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We correct an error in the proof of Theorem 1.5 in Lagarias and Wang (J. Number
Theory 57, 1996, 181�197). We also give a strengthened necessary condition for the
existence of a Haar basis of the specified kind for every integer matrix A that has
a given irreducible characteristic polynomial f (x) with | f (0)|=2. A. Potiopa (Master's
thesis, Siedlce University, 1997) found that the expanding polynomial g(x)=x4+
x2+2 violates this necessary condition. Thus there exists a 4_4 expanding integral
matrix A of determinant 2 and characteristic polynomial g(x) which has no Haar-
type wavelet basis using an integer digit set D�Z4. � 1999 Academic Press
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1. INTRODUCTION

Our paper [4] studied the problem of whether every expanding n_n
integer matrix A has a digit set D�Zn such that the pair (A, D) gives a
Haar-type wavelet basis of Rn. Theorem 1.5 of [4] asserted that this is
always the case for n�3. Recently J. Browkin [1] brought to our attention
an error in the proof of one case in this theorem. Here we correct the proof.

We also obtain a strengthened necessary condition for the existence of a
Haar basis of the above kind. Using this improved necessary condition
A. Potiopa [7] has shown that there exists a 4_4 expanding integral
matrix with characteristic polynomial x4+x2+2 that has no Haar basis
using an integral digit set D�Z4. This shows that the result of [4] does
not extend to all higher dimensions.
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2. CLASS NUMBERS AND THE LATTIMER�MACDUFFEE
THEOREM

We recall the definition of the class number of a commutative integral
domain R with unit, as in Pohst and Zassenhaus [6, p. 264] and Dade,
Taussky and Zassenhaus [2]. A fractional ideal a of R is an R-module of
the form &I, where I is an ideal of R and & is a nonzero element of its
quotient field K. Two fractional ideals a1 and a2 are in the same ideal class
if there exist :1 , :2 # K"[0] such that :1a1=:2a2 . We denote the class of
a by [a]. There is a multiplication defined on fractional ideals by

(&1 I1)(&2 I2)=&1&2 I1I2 ,

which yields a well-defined multiplication on ideal classes which makes it
a semigroup with identity element the class [R] of R. We call this semi-
group the class semigroup S(R). An ideal class [a] is strictly invertible1 if
it has an inverse in this semigroup, i.e., there exists a class [b] such that
[a][b]=[R]. We call the group Cl(R) of strictly invertible elements of
S(R) the invertible class group of R. We define the class number h(R) of R
to be |S(R)| and the invertible class number h*(R) of R to be |Cl(R)|.
It is well-known that a commutative integral domain R with unit is a
Dedekind domain if and only if every ideal class is strictly invertible, i.e.,
if and only if S(R)=Cl(R), so that h(R)=h*(R). See [6, p. 269]. It
follows that: If the class number of a commutative integral domain R with
unit is 1, then R must be a Dedekind domain.

The Lattimer�Macduffee theorem [5, Sect. III.6] gives a one-to-one
correspondence between the set of Z-similarity classes of integral matrices
A having a fixed characteristic polynomial f (x) of degree n that is
irreducible over Q and the set of ideal classes of the commutative integral
domain

R% :=Z[1, %, %2, ..., %n&1], (2.1)

where % is a root of f (x)=0. The ring R% is an order of the quotient field
K=Q(%), i.e., it is a subring of finite index in the ring OK of algebraic
integers of K which contains 1. It is well known that an order R of an algebraic
number field K is a Dedekind domain if and only if R=OK , because a
Dedekind domain is integrally closed in its quotient field [6, p. 269].
Therefore we have:
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1 This definition of invertibility is narrower than the definition used in Dade, Taussky, and
Zassenhaus [2]. We require strictly invertible ideal classes [a] to consist of ideals a that are
invertible in the sense of [2] and have the associated order ord(a) :=[a : a]=R. Thus Cl(R)
is the group G([R]) in Prop. 1.2.10 of [2].



Class Number One Criterion. If R% has class number h(R%)=1, then
R% is the full ring of integers in K=Q(%).

We apply this criterion to obtain a necessary condition for the existence
of Haar bases of the form (A, D), where D is an integral digit set. Recall
from [4] that a necessary condition that (A, D) with D�Zn give a Haar
basis is that D be a complete primitive digit set for A, i.e., a digit set D that
is a complete set of coset representatives of Zn�A(Zn) and which has Zn=
Z[D, A(D), A2(D), ...].

