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ABSTRACT

The generalized spectral radius p(X) of a set £ of n x n matrices is p(X) =
limsup,_, ., 5x(X)1/%, where py(X) = sup{p(A Az ---Ay): each A; € T}. The joint
spectral radius p(E) is p(X) = limsup,_, o, S (Z)V*, where pr(E) = sup{||A;---
Ag]:each A; € =}, Ttis known that 4(Z) = p(X) holds for any finite set = of n X n
matrices. The finiteness conjecture asserts that for any finite set X of real n x n matrices
there exists a finite & such that () = F(T) = pr(T)V/*. The normed finiteness con-
Jecture for a given operator norm asserts that for any finite set © = {Aq, ..., A,,} having
all [|A;llop < 1, either H(Z) < 1 or H(T) = p(T) = ()% = 1 for some finite
k. It is shown that the finiteness conjecture is true if and only if the normed finiteness
conjecture is true for all operator norms. The normed finiteness conjecture is proved for
a large class of operator norms, extending results of Gurvits. In particular, for polytope
norms and for the Euclidean norm, explicit upper bounds are given for the least k having
P(E) = pr(Z)/*. These results imply upper bounds for generalized critical exponents
for these norms.
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1. INTRODUCTION

The spectral radius o (A) of a single matrix A is the absolute value of the largest
eigenvalue of A, and thus satisfies p(A) = p(AF)Y/ k for all k > 1; hence

p(A) =kgrgop(Ak)‘/k. (1.1)

It can also be computed using matrix norms. A consistent matrix norm is a matrix
norm satisfying the submultiplicativity property

IMiMa]| < M [lIM2].
It is well known that for any consistent matrix norm the spectral radius satisfies
p(A) = [IA]

and that
p(A) = lim | A 1, (1.2)

cf. Belitskii and Lyubich (1988), Stewart and Sun (1990).

This paper studies questions concerning the spectral radius of aset ¥ of n x n
real matrices. There are two natural notions for the spectral radius of such a set
%, which generalize the properties (1.1) and (1.2), respectively. The first of these
is the generalized spectral radius p(X), defined by

P(T) := limsup 5, ()%, (1.3)
k—00
where
Pr(X) = sup{p(A;, - -- Ay ) each A;; € Z}. (1.4)

The second notion is the joint spectral radius p(X), defined by

P(X) := limsup B (Z, |-I)Y/5. (1.5)

k—00

where ||-|| is a consistent matrix norm and
Pk(Z, |II) = sup{llA;, --- Ay || :each A;; € £}, (1.6

The quantity p(X) is well defined independently of the consistent matrix norm
used; however, the quantities g (X, ||-]|) do depend on the matrix norm ||-||. The
notion of joint spectral radius appears in Rota and Strang (1960), and that of
generalized spectral radius in Daubechies and Lagarias (1992a).
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These notions of spectral radius of a set T are closely related. The generalized
spectral radius and joint spectral radius satisfy the inequalities

(D) <B(D) < B < m(Z, [I-IDY* (1.7

for any £ > 1 and any consistent matrix norm |[-||. In particular the right-hand
inequality implies that

A(D) = liminf 5 (T, |I-DV* = lim Bi(Z, - HYV*. (1.8)
k—o00 k—00

Daubechies and Lagarias (1992a) conjectured, and Berger and Wang (1992)
proved, that for finite sets ¥ the equality

p(X) =p(T) (1.9)
always holds. More generally, Berger and Wang (1992) show that the equality

(1.9) holds whenever X is a bounded set. In Appendix A of this paper we show
further that if p(X) = 0 then, even when ¥ is infinite,

p(E)=p(2)=0

always holds. Daubechies and Lagarias (1992a) observe that there do exist infinite
sets = for which

p(Z) < p(®),

L on
Z:{[z ]:n=1,2,3,--~}.
0 3

The main object of this paper is to study the following problem.

e.g.,

FINITENESS CONJECTURE.  For each finite set £ of n x n real matrices there
is some finite &k such that

P(Z) =p(T) = pp(z)*. (1.10)

This conjecture arose from work of Daubechies and Lagarias (1992a), in con-
nection with the problem of whether there is an effectively computable procedure
for deciding whether or not a finite set of matrices & with rational entries has joint
spectral radius p(X) < 1. If the finiteness conjecture is true, then such an algo-
rithm exists, namely, for k = 1,2, 3, ... compute p; ()% and B (T, ||-|N'/%,
where ||-|| is a fixed consistent matrix norm (e.g., the Frobenius norm), and check
whether either of p¢(Z, |-|)}* < 1 or 5,(X) > 1 holds. If so, then p(L) < 1



20 JEFFREY C. LAGARIAS AND YANG WANG

or p(¥) > 1, respectively. If 5(T) < 1, then some pr(Z, |-)Y/* < 1 by (1.8),
while if p{X) > 1, then assuming the finiteness conjecture would guarantee that,

for some k,
DV =5(D) =p(T) = 1.

Hence this algorithm would eventually halt.

We shall prove the finiteness conjecture holds for various special classes of
3 and indicate why it may well be true in general. One indication of its subtlety
is that there exist two 2 x 2 matrices such that the smallest k for which equality
occurs in (1.10) is arbitrarily large; see Example 2.1 in Section 2.

The finiteness conjecture does not use matrix norms at all in its statement.
However, in Section 2 we show that it is equivalent to the truth (for all norms) of
a conjecture about matrix norms, the normed finiteness conjecture, stated below.
The normed finiteness conjecture was apparently first proposed in the former So-
viet Union, where it was raised in studying stability questions for certain control
problems. Gurvits (1991, 1993, 1994) gives the first published results on it, and
attributes it to E. S. Pyatnicky.

