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ABSTRACT 

In this note are proved two conjectures of Daubechies and Lagarias. The first 

asserts that if Z is a bounded set of matrices such that all left infinite products 

converge, then 8 generates a bounded semigroup. The second asserts the equality of 

two differently defined joint spectral radii for a bounded set of matrices. One 

definition involves the conventional spectral radius, and one involves the operator 

norm. 

The occurrence of convergent infinite products of matrices pervades 
many current areas of mathematics. See, for example, the various articles in 
[6]. Recently, in studying curve and surface generation, several authors 
[1,2,5] have been led to sets of matrices all (or almost all) infinite products of 
which converge. Although the contexts vary, this infinite product conver- 
gence seems to be a fundamental underlying phenomenon. Thus in [5] 
Micchelli and Prautzsch are motivated by subdivision methods, in [2] 
Daubechies and Lagarias are motivated by wavelets and dilation equations, 
and in [l] Berger is motivated by iterated function systems and random 
algorithms for curve and surface generation. 

In [2] Daubechies and Lagarias explore sets of matrices all infinite 
products of which converge. This note presents some additional results in 
that direction, and studies the general structure of bounded semigroups of 
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matrices. It also proves two conjectures made in [2], called by them the 
boundedness conjecture and the generalized spectral radius conjecture. 

Let .k = An denote the algebra of all real rr X n matrices, and let 11. ]I be 
a norm on R(“). This norm induces a corresponding operator norm 11. II on A?. 
Let Z c A? be a nonempty bounded set of matrices, and denote by 4 = 
S(Z) the semigroup generated by Z augmented with the n X n identity 
matrixZ=Z,,~othat4=U”,~,~“,where~~=~im,~M,:M~~~,l~ii 
m}. We say that Z is LCP (left convergent products) if every infinite product 
from I: left converges, i.e., if lim, em M, . . . M, exists for any sequence 

(Mi)y= 1 in 2,. In this case denote by 2” the set of all such limits. Define 

llzll= sup{ IlMll: M E 2)) 
m l/m p^=pI(‘c) = limsup]]x I] . 

m-rm 

The quantity b(z) is a special case of the joint spectral radius of a bounded 
subset of a normed algebra defined in [7]. Observe that p^ does not depend 
on the particular choice for the norm on .A 

THEOREM I 

(a) Product boundedness. Zf C is LCP then 4 is bounded. (That is, z 
is product bounded, using the terminology from [2].) In particular p^ < 1. 

(b) s is LCPwith x”=O ifandonZyiff<<. 

Proof. (a): Let X be the subspace 

X= 
1 

x ELF!(“): sup ]]Sx]l <m . 
SE9 > 

Then X is invariant under each M E C, and by the uniform boundedness 
principle I( 41x I] < 03. Suppose X is not all of lR(“‘. 

CLAIM. Vx G X, C > 0 there is S E 9 such that 

SxtEX and llSxll>C. 

Indeed, since x 4 X, there exists 

S’= M;** M, with Mie15, l<i<m, 
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such that 

IIS’xll> max(l, llJl~II*ll2ll)C. (1) 

If S’x G X then simply take S = S’. Otherwise choose k < m such that 

M, . . -M,xEX but Mk+l-.-Mlx~X. 

Since 

IIS’xll ~b%~~~~IMk+l *. . M,xll < II91x II.1lXll- llMk . * ’ Mlxll, 

we get from (1) that (IM, *. . M,xl( > C. Thus S = M, . . . M, satisfies the 
Claim. 

It follows now from the Claim that for each x E X we can find a sequence 

<si>T= 1 in 9 such that 

IIS,. . . S,xll > m Vm, 

which contradicts the LCP property. 
(b): The “if” part is immediate, since ~~2”‘~~ < 1 for some m. Suppose 

then that s is LCP with 2” = 0. S’ mce we have established in part (a) above 
that 4 is bounded, it follows from a “diagonal sequence argument,” as in 
Daubechies and Lagarias [2, Lemma 5.21, that 3 < 1. n 

Let p(M) denote the spectral radius of M E A?, and define 

,o(C)=SUP{P(M):ME~C), p* =~*(~)=limsup[p(~“)]““. 
m-+m 

LEMMA II. 

(a> 9 is bounded g and only q there exists an operator norm v on A? 

such that v(C) < 1. 
(b) For any 6 > p^ there exists an operator norm v = vs on A? such that 

v(C) < 6. 
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(c) Assume that the matrices M E C are all of the block upper-triangular 

fm 

where the M(j)‘s are square s&matrices. Set X(j) = {M(j): M E 2). Then 

(2) 

Proof. (a): The “if” part is immediate, since v(M,M,) < v(M,)v(M,) 

VM,, M, EL Suppose then that 9 is bounded. For x E [WC”’ define 
V(X) =sup()~Sx~~: S E 4). (Here 11. II is an arbitrary norm.) 

