). Thus AT must be in the principal class.

For the other direction, suppose that AT corresponds to the principal
class. By Theorem 1.2 the matrix A is Q-similar to some integer matrix A�
having a complete primitive digit set. However we have shown that A� can't
have a primitive digit set unless A� T corresponds to the principal class. Thus
AT must be Z-similar to A� T since both correspond to the principal class.
Thus A is Z-similar to A� so by Theorem 1.2 it has a complete primitive
digit set since A� does. K

Remark. A monic polynomial f (x) has the associated companion matrix
Cf whose last row entries are the coefficients of f (x). The matrix Cf has
right eigenvector (1, %, ..., %n&1)T with eigenvalue %, and corresponds to the
principal class of R% . The matrix Cf clearly has the primitive digit set [0, en]
where en=(0, ..., 0, 1)T, since C i

f en=en&i for 1�i�n&1. Consequently
Theorem 4.1 shows that CT

f corresponds to the principal class. It then
follows from the Lattimer�MacDuffee theorem that CT

f is Z-similar to Cf .
This gives a rather indirect proof of this well-known fact, cf. Taussky [20].
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Proof of Theorem 1.4. This follows immediately from Theorem 4.1.
In particular, if the ring R% has class number greater than 1, then a repre-
sentative of a nonprincipal class under the Lattimer-MacDuffee corres-
pondence gives a matrix A with characteristic polynomial f (x) which has
no digit set D=[d1 , d2]�Zn with Z[A, D]=Zn.

There are two-dimensional examples with non-expanding fA (x) having
class number greater than one. For f (x)=x2&ax&2 with a�0, the
smallest value of a where this happens is a=11. Then %=(11+- 129)�2,
and Z[1, (11+- 129)�2] is the full ring of integers of Q(- 129), which has
class number 2. The matrix [ 17

10
&10
&6 ] represents the nonprincipal class. We

can check directly that no basis [0, d] works, for if d=(x, y)T then the
matrix B in (4.4) is

B=_x
y

17x&10y
10x&6y &

so det(B)=10x2&23xy+10y2, and this quadratic form does not integrally
represent 1 or &1.

Proof of Corollary 1.4. The class number hn of the field K=Q( n
- 2) is

by definition the number of elements in the class group of the ring of
integers OK of K. Now OK contains the subring R=Z[1, %, %2, ..., %n&1],
where %= n

- 2, and it is well known that the class number hn of OK divides
the class number hR of the subring R. Thus if hn>1, then hR>1 and the
result follows from Theorem 1.4. K

5. Primitive Complete Digit Sets: Dimensions 2 and 3

We will show that in dimensions 2 and 3 all expanding integer matrices
have a primitive complete digit set.

Recall that the expanding property of a matrix A is a property of its
characteristic polynomial, and we call a monic polynomial f (x) # Z[x]
expanding if all its roots |*i |>1.

Lemma 5.1. (i) For any positive integers m and n, there are finitely
many expanding polynomials f (x) # Z[x] of degree n having | f (0)|=m.

(ii) If in addition m is a prime p, then there are finitely many
Z-similarity classes of expanding matrices A # Mn(Z) having |det(A)|=p.

Proof. (i) Let

f (x)=xn+ :
n&1

i=0

ai xi,
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TABLE 5.1

Expanding Polynomials: Degree 2, | f (0)|=2

Polynomial
f (x) Roots discriminant

x2&2 \- 2 8

x2+2 \i - 2 &8

x2&x+2 1
2 (1\i - 7) &7

x2&2x+2 1\i &4

then a0=\m, and the expanding property implies that all roots |%i |�m,
whence

|ai |�\n
i+ mi, 1�i�n&1.

(ii) Any expanding polynomial with | f (0)|=p must be irreducible
over Q. Otherwise f (x)=f1(x) f2(x) implies | f (0)|= | f1(0)| | f2(0)|, and
each | fi (0)|>1 since they are also expanding, which contradicts | f (0)|
being prime. Combining (i) with the Lattimer�MacDuffee theorem gives
the finiteness result. K

Proof of Theorem 1.5. Theorem 1.3 proves the result in dimension 1,
and also covers all cases where |det(A)|�3 in dimension 2, and where
|det(A)|�4 in dimension 3. By Lemma 5.1 there are only a finite set of
Z-similarity classes of expanding matrices with |det(A)|=2 in dimension 2
and |det(A)|=2 or 3 in dimension 3. To complete the proof it suffices to
enumerate them and to exhibit a primitive complete digit set for each one.

