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Abstract. Redundant systems such as frames are often used to represent a signal for error
correction, denoising and general robustness. In the digital domain quantization needs to
be performed. Given the redundancy, the distribution of quantization errors can be rather
complex. In this paper we study quantization error for a signal X in Rd represented by
a frame using a lattice quantizer. We completely characterize the asymptotic distribution
of the quantization error as the cell size of the lattice goes to zero. We apply these results
to get the necessary and sufficient conditions for the asymptotic form of the White Noise
Hypothesis in the case of the pulse-code modulation scheme.

1. Introduction and Main Results

In processing, transmitting, analysing and storing signals analog-to-digital conversion is

frequently performed using quantization. Ideas similar to quantization have been present

in literature since the end of the nineteenth century. However, the fundamental role of

quantization in modulation and analog to digital conversion was first recognized with the

early development of the pulse-code modulation schemes in the 1940s. One of the first

results on quantization have been obtained in the papers of Oliver, Pierce, and Shannon

[17], Bennett [4] and Shannon [19]. Later, a vast amount of engineering and mathematical

literature was devoted to this topic. A comprehensive review can be found for example in

the paper [14].

The quantized signal is first decomposed using a suitable set of atoms (also called a

“dictionary” or a “basis”)

x =
∑

j

cjuj .

The elements of the dictionary {uj} can be, for example, functions or vectors. In practical

applications the dictionary is finite and often has redundancy (“extra” elements) which is
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used for error correction, recovery from channel erasures, denoising and general robustness.

We may without loss of generality assume that uj ∈ Rd. The collection {uj} is often

chosen to be a frame, i.e. the matrix F = [u1,u2, . . . ,uN ] has rank d (here and throughout

this paper the vectors uj are column vectors). Clearly N ≥ d. When N > d the system is

redundant, and as a result the coefficients {cj} will not be unique. In practical applications,

a dual set of vectors {vj}Nj=1 is chosen so that for any x ∈ Rd we have

(1.1) x :=
N∑

j=1

〈x,vj〉uj .

The vectors {vj}Nj=1 form the dual frame of {uj}Nj=1. A standard dual frame of {uj}Nj=1 is

given by the column vectors of the matrix G = (FF T )−1F , which is known as the canonical

dual frame. Thus (1.1) becomes

(1.2) x = Fy, where y = GTx.

Next, the coefficient vector y = GTx is replaced by a vector from some discrete set in RN

called the set of reproduction values or points or levels. Quantizing the coefficient vector as

a whole has an advantage over quantizing each channel separately, since different channels

may be correlated.

In this paper we consider the behavior of the quantization noise (error) when the set

of reproduction values is a full rank lattice L in RN . Under this setting, the vector y in

(1.2) is replaced (quantized) by an element in the lattice L. In general, we replace y by

the element q(y, L) in L, which is the closest element in L to y in the Euclidean distance

(should there be ties we shall take the first of such elements in the lexicographical order).

With quantization we obtain a reconstruction x̂ of x given by

(1.3) x̂ = Fq(y, L) =
N∑

j=1

ajuj ,

where q(y, L) = [a1, . . . , aN ]T .

Now we consider the error from this quantization. Define

τ(y, L) := y − q(y, L).

Then the error from the quantization is

(1.4) x− x̂ = F (y − q(y, L)) = Fτ(y, L).



LATTICE QUANTIZATION ERROR FOR REDUNDANT REPRESENTATIONS 3

It is a fact that τ(y, L) lies in a Voronoi cell of the lattice L. More precisely, for every point

l ∈ L let

V (l) := {y ∈ RN : q(y) = l}.

Then {V (l) : l ∈ L} are the Voronoi cells for L, and they form a tiling of RN . The fact that

L is a lattice implies that V (l) = V (0) + l. The vector τ(y, L) is in the Voronoi cell V (0)

of L.

We are mainly interested in studying the distribution of the τ(Y, L) where Y = GTX.