Given a norm ||-|| on R”, the operator norm ||-||op on the set M (n, R) of n x n
real matrices induced from it is

Allop := ”shlpl{NAxH x € R"}.

All operator norms are consistent matrix norms.
NORMED FINITENESS CONJECTURE. Let ||-|| be a given norm on R". Suppose

that ¥ = {A;:1 < i < m} is a finite set of n x n real matrices with joint spectral
radius p(Z) = 1, for which

A llop < 1, 1<i<m, (1.1D)
in the operator norm induced from |{|-||. Then there exists a finite k£ such that
(T = (D) = 1. (1.12)

Note that the normed finiteness conjecture has a stronger hypothesis than the
finiteness conjecture, namely, it assumes the boundedness of the semigroup S(X)
generated by ¥. [This follows from (1.11).] In contrast, the set ¥ consisting of

the single matrix
1 1
SitH
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has p(A) = p(X) = 1, but for any operator norm and any & > 1
PAS) < A [lop.

In Sections 3-6 we consider the normed finiteness conjecture for various norms
Il on R”. Gurvits (1991, 1992, 1994) proved that it is true for norms whose
unit ball is a polytope. In Section 3 we prove more generally that the normed
finiteness conjecture is true for all piecewise analytic norms in R” (Theorem 3.1).
A piecewise analytic norm is one whose unit ball B has a boundary which is
contained in the zero set of a holomorphic function f defined on an open set €2 in
C” containing B, which has f(0) # 0. The main innovation in the proof over the
methods of Gurvits is a result in symbolic dynamics—Iemma 3.2.

The normed finiteness conjecture differs from the finiteness conjecture in that
for certain norms, but not all norms, there exists a finite universal upper bound
a(m, ||-1) for the smallest k in (1.12) for which equality occurs, i.e.

a(m, || - := sup{min o (S = 1)1 [T =k, all |A;] < 1}.

We prove that such a bound «(r, |-}|) exists for piecewise algebraic norms (The-
orem 3.2). A piecewise algebraic norm is one whose boundary is contained in
the zero set of a polynomial p(z) € R[zi, ..., z,], which has p(0) # 0. This
is the case when the unit ball of ||| is a polytope or an ellipsoid, or the [? norm
for rational p, with I < p < co. In Sections 4 and 5 we obtain explicit bounds
for a(m, ||-)) in the polytope and ellipsoid cases, respectively. The bound in the
polytope case depends only on the norm ||-|| and not on m = | Z|. For the ellipsoid
case the bound depends on both 7 and #, and seems unreasonably large (Theorem
5.1), but we do show that any bound must depend on m (Theorem 5.2).

The results of Sections 35 also serve to bound generalized critical exponents.
Given an integer m > 1 and a norm ||-|| on R”, the generalized critical exponent
B(@mn, |I-11) is the smallest integer & such that for all sets = = {A; :1 < i < m} for
which all [|A]lgp < 1, but for which 5(Z) < 1, any product of length k has

”Aik . 'Ail ”Op <1
The value 8(m, ||-||) = +ocifno finite k exists. The notion of generalized critical

exponent is due to Gurvits (1991). The generalized-critical-exponent problem is
to determine all such constants 8(m, |-||). It is immediate that

B D < B2, 11D =BG D =---.

The quantity 8(1, ||-||) is called the critical exponent. It was defined in Ptak (1962)
and has been extensively studied; see Belitskii and Lyubich (1988, Section 2.6)
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and the survey article of Ptak (1993). For example, for the Euclidean norm on
R”, B(1, ||-]) = n. It is immediate from the definitions that

Blm, |I-1) < a@m, [I-1) (1.13)

for all m > 1. Thus finite bounds for a(m, || ||) automatically bound the corre-
sponding generalized critical exponents. Conversely, since there exists a norm in
R? with (1, ||-]) = 400, we have a(m, ||-[}) = 400 for all m > 1 in this case;
see Section 6.

The results of this paper carry over to sets of complex n x n matrices in
M (n, C), by regarding them as real 2n x 2n matrices using the correspondence

. X Yy
x+zy<->|:_y x]’

and using the correspondence on column vectors

ol 1]

to define their action on column vectors. The natural notions of generalized spec-
tral radius and joint spectral radius for complex matrices are preserved under this
correspondence. This correspondence is needed because the definition of piece-
wise analytic norm (given in Section 3) requires a norm on R", and does not work
on C".

We note that the definitions of joint spectral radius and generalized spectral
radius make sense for sets X in an arbitrary Banach algebra. We expect that the
finiteness conjecture fails for finite sets X in arbitrary Banach algebras.

Finally we remark that the notions of generalized spectral radius and joint
spectral radius naturally arise in studying the smoothness properties of compactly
supported wavelets and solutions of two-scale dilation equations [see Daubechies
and Lagarias (1991, 1992b), Colella and Heil (1992a, 1992b)] and also arise in
studying the dynamical complementarity problem in the theory of stochastic net-
works [see Kozyakin et al. (1993)].

2. THE NORMED FINITENESS CONJECTURE

In this section we reduce the finiteness conjecture to the normed finiteness
conjecture, and then give an example showing that arbitrarily long finite products
may be needed to attain the generalized spectral radius.

THEOREM 2.1. The following are equivalent, for each integer n:



GENERALIZED SPECTRAL RADIUS 23

(i) The finiteness conjecture is true for all finite sets of real n x n matrices.
(i1) The normed finiteness conjecture is true for all operator norms on all real
n X n matrices.

Proof. (i) = (i1): This follows using the Berger-Wang equality (1.9).