TABLE 5.2

Expanding Polynomials: Degree 3, f (0)=2

f (x)=x3+ax2+bx+2 Polynomial
(a, b) Real root discriminant

(2, 2) &1.544 &44

(1, 1) &1.353 &83
(1, 0) &1.696 &116

(0, 0) &1.260 &108
(0, &1) &1.521 &104
(0, &2) &1.769 &76

(&1, &1) &1.206 &83
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TABLE 5.3

Expanding Polynomials: Degree 3, f (0)=3

f(x)=x3+ax2+bx+3 Polynomial
(a, b) Real root discriminant

(4, 5) &2.466 &31

(3, 4) &1.682 &31
(3, 3) &2.259 &108
(3, 2) &2.672 &239

(2, 3) &1.392 &87
(2, 2) &1.810 &139
(2, 1) &2.174 &231
(2, 0) &2.485 &339

(2, &1) &2.757 &439

(1, 2) &1.275 &175
(1, 1) &1.574 &204
(1, 0) &1.863 &255

(1, &1) &2.130 &304=&4.76
(1, &2) &2.374 &327
(1, &3) &2.598 &300
(1, &4) &2.806 &199

(0, 1) &1.213 &247
(0, 0) &1.442 &243

(0, &1) &1.671 &239
(0, &2) &0.893 &211
(0, &3) &2.103 &135

(&1, 0) &1.174 &231
(&1, &1) &1.359 &172
(&1, &2) &1.546 &87

(&2, 1) &1.147 &31

To accomplish the enumeration, we first determine all allowable expand-
ing polynomials f (x). For dimension 2 these consist of all expanding poly-
nomials with | f (0)|=2, given in Table 5.1. For dimension 3 these consist
of all expanding polynomials with | f (0)|=2 or 3. We can reduce to the
cases f (0)=2 or 3 because those with f (0)=&2 or &3 are exactly
f� (x) :=&f (&x). The complete lists are given in Tables 5.2 and 5.3,
respectively.

As an illustration of the computation, consider the case

f (x)=x3+ax2+bx+3.
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Since all roots |%i |<3, and |%1%2%3 |=3, we have

|a|�|%1 |+|%2 |+|%3 |<5

|b|�|%1%2 |+|%1%3 |+|%2%3 |<7.

A direct test of all cases yields Table 5.3. In fact, since f (0)=3, if f (&1)�0
then f (x) has a real root in [&1, 0], and if f (1)�0 then it has a root in
[0, 1], and if f (3)�0 then it has a real root in [3, �), while if f (&3)�0
then it has a real root in (&�, &3]. All these cases are excluded, and
every remaining (a, b) pair is actually expanding. A similar result holds for
the other two tables.

To enumerate Z-similarity classes we use the Lattimer�MacDuffee
theorem. For each ring R%=[1, %, ..., %n&1] its discriminant is the discrimi-
nant of the polynomial f (x), and Tables 5.1�5.3 give these values (computed
using MACSYMA). In the |det(A)|=2 case for n=2, 3 these match the
discriminants of the full ring of integers of the corresponding fields Q(%); in
the cubic field case this follows using the table in Delone and Faddeev [4],
p. 160. Thus R% is the full ring of integers, and the needed class number is the
class number of Q(%). In all cases this class number is 1, as is well known for
the quadratic fields in Table 5.1, while for the cubic fields it follows from the
tables in Delone and Faddeev [4], p. 141�146. Theorem 4.1 guarantees that
complete primitive digit sets exist in these cases.

In the case n=3 and |det(A)|=3, the polynomial discriminants reveal that
R% is the full ring of integers for the corresponding cubic field, with the single
exception f (x)=x3+x2&x+3, which has discriminant &304=&4.76; and
R% is then of index 2 in the full ring of integers OK of the cubic field K of
discriminant &76. In all cases where the full ring of integers occurs, the class
number is 1 using either the tables of Delone and Faddeev [4] or the
(unpublished) table of Angell [1] for d=&199, &339, &439. In the
remaining case f (x)=x3+x2&x+3, the ring of integers OK has class
number 1. Furthermore its subring R% also has class number 1, since there is
a unit =K= 1

2(1+%2) of OK that lies in the nontrivial coset of OK �R%$Z�2Z,
so that every principal ideal in OK can be generated by an element in R% .
Consequently every such Z-similarity class contains a representative matrix A
that is a companion matrix. It then suffices to take D=[0, d1 , d2] where d1=
(0, 0, 1)T and d2 is any digit in the remaining equivalence class of Z3�A(Z3). K
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