(b): Since $(X,/6)< 1, it follows from Theorem I that 9(X/S) is 
bounded. Thus, from part (a) of this lemma, there exists an operator norm v 
on J such that v(Z/6) < 1. 

(c): Equation (2) f 11 o ows from block expansion and factorization of the 
determinant. To prove (3) write M = D + N, where D = D, is the block 
diagonal part of M, 

D= 

and N = NM is the nilpotent part of M, N = M - D. Let II* I( be the l,-norm. 
(Actually almost any “standard’ norm will do here.) This norm satisfies the 
properties: (i) the norm of any matrix with zeros in it can only go up (or stay 
the same) if nonzeros are substituted for some of the zero entries; (ii) 

11 DII = max 1 G j G II(M(j)ll. Then it is easy to see, using this norm, that 

On the other hand, given any S > max 1 4 j G 1 p -(Z(j)), there exists, by part (b) 
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of this lemma, an operator norm v = vg on .k such that ~(2~) < 6. Observe 
that each term in the expansion of the product 

M, . . . M,=(D,+N,)...(D,+N,)=D;..D,+ ... +h’;-.N, 

which contains at least n nilpotent factors must be zero. Thus 

where C is a constant independent of m. From this it follows that 3(Z) < 

Go) < s. n 

Let & = M(2) denote the algebra generated by E. Observe that JX’ is 
spanned by lJ”,=iZ”‘, so that we can choose a basis I?,,..., B, E lJ f;l=izm 
for JZ?, for some L > 0. 

PROPOSITION III. Suppose @ = 1. If d is semisimple then 9 is bounded. 

Proof. Let a, 11, and let v,, = vo, be an operator norm on k such that 
v,(X) Q a,. The existence of Ye is guaranteed by Lemma II(b). For each 
basis element Bi 

vm( Bi) =G o”, =G uf Vm, (4) 

where L was defined above. 

CLAIM. The (v,) are bounded and equicontinuous on the (compact) 

sphere 8 = {A E &: [[All = 1). Were II-II is an arbitrary norm.> 

Indeed, each A E M has a unique representation A = Ccri B,, and so 
Cla,l is a norm on JZ’. Since all norms on & are equivalent, there exists 
K > 0 such that Cla,l< Kll All. From this it follows, using (41, that if A E 6 
then v,(A) < KU: Vm. Thus (v,,,) is bounded on 8. Similarly, if IlAi - Aall 
< E, A,,A, E &, then 

and so (v,) is equicontinuous. 
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Now that we have established our Claim, we can extract a convergent 
subsequence v,_ + v on M Clearly Y is a seminorm on JZ’ satisfying 

p(A) Q v(A) VAEJZf, 

u(X) Q 1. 

Thus 3 = (A E &: v(A) = O} is a nilpotent ideal in ~2 [3, p. 391. Since JZ’ 
is semisimple we must have ,X= 0, and thus v is a bona fide norm. By 
Lemma II(a) 9 is bounded. n 

THEOREM IV (Spectral radius). p * (2) = p^(C) for all bounded sets 2. 

Proof. Since p(M) < ]lM]] f or any operator norm I]* I], it is clear that 
p* Q p. By scaling if necessary, we may assume that p^ = 1. Let JZ’= G?(C) 
be the algebra generated by Z. Suppose first that & is semisimple. Then 
according to Proposition III, 9 is bounded. Let fI = fl(I;> denote the set of 
all limit points of sequences (S,)l,i where S, E 2,” Vm. Since & is 
closed, R G .JZ’; and since 9 is bounded, 0 it0. Also fI # (0}, since R 
contains 2” and 2,” z {O) by Theorem I(b). Observe that fl is a semigroup 
satisfying a29 = R. Thus the enveloping algebra M(a) is a right ideal 
of J22. 

If p* < 1, then every element in fI is nilpotent, and so it follows from 
Levitzki’s theorem [3, Theorem VIII.5.1; 4, Theorem 11.3.51 that &(a) is a 
nilpotent right ideal of &. Thus ~?(a) must be contained in the radical of 
M [3, p. 91, and since JZ’ is semisimple, it follows that fi = JZZ’(~) = 0, a 
contradiction. 

If M is not semisimple, it can be simultaneously reduced via similarity 
so that each A E JX’ has the block upper-triangular form 

A= 

where A(j)‘, are square submatrices, and each algebra d(j) = {A(j) : A E JZ’) 
is semisimple. (Indeed, we can get each d(j) to be in fact irreducible.) 
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Moreover each d(j) is generated by Z%(j) = {M(j) : M E I;), after similarity 
reduction; and thus our result follows now from Lemma II(c). 8 

We thank G. Schechtmun fin- the proof of Theorem 1. 
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