Complete Primitive Digit Set Criterion. Let f (x) # Z(x) be an
irreducible monic polynomial with | f (0)|=2, and let % denote a root of f (x).
Suppose that for each integer matrix A with characteristic polynomial f (x)
there exists some complete primitive digit set. Then R% must be the full ring
OK of algebraic integers of K=Q(%), and the class number hK :=h(OK)=1.

Proof. This follows directly from Theorem 1.4 of [4, p. 184] together
with the class number one criterion above. K

The complete primitive digit set criterion can be applied to show that
Theorem 1.5 of [4] does not generalize to dimension 4 and various higher
dimensions. A. Potiopa [7] found the expanding polynomial

f (x)=x4+x2+2,

for which the ring R% has index 2 in the full ring of integers of K=Q(%).
By the class number one criterion above, R% does not have class number
1, hence by the complete primitive digit set criterion there exists a 4_4
integral matrix A for which there is no digit set D�Z4 such that the pair
(A, D) gives a Haar-type wavelet basis of R4. To give an explicit example,
we note that in terms of a root % of the polynomial x4+x2+2 the ring of
integers OK of K=Q(%) is Z[1, %, %2, 1

2 (%2+%3)], and the action of multi-
plication by % on this basis (taken as column vectors) gives the integral
matrix

A :=_
0
0
0

&1

1
0
0
0

0
1

&1
&1

0
0
2
1& .

This matrix has the desired property by Theorem 1.4 of [4], since the ideal
class [OK] is not the unit class in the ideal class semigroup S(R%).
A. Potiopa [7] also observed that there are no examples of expanding
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polynomials f (x) # Z[x] of degree 5, with f (0)=\2 and with R% not the
full ring of integers of Q(%), and that there are exactly four such polynomials
of degree 6, All of the quotient fields K from these expanding polynomials
had a maximal order OK with class number 1. Denoting the index k=
[OK : R%], the four polynomials of degree 6 are

x6&x4&x2+2, k=4,

x6+x3+x2&x+2, k=2,

x6+x4+2, k=2,

x6+x5+x4+2x3+x2+x+2, k=3.

Another example where the complete primitive digit set criterion rules
out the existence of Haar bases (A, D) as above is the polynomial
f (x)=xn&2, with n=1093 or 3511. In this case F. Hess [3] has observed
that R% is not the full ring of integers of Q(21�n), using the fact than 2n#
1 (mod n2) in these two cases.

The observations made above lead to the following corrections to [4].

(1) To verify the assertions made for the case %=21�n described on
[4, p. 185], one must check that R% is the full ring of algebraic integers of
Q(21�n) for 2�n�30. This was done by F. Hess [3], who has verified by
computations using KANT that R% is the full ring of integers for 2�n
�1092, but not for 1093 or 3511. We note that the open question raised
in [4, p. 185] about the class number of the full ring of integers of Q(21�n)
remains unresolved.

(2) The proof of Corollary 1.4 requires the extra observation that the
semigroup homomorphism S(R%) � Cl(OK) induced from the map I � I$ :=
OKI is surjective. This is immediate, since each OK-ideal is an R%-ideal.
Actually Corollary 2.1.11 of Dade, Taussky and Zassenhaus [2] states that
this map restricted to the domain Cl(R%) of strictly invertible ideal classes
is surjective.

(3) The proof of Theorem 1.5 on [4, p. 196] for the case f (x)=x3+
x2&x+3 requires modification. In this case the order R% has index 2 in
the maximal order OK , hence the class number of R% is larger than 1. In
Section 3 we supply a corrected proof that a complete primitive digit set
always exists.

We also note the following misprints in the tables in [4]: In Table 5.2
the last entry (a, b)=(&1, &1) has discriminant &59, not &83. In Table
5.3 the last entry should have (a, b)=(&2, &1), not (&2, 1).
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3. PROOF OF THEOREM 1.5

The proof in [4] is correct when |det(A)|>3 and in the remaining cases
of determinant 2 or 3 where the associated order R% is the full ring of
integers of K=Q(%), since it happens that h(R%)=h*(OK)=hK=1 in all
those cases, and Theorem 1.4 of [4] applies. There remains one exceptional
case, which consists of integral 3_3 matrices A which have characteristic
polynomial f (x)=x3+x2&x+3. This polynomial has discriminant &304
=&4.76 and R% is of index 2 in the maximal order OK of the cubic field
K of discriminant &76. The class number hK=1, so all OK-ideals are prin-
cipal. The unit group of OK is of rank 1 with fundamental unit == 1

2 (%2+1)
and torsion group [&1, 1]. The maximal order OK=Z[1, %, =] as a
Z-module.