(i) => (i): First note that (ii) implies the truth of the normed finiteness conjec-
ture for all operator norms on I x [ matrices, for 1 < <n. Set L = {A;:1 <
i < m}. The finiteness conjecture is always true when (%) = O withk = [ in
(1.11); hence we may suppose that (X) > 0. Since p(AX) = Ap(Z) for scalars
A > 0, we may suppose without loss of generality that 5(X) = 1. Following
Berger and Wang (1992, Proposition III and Theorem IV), there exists a similarity
transformation P € GL(#n, C) such that all matrices in P~!ZP have the block
factorization A

4

2
P-IAP = AT =], 2.1

where Ai(j ) is k;j x kj, such that each set
5 = {AY 1 <i<m) (2.2)
generates a bounded semigroup S(X;). Furthermore

P(2) =p(P~'EP) = max D(E;); (2.3)

hence some p(%;) = 1. Now the block-triangular form (2.1) implies that
Pu(T) =P (P7'ZP) = max By (E)). (2.4)

It therefore suffices to prove the finiteness conjecture for any ¥; having 5(X;) = 1,
since it then follows for P~'ZP and T by (2.4). Taking such a ¥;, recall that
by Berger and Wang (1992, Lemma II), for any (finite or infinite) ¥ generating a
bounded semigroup S(X) there exists an operator norm |||, such that

IAll, <1, all AeXx.
Since 5(X;) = 1, the truth of the normed finiteness conjecture for |||, implies

that there is a finite k and a product in X, of length k, having an eigenvalue of
modulus one. Thus () = () = 1 by (2.4). ]
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ExampLE 2.1.  The set & = {A;, A;} defined by

bid 4
Ao [O 0} N cosﬂ sm2k
1 0} -

— Sin E CcOos ﬂ

where
7\ —1
l<a< <cos —) R 2.5)
2k
has p(T) = p(X) = 1. In addition, p;(Z) < 1 for j < k, and

Pes1 (D) = 1. 2.6)
Proof.  First, note that
sin 7;—21 0
k_
A?A] = m Tm
cos— 0O
2k

1s lower-triangular and has rank at most one; hence
. TTm
p(ATA]) = |r(ATA )] = ok ‘sm Tl

If m > k, then p(ATA1) < 1,and if m =k, then p(AJ'A) = 1. For 1 <m <k,
set @ = m/2k and [ = m — k and obtain, using (2.5),

—k
p(ATA) = o* ™ cos %
_coslf  cos[(l — 1)8]cos® —sin[(l — 1)0]sin6
" (cos®)Y (cos 8)
cos[(I — 1)} - cosd _
(cos®)!=! = T cosd

Hence p(AT A1) < 1in this case, so p(ATA() = 1 if and only if m = k.
For the general case, since A% = 0 and p(A2) < 1, we need only consider
finite products M = A’A|AJ' - - A|A) where each j; > 0. Since M has rank at
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most one, _ .
p(M) = |or M| = | (A MA, 7))

=hmﬁmAﬁfﬂm@%ny
=1

Hence p(M) < 1, and p(M) = 1 if and only if jo + j, = k and all other j; = k.
Thus 7(X) = pp41(X) = 1, while 5,,(¥) < 1 if m < k. Finally, p(Z) = 1 by
(1.9). |

This example generates a bounded semigroup, so, by the results of Berger and
Wang (1992), there exists a norm on R” giving {|A;llop < 1,i = 1,2, for this
example. Its unit ball can be chosen to be a polygon having vertices at

[ 4sin
k=i *l os=isk
+cos -

3. PIECEWISE ANALYTIC NORMS

A piecewise analytic norm is any norm ||-|| on R” whose unit ball B has a
boundary 8B contained in the zero set of a holomorphic function f(z) defined on
a connected open domain €2 in C" containing 0, which has f(0) # 0.

More generally, given a collection F of holomorphic functions f: Q — C, let

Vao(F)={z€ Q: f(z) =0forall f € F}
denote their common zero set in C*. We also call ||-|| a piecewise analytic norm if
B: ={xeR": x| =1} C ValF) (3.1

for some nonempty collection F of holomorphic functions defined on €2, and
0 ¢ Vo (F). Thissecond definition has no extra generality, because if an F satisfies
(3.1) then there is also a single function in F with £(0) # 0, and 7' = {f} also
has the property (3.1).

A piecewise analytic norm ||-|| has a unit ball whose boundary 9B consists
of a finite number of real analytic pieces; this motivates our terminology. To
prove this fact, observe that the set Vo (f) is an analytic set as defined in Hervé
(1963, p. 27). The regular points VS(f) of Vo(f) are dense in Vo(f), and form
a union of connected components each of which is associated to an irreducible
analytic set; cf. Hervé (1963, pp. 84, 97). By compactness only finitely many of
these irreducible components intersect Vo(f) N B. Because R” is a Lagrangian
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submanifold of C", 8B must be covered by a finite number of these irreducible
analytic sets of complex codimension one. Each of these intersected with 9B gives
a real-analytic piece of the boundary of real codimension one in R”, which proves
the fact. Warning: not all norms whose unit balls have a boundary that is a finite
union of real-analytic pieces are piecewise analytic norms.

Our object is to prove the following result.

THEOREM 3.1. The normed finiteness conjecture is true for all piecewise ana-
Iytic norms ||-|| on R".

Our proof of Theorem 3.1 does not provide any explicit bound for k in (1.11).
It is based on two auxiliary results. The first of these is the following Noetherian
property of zero sets of holomorphic maps.