Here in our model the signal X is assumed to be a random vector in Rd with certain (perhaps

unknown) absolutely continuous distribution. Once we know the distribution of τ(Y, L) the

Mean Square Error (MSE) of quantization

(1.5) MSE (X, L) := E(|X− X̂|2)

can be estimated, see [15] and the references therein. One natural question is whether

τ(Y, L) = τ(GTX, L) is uniformly distributed in the Voronoi cell V (0) of L. In the im-

portant case L = ∆ZN , where ∆ > 0, we have the well known Pulse-Code Modulation

(PCM) quantization scheme. The corresponding Voronoi cell is simply [−∆/2,∆/2]N . This

quantization scheme has been widely studied in mathematical literature (see e.g. [14], [15]

for references). For convenience the White Noise Hypothesis (WNH) is often assumed by

engineers and mathematicians working in this area (see e.g. [2], [3], [13]). This hypothesis

asserts that in the PCM quantization scheme the errors in each channel are independent

and uniformly distributed random variables. The WNH is often called the Bennett’s White

Noise Assumption. In the fundamental paper [4] Bennett showed that for d = N = 1 the

distribution of the quantization error of the scalar PCM scheme is asymptotically uniform

as ∆→0. However, despite its wide acceptance the WNH is mathematically false whenever

N > d and thus for any redundant system. Even when N = d it holds only in very re-

strictive conditions, see [15]. For general lattices L of RN there are few results. In the case

N = d (no redundancy) Zamir and Feder [21] showed that if X has Gaussian distribution

in Rd and the set of reproduction values is the lattice L in Rd optimal for X with respect to

the MSE, the error τ(GTX, L) is uniformly distributed in the Voronoi cell V (0) of L. We

are not aware of any such study for redundant systems (N > d).

For redundant systems (N > d) and PCM quantization a weaker form of the WNH has

been studied. For L = ∆ZN , let Z∆ = ∆−1τ(GTX,∆ZN ). This represents the normalized
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quantization error for the coefficients. This weaker form of the WNH states that as the

cell size ∆ goes to zero, each component (channel) of Z∆ becomes asymptotically uniformly

distributed in [−1/2, 1/2] and together they become uncorrelated. This has turned out to

be valid much more often. The fact that the components are asymptotically uncorrelated

is often found in engineering literature without a rigorous proof (see for example [12] and

discussion in [20]). The first rigorous proof of this fact has been given for N = 2 in [20].

Later, in [15] it was proved that if X is an absolutely continuous random variable and G

has N linearly independent columns, then Z∆ converges in distribution to a random vector

uniformly distributed in [−1/2, 1/2]N (Note here we do not assume N ≥ d.). It was shown

further that if the columns of G are pairwise linearly independent vectors over Q then

asymptotically the components of Z∆ are uniformly distributed and pairwise uncorrelated.

For other results related to lattice quantization and quantization using (asymptotically)

optimal tesselations see [10], [11], [6], [7], [18], [1], [8], [9], [21], and references in [14].

This paper studies the stronger form of the asymptotic WNH for general lattice by

characterizing the asymptotic distribution of the quantization error in the most general

setting. More specifically, let L be a full rank lattice in RN and G be a d×N matrix. Let

X be an absolutely continuous random vector in Rd. For ∆ > 0, let

(1.6) Z∆ :=
1
∆
τ(GTX,∆L)

be the normalized quantization error. We are interested in the distribution of Z∆ as ∆

becomes small. The main difficulty is that in the redundant setting N > d the columns of

G are linearly dependent, so even for L = ZN the asymptotic distribution of Z∆ is unknown.

The purpose of this paper is to provide a complete characterization of it. We state our main

theorems.

Theorem 1.1. Let L = AZN be a full rank lattice in RN and G be a d×N matrix. Let X

be an absolutely continuous random vector in Rd. For ∆ > 0, let

Z∆ =
1
∆
τ(GTX,∆L).

Assume that the rows of the matrix A−1GT are linearly independent over Q. Then Z∆ is

asymptotically uniformly distributed in the Voronoi cell V (0) of the lattice L as ∆→0.