We claim that the class number h(R%)=2, and that

S(R%)=[[R%], [OK]]. (3.1)

It is easy to see that the multiplication table of this semigroup is as follows:

[R%] [OK]

[R%] [R%] [OK]

[OK] [OK] [OK]

We do not use the multiplication table in the sequel.
To prove the claim, let a be an integral R% -ideal, i.e., a�R% , and

consider the OK -ideal a$=aOK . It is a principal ideal a$=:OK , and since
a�OK each element of a is divisible by :. By dividing by : we obtain the
R% -ideal b=(1�:) a with [b]=[a] and b has the properties that b�OK

and bOK=OK . We will show that b=R% or OK or S, where S=
Z[=, 1+%+=, &1+%], and that S==R% , so that [R%]=[S]. If so,
then the claim follows, because [R%] and [OK] are distinct classes. (Indeed
any ideal in the same class as OK is an OK -ideal, while R% is not.)

To classify all such b, we note first that 2OK /R% , because R% is a Z-sub-
module of OK of index 2, and all such submodules contain 2OK , which is
a Z-submodule of OK of index 8. Thus

2OK=2(bOK)=b(2OK)�bR%=b�OK ,

so that b is a union of some of the eight cosets of 2OK in OK . These cosets
always include the zero coset, and the index [OK : b] is a power of 2. An
arbitrary element of OK can be written

a+b%+c=, with a, b, c # Z.
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The eight cosets of OK�2OK are described by (a, b, c) (mod 2). In terms of
cosets, we have

R%=[(0, 1, 0), (1, 0, 0), (1, 1, 0), (0, 0, 0)].

To compute multiplication on cosets, a calculation gives

(a+b%+c=)(m+n%+ p=)=am&bn&bp&cn+(an+bm+bp+cn&cp) %

+(ap+2bn&bp+cm&cn+2cp) =.

Since 2OK is closed under multiplication by OK , it cannot be one of the
ideals b, hence any b contains at least one nonzero coset. The smallest
R%-module generated by either of the cosets (0, 1, 0) and (1, 0, 0) is R% ,
which is an admissible b. The smallest R% -module generated by the coset
(1, 1, 0) is [(1, 1, 0), (0, 0, 0)]. This is also an OK-ideal, hence it cannot be
any b. Thus any candidate b that contains these two cosets must contain
another coset, and hence be of index at most 2 in OK . Next (0, 0, 1) and
(1, 1, 1) each generate the R%-ideal

S :=[(0, 0, 1), (1, 1, 1), (1, 1, 0), (0, 0, 0)],

and SOK=OK , so this is an admissible b. The values (1, 0, 1) and (0, 1, 1)
each generate the R% -ideal [(1, 0, 1), (0, 1, 1), (1, 1, 0), (0, 0, 0)], but this
ideal is also an OK -ideal hence we do not obtain an admissible b. All these
R% -ideals are of index 2 in OK . Thus any remaining candidates for b must
have index smaller than 2, and this yields OK , which completes the list of
b. The multiplication rule above allows one to check that S==R% . Thus
(3.1) holds.

We choose bases of the two Z-modules b as follows:

R%=Z[1, %, %2]

and

OK=Z[1, %, 1
2+ 1

2 %2].

Matrix representatives of the two classes (representing multiplication by %
on these bases viewed as column vectors) are given by

0 1 0 0 1 0

A1 :=_ 0 0 1& and A2 :=_&1 0 2& .

&3 1 &1 &1 1 &1
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The principal class A1 , because it is strictly invertible, necessarily has a
primitive complete digit set. The class A2 is not strictly invertible, and has
the primitive complete digit set

0 0 0

D={_0& , _1& , _0&= .

0 0 1

To see this, note that

m1

A2(Z3)={_m2& : m1+m2&m3 #0 (mod 3)= .

m3

Hence D consists of all three residue classes (mod 3) so is complete. It is
straightforward to verify that it is primitive. K
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