LeMMa 3.1. Let ||-|| be a norm on R™ with unit ball B. Given any collection
F = {fa:a € I} of functions holomorphic on an open connected domain 2 on
C" containing B, there exists a finite subset F' = {f; 11 <i < m} of F such that

Va(F)NB = Vo(F) NB. (3.2)

Proof. We use the basic fact that the ring Hy of germs of holomorphic
functions at a point z € C" is Noetherian; cf. Hormander (1973, Theorem 6.3.3).
In consequence, using Hervé (1963, Corollary 3, p. 37), for each z €  there
exists a finite subset Fz of elements of F and an open neighborhood U (z) of z
such that Fz and F have the same zero sets on U (z),i.e.,

Vuay(Fz) = Vuzy(F). (3.3)

Now let z run over all elements of B. The sets U(z) form an open cover of the
compact set B, and hence have a finite subcover {U(z;): 1 < i < I}. Take

.7'—/ = szi‘
i=1

Since
Va(F U G) C Va(F) N Va(G),
one has
Vo(FHYNB C Vo(F)NB,
using (3.3). Since Vo (F") 2 Va(F), (3.2) follows. n

The second auxiliary result concerns symbol sequences.
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LEMMA 3.2. Let o' be an infinite word in an alphabet A of cardinality |A| =
m. Then it contains a set of nonempty finite subwords {y; :i = 1} such that
Vix1 = ¥; Bivi for some word B;, and which satisfy |y;| < f(i, m), where f(i, m)
are explicitly computable universal bounds given by (3.5) below.

This lemma is really a recurrence result in symbolic dynamics. Given a finite
alphabet A and a (possibly infinite) set A of finite words from A4, the one-sided
subshift ;5 determined by A is the set of all one-sided infinite words

W= 003 ..., Ol,'E.A,

that contain no block in A, i.e., o471 --- o € A wheneveri < j. A word @
is recurrent if any subword occurring in w occurs at least twice; see Furstenberg
(1981, Proposition 1.10). Now Lemma 3.2 immediately implies the following
result, by taking the word w = lim;_, o ¥;.

COROLLARY 3.1. Let £ A be a one-sided subshift of a finite alphabet A of cardi-
nality |A| = m. There exist universal bounds {f (i, m):i = 1, 2, .} such that the
Sfollowing holds: If{a # @, then L a contains arecurrentword® = o0+ Qpy * - -
such that each initial word a1 - - - o occurs twice without overlap in the first
f @, m) symbols of w.

It is well known that any nonempty one-sided subshift contains a recurrent
word and, more generally, a uniformly recurrent word; see Furstenberg (1981,
Theorem 1.15). The interesting feature of Corollary 3.1 lies in the explicit bounds

[, m).
Proof of Lemma 3.2.  Write
o =y ..., each o] c A

Let A* denote the set of finite words from .A. Given aword ¢ € A*, let || denote
the number of symbols in o. The (upper asymptotic) density of ¢ in ' is

_ 1
d(o) = limsupz#{i <kio=a; a1}
k—o00

There certainly exist o € A* with d(o) > 0, since if 4 = {8 :1 < j < |A]}

then l
§ )
j:] d(ﬁ ! ) = 1

The basic ingredient of the proof is:
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Claim. Ifd(o) > 0, then there exists a word T € A* with d(cto) > 0.
In fac, if 5 := 2|0 [{1 + [d(c)]17!} then there is such a word T with |t| < s and
d(oto) > s~ 1AL

To prove the claim, suppose that d(o') > 1/k. Consider the set £ = {i ;0 =
oty g0y, and 0 = e 05— forsome j withi +jo| < j <
i + (2k + 1)|o|}. Suppose that d(£) < 1/2k. Now the occurrences of o consist
of all indices i € £ (and these have upper density less than 1/2k) and also of some
indices i ¢ £, which occur in clumps of at most [o| overlapping copies of o, all
lying in the interval i < j < i 4+ 2|o|, and which are followed by an interval of
length 2k|o| free of any occurrence of o; hence these contribute upper density at
most 1/2k. But this implies d(0) < 1/k, a contradiction. Thus d(£) > 1/2k, so
that .

d(octo) > d(E) > —.
Jrlfgklol 2k

Consequently some T € A* with |t| < 2k|o| has
- 1
d(oT0) = S| ATHT > s,

proving the claim.
Now choose o} with d(a1) > |.4|~', as may be done. Using the claim, there
exists an infinite sequence {o; :i > 1} with

Oitl = 0iT;0; 3.4
and d(o;) > O forall i.

Finally, one can easily derive bounds f (i, m) inductively, using the claim to
obtain a suitable recursion. The initial conditions are

f,m) =1, (3.5a)
d(l,m) =m, (3.5b)

and, for i > 2, the recursion is
sti,m)=2f0 -1, m)[1+d(@G - 1,m)], (3.5¢)
d(i,m) = s(i, m)m*&m+l (3.5d)
fU,m)y=2f3G0—1,m)+s(,m). (3.5¢e)
The resulting f (i, m) grows like a tower of exponentials of height i. |

Proof of Theorem 3.1. Let © = {A;:1 < i < m)} have p(¥) = 1 and
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lAillop < 1 for the given operator norm on M(n, R) induced from the piecewise
analytic norm ||-{.

There is a function f(z) with £(0) # 0, which is holomorphic on an open
connected domain €2 in C* which contains the unit ball B of |||, such that

B={xeR": x| =1} S Vo(f) ={zeQ: f(2) =0}

View elements z = (21, ..., zn) € C" as column vectors with z; = x; +iy;, and
note that
IntB = {x:|x|| < 1} =B —4B.