Here by asymptotically uniformly distributed we mean Z∆ converges in distribution (as

∆→0) to a random vector that is uniformly distributed in V (0).
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Note that Theorem 1.1 is a much stronger result than the weaker form of the WNH

for PCM quantization. In the PCM case with L = ZN , Theorem 1.1 shows that if the

columns ofG are linearly independent over Q then Z∆ is aymptotically uniformly distributed

in [−1
2 ,

1
2 ]N . The weaker form of WNH applies only when channels are asymptotically

uncorrelated. Our theorem here also allows us to estimate MSE (X,∆L) in the general

setting much like the way it was done for the case L = ZN in [15].

The converse of Theorem 1.1 is also valid. It in fact follows from a stronger theorem

concerning the distribution of Z∆ in case the rows of A−1GT are not linearly independent

over Q. Assume that m is the maximal number of linearly independent rows of A−1GT over

Q. Now let

W0 =
{
x ∈ QN : xTA−1GT = 0

}
.

W0 is a nontrivial subspace in QN of dimension N − m, whose closure W 0 in RN is a

rational subspace of the same dimension. It is easy to see that W⊥0 is a rational subspace

in RN of dimension m. Note that a rational subspace projected onto the torus TN is

a compact manifold of the same dimension, and here the projection of W⊥0 onto TN is

precisely the closure of the projection of the subspace A−1GT (RN ) onto TN , see [16]. Set

V (L,G) = AW
⊥
0 and

(1.7) Λ(L,G) = {x− q(x, L) : x ∈ V (L,G)} = {τ(x, L) : x ∈ V (L,G)}.

Thus Λ(L,G) is the projection of V (L,G) onto the Voronoi cell V (0) of L.

Theorem 1.2. Let L = AZN be a full rank lattice in RN and G be a d×N matrix. Let X

be an absolutely continuous random vector in Rd. For ∆ > 0, let

Z∆ =
1
∆
τ(GTX,∆L).

Assume that the maximal number of linearly independent rows of the matrix A−1GT over

Q is m. Then Z∆ is asymptotically uniformly distributed in Λ(L,G) with respect to the

m-dimensional Hausdorff measure Hm as ∆→0.

Remark 1. For every matrix G of size d×N , one can always find a non-degenerate N ×N
matrix A such that the collection of all rows of A−1GT is independent over the rationals.

Indeed, let r = rankG. Without loss of generalitty we can assume that first r columns of

GT are indepenedent over the reals. There exists an r × N matrix G1 of rank r, whose
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columns are independent over the rationals. One can take A to be a non-degenerate N ×N
matrix, which transforms columns of GT

1 into first r columns of GT . Then A−1GT will have

rows independent over the rationals.

Thus, whatever matrix G is given, we can always find a full-rank lattice L in RN such

that for every absolutely continuous random variable X in Rd, the quantization error Z∆

defined as in (1.6), will be asymptotically uniformly distributed as ∆ → 0 in the Voronoi

cell V (0) of lattice L.

Remark 2. Lattice L used as a set of quantizers, is an infinite set. However, when the

distribution of random variable X is compactly supported in Rd, there are only finitely

many points in L, whose Voronoi cells intersect with the support of the distribution of X.

In this case, all other points of L will be used with probability zero, which will make the

quantizer essentially finite.

We would like to thank David Jimenez for very helpful discussions.

2. Proof of Main Theorems

In this section we prove the main theorems by establishing a series of lemmas. Our first

step is to prove Theorem 1.1 for the case of L = ZN . Not only this result will be used to

prove the more general results, but it also serves to show the main ideas behind the proof

of the main theorems.

Key to the proof of our main theorems is a theorem on uniform distribution. Recall that

for any y ∈ Rn, we use τ(y,Zn) to denote the vector y − q(y,Zn), where q(y,Zn) denotes

the element in Zn that is the closest to y. In other words, τ(y,Zn) is the error when y is

rounded off to its nearest integer point.