For small enough & > 0, the domain €2 contains

Q={z=@G,....,207 :(x1,...,xp) € (1 +6)IntB
and (y1, ..., ¥n) € e IntB},

which is a connected open set. The matrices A; in X are real with ||A;llop < 1;
hence each A; maps B into B and also maps €’ into €'

Given a sequence of matrices (Ag, Ag,,...) in X, we construct a sequence
F = {fr:k = 0} of functions fy(z) = f(z) and

fk(z) = f(AdkAdk_l o 'Adlz)-

All f; are holomorphic on £, since A; (') € @'
We study the zero sets

Zm :=BN Ve (fo, fis.-os fm)- (3.6)

These are compact sets with Zg 2 Z), 2 Z2 2 ---, and they don’t contain 0,
because 0 ¢ Zy. By Lemma 3.1 this sequence has the Noetherian property that
there is a finite r with

Zy=Zpol =Zppn=---. 3.7

We call Z := Z, the limit set of w = (d1,d>, - - -).
Our object is to produce a sequence

w=(dy, dy, ...) (3.8)

such that the construction above yields a nonempty limit set Z, and also a finite
product A := Ay, Ag,_, - -+ Ay, for which

AZ) C Z. (3.9)

If so, then the spectral radius p(A) = 1. For Z is compact and doesn’t contain 0;
hence there are constants rg and r; with

O<rog<|ix|| <n forall xe Z.
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Given any xg € Z, (3.9) yields

~ IAIxoll _ o
1A lop > > —.
%o ry
Thus N ~ 1
p(A) = lim [|A/||o5 > 1.
j— o0
Since

IAN = Agy - - - Agyllop < 1,

we conclude p(A) = 1. This shows that p; (¥) = 1, proving the normed finiteness
conjecture in this case.
We will construct a suitable @ vsing Lemma 3.2. First we consider the set

7T ={(di,dz,....d):I1Ag - - Agllop = 1}.

This set is infinite, for if it were finite, then px(X) < 1 for large enough k and, by
(1.7,
p(E) < p(B) = (B)/ < 1,

contradicting p(X) = 1. By Konig’s infinity lemma there exists an infinite se-

quence
o = (d), dr,ds,...), each d;e{l,2,...,m}, (3.10)

with all products
“AdkAdk_l "'Ad1 I|0p =1 (3.1D

Now on the alphabet A = {1, 2, ..., m} consider the set
A= {(elv RN Ek): ”AekAek_] vt 'Ael |I0p = 1} (312)

The one-sided subshift Sa on A contains »’ by (3.11), so it is nonempty. By
Lemma 3.2 it contains an infinite word

w = (dl,d2,d3, )

such that every initial block (dy, da, ..., d;) occurs infinitely many times as a
block in w. The definition of Sa gives

”AdeLl]',] e Ad] ”()p =1 (313)
forall j > 1.

It remains to show that this is the desired . First we check that its associated
limit set Z is nonempty. This follows from (3.13). By definition there exists some
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x; with ||x;]] = 1 and ||Adj -++Agx;|| = 1. Then by submultiplicativity of the
operator norm,
”Ad,Adlxlllzl for ISIS];

whence

Ag - Ayx; € aB C Vo (fo). (3.14)
Thus fi(x;) =0for0 <i < j, and sox; € Z;. Since all Z; are nonempty, the
Noetherian property (3.7) gives Z # @. Second, we check that (3.9) holds. Given
Z = Z,, take the smallest ¥ > r such that the block (dx+1, ..., dr+r) is identical
with the initial block (dy, d3, ..., d;). Then

Bn VQ/(fk’ fk+l,--~:fr)
={xeB:w=Ay - -Agxhas fj(w)=0for0 < j <r}.
={xeB:Ay - -Ayxe Z} (3.15)

because w € B, since A; maps B into B. Now

Bm VQ’(fk!fk+1s ---,fk+r) 2 Bn V(f01 fl! ---,fk+r)
= Ziyr = Z,.

Together with (3.15) this yields
Adk co Adl(Zr) c Z,
which is (3.9). ]

Theorem 3.1 unfortunately does not apply to the /# norm. For irrational p, the
holomorphic function )}, zf whose zero set defines the boundary of the unit ball
has singularities where a coordinate vanishes, and it also has a singularity atz = 0.
(The case of I” norms with p rational is handled by Theorem 3.2 following.)

The bound for the constant & in (1.12) produced by Theorem 3.1 may depend
on the set £. This is due to the ineffectiveness of the constant » occurring in
the Noetherian bound in Lemma 3.1. Note that Lemma 3.2 supplies an effective
bound f(r, m) if the bound for r is known.

For piecewise algebraic norms we can obtain an explicit bound for r, and hence
afinite bound e (m, ||-||). A piecewise algebraic norm is one whose unit ball B has
boundary 8B contained in the zero set of a real polynomial p(z) € Rlzy, ..., z,]
which has p(0) # 0. One can show that the /¥ norm for rational p is a piecewise
algebraic norm.

THEOREM 3.2. If||-|| is a piecewise algebraic normonR", then for eachm > 1
there is a finite bound a(m, |-||) such that if || = m, then

P(E) =P (B)V/*
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holds with k = a{(m, ||-|I). Consequently the generalized critical exponents
B(m, ||-1) are finite for all m > 1.

The special case m = 1 of this theorem is a known result concerning critical
exponents; cf. Belitskii and Lyubich (1988, Theorem 2.6.1). To handle the case
m > 2, however, we need the following lemma.

LemMma 3.3. Let p(z) € Clz1, ..., z4] be a polynomial in n variables of total
degree at most d. Let {A;:i = 1,2,...} be any sequence of n x n complex
matrices, and consider the family {V,, : m > 0} of zero sets

Vim ={zeC":p(AjAj_1---Ajz) =0for 0 < j < m}.

This family contains at most (”jl'd) different sets.

Proof.  Certainly
Vo2Vi2Va2---.

Let W,, denote the span of
{p(Aj---A1z):0 < j <m}

regarded as a C-vector space, which is contained in the vector space of all poly-
nomials of total degree d. The latter has dimension ("jl'd). Now Vi, =V, if
Win, = Wp,, but not necessarily vice versa. Since

WoC W W, C---,
there are at most ("jd) distinct Wy. u

Proof of Theorem 3.2.  Follow the proof of Theorem 3.1 to obtain an infinite
word w = (dy, dy, ...) with all

ALAL_ ALl =1,

which satisfies all the conclusions of Lemma 3.2. Set pg(z) = p(z) and px(z) =
p(Ay, - Agz)fork > 1, and let

Zy:=Bn{zeR":p(z) = pi1(z) = = py(z) = 0}.

Then Zg 2 Z; D Z; D ..., and each Z; is nonempty, as in (3.14). Let W; denote
the vector space of polynomials spanned by {po(z), ..., px(z)}. Now Z} # Z;

implies that Wy Cx Wiy, while Lemma 3.3 says that wy := dim Wy takes at

most (" Zd) different values.
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It now suffices to produce a bound o (m, ||-||) such that there exists some Z;
with
o Aa (Z)) € Z; (3.16)

fork < a(m, [|-]), because then p(Ay4, - - - Ay,) = 1 asin the proof of Theorem 3.1.
The idea is that, although we have no bound on how many Z; will occur before
the sequence stabilizes, if the W; remain constant for too long, the bound f(r, m)
in Lemma 3.2 will apply to give a Z; satisfying (3.16), where r is the smallest
value of j such that W; assumed its current value w. If (3.16) doesn’t hold for any
smaller value of w, we can inductively bound this j by

J <r(w),

where r(w) is given by the recursion

r(w) =r(w— 1)+ f(r(w—1),m). (3.17)
Since w < (" +d) by Lemma 3.3, we obtain the bound
s
alm, ) <1+ D r(w),
w=I
which completes the proof. ]

4. POLYTOPE NORMS

A norm on R" is a polytope norm if its unit ball is a polytope. Gurvits (1992)
proves that the normed finiteness conjecture holds for polytope norms; his proof is
by contradiction and does not give a bound for a(m, ||-||). Here we show that the
normed finiteness conjecture is true for polytope norms, with a universal bound
depending only on the polytope P and not on | Z|. Given a convex polytope P in
R” , let f;(P) be the number of j-dimensional faces of P.

THEOREM 4.1. Let ||-|| be a polytope norm on R™ with unit ball P, and I-llop
its associated operator norm on n x n matrices. If © = {Ay, ..., Ay} has joint
spectral radius (X)) = 1 and all || A; lop < 1, then there exists some finite product
Ay - - Ay, with

k< %Z i (P), @4.1)
j=0

which has spectral radius o (Ay, - - - Ag) =
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This result immediately yields for polytope norms the generalized critical ex-

ponent bounds
n—1
B, |- < alm, |I-) < 3 £(P),

j=0

which are independent of m.

Proof of Theorem 4.1.  The polytope P uniquely decomposes into a disjoint
union of open faces of various dimensions, with P° := int P being its unique
n-dimensional face. In algebraic terms, each (n — 1)-face of P is the intersection
of P with a hyperplane L;(x) = 0, where the linear form

n
Li(x) = Z ¢jxj + co,

has ¢g > 0, so that the half space L;(x) > 0 contains P°. Each k-dimensional open
face is determined by the conditions that exactly n — k of the L;(x) are identically
zero and the remainder are strict inequalities of the form L;(x) > 0. Let X’ denote
the collection of the Z}Lo fi(P) open faces of P. Note that since P is centrally
symmetric around 0, if y is an open face then so is —y, and y # —y except for
the open n-face P°. Thus f;(P)isevenfor0 < j <n — 1.

Claim. Given A; € Z. For each open face y € X there is a unique y' € X
such that
Aily) Sy’ 4.2)

To prove the claim, note first that ||A;flop < 1 means A;(P) € P. Thus it
suffices to show that the image A;(y) is in at most one open face. We argue by
contradiction. Suppose A(y) were in two open faces. These two faces differ
in at least one facet constraint L;(x), with one having L;(x) = 0 and the other
L;j(x) > 0. Then there are points x1, x2 € y with L;(Ax;) > Oand L;(Ax;) = 0.
Since y is (relatively) open, there exists & > O with

i+ (1 —-Mxr ey

for —& < A < 1+ &. Inparticular x’ = —ex; + (1 + &)x2 € y and L;(Ax) <0,
which implies Ax” & P, contradicting A; (P) C P, so the claim follows.
The claim shows that each A; € ¥ defines a mapping ¢;: X — X. In
particular ¢; (P°) = P° for all i, because 0 € P° and A; maps 0 to 0.
The hypothesis () = 1 guarantees that there exist arbitrarily long products
Ad] Ad2 - Adk with
”AdkAdk,l v 'Ad| Hop =L
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Take suih a product with £k = % ;:(; fi(P), and set K,- = A,,ledj_l - Agp.
Since [|Agllop = 1, there exists xo € 3P with Ayxg € dP. Now let x; := Ajxo
and let y; be the unique open face of P containing x;. The claim now implies that

Ay(i—) Sy,  1<j<k

Since ;\\k (x0) € 0P, one has y; # P°. Then all y; # P°, because the remark
above shows that if y; = P° then ;.| = P°, whence y; = P°, a contradiction.

Now we have k4 1 faces {y; : 0 < j < &}, and since there are exactly 2k faces
of dimension < n — 1in P, there must occur either y; = y; or y; = —y; for some
i > j. We assert that C = Ay, Ay, | -- - A; has the desired properties. Certainly
(4.2) holds, and C(y;) < +£y;. Consequently

2, _
Cw)<v)

where ¥; is the closure of y;. Since ¥; is compact and doesn’t contain 0, one
concludes as in the proof of Theorem 3.1 that

p(C)? = p(CH > L.
Since p(C) < ||Cllop = 1, we conclude that p(C) = 1. [ ]

We remark that Gurvits (1991, 1992, 1994) proves the following result:

THEOREM 4.2 ((Gurvits)). Let ||-l| be a polytope norm on R™ with associated
operator norm ||-|lop on n X n matrices. Suppose ¥ = {A1, ..., Ap} has all
(A llop < 1. Let

Ly ={(d,....dj)):|Ag - Aql =1}
Then Ly, is a regular language in the alphabet A = {1,2,...m}.

Regular languages are those languages recognizable by a finite-state automa-
ton. A finite-state automaton recognizing the language Ly is implicit in our proof
of Theorem 4.1. The states of the machine are the set X — {P°}. A transition
labelled i goes from state y; to yj’ if $i(y;) = v/ and y] # P°

5. EUCLIDEAN NORM

We prove the normed finiteness conjecture for the Euclidean norm on R”, with
a universal bound «(m, |||} for k that depends only on the dimension » and the
cardinality m of X. This result applies to ellipsoid norms, because any ellipsoid
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norm can be transformed to the Euclidean norm case by a similarity transformation.

In this section ||x|| = (37—, x»)!/ 2 is the Euclidean norm.

i=l

THEOREM 5.1. Let ||-|| be the Euclidean norm on R"*, and ||-|op its associ-
ated operator norm on n X n matrices. Define a function g(d, m) recursively by
g0, m)=1and

gd+ 1, m) =mE4™ 4 g(d, m). (5.1)

If T = {Al,...,An} has generalized spectral radius (%) = 1 and all
IAillop < 1, then there exists some finite product Ay, - - - Ag, with

k<gh-1m), (5.2)
which has spectral radius p(Ag, ---Ag)) = 1.

In particular we obtain the bounds

Bm, ) < e(m, |I-) < gln —1,m)

for the Euclidean norm in R*. Note that g(n — 1, 1) = n, which with the known
result 8(1, ||-]) = » yields

BN = (1, 1) = n.

The bound g(n, m) grows extremely rapidly; e.g. g(5,2) > 2205 Itis
presumably far from the truth. Theorem 5.2 below shows that any bound for
afm, ||-]|) must depend on m = |X|.

The proof of Theorem 5.1 is analogous to the proofs in Sections 3 and 4 in that
it studies how products of matrices in & map the boundary dB = {x: ||x|| = 1}
nto itself.

LEMMA 5.1. Suppose |Allop < 1. Then
V(A) = {x e R": |Ax|| = [Ix]|}

and
V*A) = {x e R": |ATx|| = |Ix|]}

are both vector spaces, and have equal dimension.
Proof.  One has

Ix]2 = |Ax]®> = (Ax, Ax) = (x, AT Ax)
< |Ix|| IATAx] < Ix]%,
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using the Cauchy-Schwartz inequality and AT llop < 1. Equality can hold only
when ATAx = x. Thus V(A) = ker(/ — ATA) is a vector space. Similarly
V*(A) = ker(] — AAT), and they have the same dimension. [ |

Note that without the hypothesis [|Ajlop < 1 theset V = {x € R": |Ax| =
Ix||} need not be a vector space.

Proof of Theorem 5.1  Let X denote the set of vector subspaces of R”. For
any matrix A with ||Allgp < 1 and a vector space W, define

YAW)={y:xe W, y =Ax, and |x|| = |lyll}.
By Lemma 5.1 this is a vector space, and ¢4 : X — X In fact
YAW) =A(W)NV*(A),

so that dim Yrp (W) < dim W.
It is also clear that Y og(W) = ¥p o ¥g(W).

Claim. Suppose 0 < d < n — 1. Given any sequence Cy, ..., C, drawn
Jfrom T such that

dim[wCr o WCr_l 0---0 I/IC,1 R >n—d,
withr > g(d, m), then there existsr > j > i > 1 with p(C;C;_1---Cj) = L
The claim is proved by induction on d. It’s true for d = O because if
wCl(R") = R” then C; is an isometry so p(Cy) = 1.
For the induction step, suppose it is true for d — 1 and that
r =g(d, m) = ms@-1m +g(d —1,m).
‘We may supppose that
dim[ij 0 ij,l 0---0 wCI(R")] =n—d (5.3)
for r = j = g(d — 1, m), for otherwise the induction hypothesis for d — 1
produces a product p(C;C;_; - -- C;) = 1. Now thereexistr —g(d—1,m)+1 >
m&W@—1m) 4 1 plocks {Ci.Cj—1,....,Ci}oflength j — i+1=g(d — 1,m),s0
by the pigeonhole principle two such blocks are identical, say from j; to i) and j,

to ip, where j» > jiand Cj,_; =C;,_; forO <1 < g(d —1,m) — 1. Set

W = 1//le o ijlkl 0---0 wci (R™)
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and
W = l’”le I 1/’Cj141 0--0 1//Cl_l (R™Y,

Certainly W C W'. If W # W’ thendim W’ > n—d+1, and the induction hypoth-
esis applied to the sequence C;, C;,_, ..., C;, then produces p(C;j---C;) = 1.
Thus we may suppose W' = W and dim(W) = n — d, so that

W = wcjz 0---0 wCiz(Rn)
- ijz 0---0 V’CI(RH)
= 1//Cj2 0---0 1/fcjl+l(W).
Since dim W > 1, W N 3B is nonempty and
WnNoB = 1//Cj2 00 1//le+l(W N aB).

This implies p(Cy, - -- Cj,4+1) = 1 as in the proof of Theorem 3.1 (starting from
(3.9)), and the induction step is completed.

Theorem 5.1 follows immediately from the Claim. For, given an infinite se-
quence A;, A;,, - - - with

“A[k”.Al‘]”Opzl’ k=1,27-'-s

one has
dim(yp, ooy, R = 1

for all k > 1; hence choosing r = g(n — 1, m) gives the desired result. [ |

It is possible to prove, for the Euclidean norm, and for any finite set £ with all
lAillop < 1, that the language

Ly ={di,...,dj):IAdg - Agllop = 1}
is a regular language. Further proof is required, because the set
(VA ---A;):k = 0and 1 < i; < mforall j} may contain an infinite num-
ber of distinct vector spaces. We omit the details.

Now we give a lower bound for the quantity c(m, ||-1]).

THEOREM 5.2. For the Euclidean norm on R",

a(m, ||-) = m.
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Proof.  The rank one matrix

0 0 cosé
A= {0 0 sin8:|
0 0 0

has [|Allop < 1 with

0 cos @
V(A):]R(I:O:|> and V*(A)=]R(|:sin9:|).
1 0

By suitable rotation of such an A we can find a similar matrix A’ mapping any one-
dimensional space V| = V(A’) to any other one-dimensional space V, = V*(A')
of R?, provided only that V; and V; are orthogonal. It is then easy to construct
aset ¥ = {A;:1 < i < m} with all V(A;) distinct one-dimensional spaces,
with V(A;11) = V*(A))for 1 < i <m —1and V(A)) = V*(A,). Then
p(ARAL_1 - A1) = 1, while all shorter products are nilpotent. n

6. CONCLUDING REMARKS

Consider the normed finiteness conjecture for an arbitrary norm ||-||. As the
proofs in Sections 3-5 illustrate, the key problem is to understand how those
products A;, -- - A;; with [|A;, - - - Aj lop = 1 map the boundary 3B of the unit ball
of ||-{| into itself. One can assign to a product A;, - - - A;, the set

S*(r, o i) ={Ay - Apxc A - AxD = Ix)1)
Any infinite product with
NA: - Aillop = 1, k=1,2,3,...,

produces a sequence of such sets, which must have unusual structure to avoid
having a Noetherian inclusion property. It seems likely to us that the convexity
of the unit ball 9B together with the convexity of all the maps A;, - - - A;; prevents
pathology. For example, the condition A;(B) € B forces a kind of “curvature-
increasing” property on the image A; (3B) where it touches 3B. This leads us to
speculate that the normed finiteness conjecture is true for all norms.

Another possibility is that Theorem 3.1 actually covers all the norms that matter
in the finiteness conjecture Call a norm on R” extremal foraset & = {A;:1 <
i <m}if p(Z) = landall |A;llop < 1. Call aset ¥ of matrices product-bounded
if the semigroup S(X) of all finite products of elements of ¥ is bounded. Berger
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and Wang (1992) show that X is product-bounded if and only if there exists an
operator norm |[|-||, with ||All, < 1 for all A € . That is, any product-bounded
set T in R” with p(X) = 1 has at least one extremal norm.

EXTREMALITY CONJECTURE. Any finite set of product-bounded matrices in
R with joint spectral radius 1 has a piecewise analytic extremal norm.

In view of Theorem 3.1 the truth of the extremality conjecture would imply
that of the finiteness conjecture.

Which norms are extremal norms? We note that the Euclidean norm on R? is
the only extremal norm for any rotation matrix

Al ={ cosf s1n9:|

—sin@ coso

such that 0 /7 is irrational. Similarly the Euclidean norm in R” is extremal for any
finite set of rotations which generate a dense subgroup of the orthogonal group
O(n, R). It is also easy to construct £ which have an extremal norm with a unit
ball that is a polytope. Direct sums then give extremal norms having unit balls that
are products of such unit balls.

There remains the possibility that the finiteness conjecture is false, i.e. that the
normed finiteness conjecture is false for some operator norm. Belitskii and Lyubich
(1988, Section 2.6) give an example of a norm in R? having critical exponent +o0.
This norm has a piecewise analytic boundary, but is not a piecewise analytic norm,
because it has f(0) = O for all homomorphic functions vanishing on dB. This
suggests a class of norms to study for possible counterexamples to the normed
finiteness conjecture.

Finally, Corollary 3.1 suggests the following problem.

REPEATED-BLOCK PROBLEM. Find best possible bounds f(i, m) such that
every one-sided subshift Sao on a finite alphabet A of m letters with Sp # @
contains a word « such that for all i > 1 its initial block &1 - - - o; occurs at least
twice without overlap in the first f(i, m) symbols of w.

APPENDIX A. SETS WITH GENERALIZED SPECTRAL
RADIUS ZERO

Here we show that the generalized spectral radius and joint spectral radius
coincide for all sets T of n x n matrices, of any cardinality, having p(Z) = 0.
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THEOREM A.1. If T is any set of n X n matrices whose generalized spectral
radius p(X) is zero, then

AjA;, - AL=0 (A.1)
for any n matrices in . Consequently
p(X)=7(X)=0. (A.2)

Proof. If p(T) = 0, then p(A) = O for any finite product A = A;, --- A;,
from X. Hence all elements of the semigroup S(X) generated by X are nilpotent.
The C-vector space A(X) spanned by S(X) is closed under multiplication; hence
it is a matrix algebra. It is then a nilpotent ring by Jacobson (1964, Theorem
VIIL5.1). Alternatively, it is easy to see that r M = 0 for all elements of A(X).
Now trM/ = 0 for 1 < j < n implies that M is nilpotent. Hence A(T) is
a nil C-algebra and hence nilpotent by Herstein (1968, pp. 19-20). Jacobson
shows (1964, p. 202) that there is a similarity transformation taking A4(Z) to
a ring of strictly upper-triangular matrices, whence (A.1) holds. Then (A.2) is
immediate. [ ]

We are indebted to T. H. Foregger for a careful reading of the paper and several
corrections, and to the referee for helpful comments.
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