We will need the following definition (see Cassels [5], page 61). Let zα be a sequence of

points in
[
−1

2 ,
1
2

]k labeled with vectors α = (α1, . . . , αd) ∈ Zd. For a,b ∈
[
−1

2 ,
1
2

]k, such

that −1
2 ≤ ai < bi ≤ 1

2 , i = 1, . . . , k, let Fn1,...,nd
(a,b) be the number of points zα, such

that 1 ≤ α1 ≤ n1, ..., 1 ≤ αd ≤ nd, which lie in the parallelepiped [a1, b1] × . . . × [ak, bk].

Denote

Dn1,...,nd
= sup

a,b

∣∣∣∣∣∣ 1
n1 · . . . · nd

Fn1,...,nd
(a,b)−

k∏
j=1

(bj − aj)

∣∣∣∣∣∣.
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We say that a sequence {zα}α∈Zd is uniformly distributed in
[
−1

2 ,
1
2

]k if

lim
n1,...,nd→∞

Dn1,...,nd
= 0.

Proposition 2.1. Let C be an n × d matrix. Assume that the only u ∈ Zn such that

uTC has integer entries is u = 0. Then {τ(Cα,Zn) : α ∈ Zd} is uniformly distributed in

[−1
2 ,

1
2 ]n.

Proof. See Cassels [5], Theorem I, page 64. It should be pointed out that in Theorem I

it states that {Cα : α ∈ Zd (mod 1)} is uniformly distributed. But it clearly applies to

{τ(Cα,Zn) : α ∈ Zd}.

Going back to Z∆ = 1
∆τ(GTX,∆ZN ), where G is a d×N matrix whose columns represent

the dual frame, we further simplify the setting by assuming G has the form

(2.1) GT =
[
Id
B

]
where B is a (N − d)× d matrix. We prove that if the rows of GT are linearly independent

over Q then Z∆ converges in distribution to the uniform distribution in [−1
2 ,

1
2 ]N . To do

so it suffices to prove that for any cube Ω = Ω1 × Ω2 in [−1
2 ,

1
2 ]N where Ω1 ⊂ [−1

2 ,
1
2 ]d and

Ω2 ⊂ [−1
2 ,

1
2 ]N−d we have

(2.2) lim
∆→0

Prob (Z∆ ∈ Ω) = µ(Ω).

Note that Z∆ ∈ Ω is equivalent to X
∆ ∈ E(Ω), or X ∈ ∆E(Ω), where

E(Ω) :=
{
x ∈ Rd : x ∈ Ω1 + Zd and Bx ∈ Ω2 + ZN−d

}
.

Thus (2.2) is equivalent to

(2.3) lim
∆→0

∫
∆E(Ω)

f(x)dx = µ(Ω) = µ(Ω1) · µ(Ω2),

where f ∈ L1(Rd) denotes the probability density function of X and µ denotes the Lebesgue

measure.

Lemma 2.2. Suppose that G has the form (2.1) and the rows of GT are independent over

Q. Then {τ(Bα,ZN−d) : α ∈ Zd} are uniformly distributed in [−1
2 ,

1
2 ]N−d.

Proof. By Proposition 2.1 we only need to show that if u ∈ ZN−d is such that uTB has

integer entries, then u = 0. Let vT := uTB ∈ Zd. Then [−vT ,uT ]GT = 0. But the rows of
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GT are linearly independent over Q, and both u and v are integer vectors. It follows that

[−vT ,uT ] = 0. Hence u = 0. The lemma follows.

Lemma 2.3. Suppose that G has the form (2.1) and the rows of GT are independent over

Q. Let g(x) be any indicator function of a cube in Rd. Then for any cube Ω = Ω1 × Ω2 in

Rd × RN−d we have

lim
∆→0

∫
∆E(Ω)

g(x)dx = µ(Ω)
∫
g.

Proof. Note that x ∈ ∆E(Ω) is equivalent to x
∆ ∈ E(Ω). As one will see from the proof,

we may without loss of generality assume that g = χ[−a,a]d , where a > 0. If the cube is

not centered at the origin then we can make a simple shift without affecting the proof. Set

g∆(x) = g(∆x) = χJ∆
(x) where J∆ := [− a

∆ ,
a
∆ ]d. Then

(2.4)
∫

∆E(Ω)
g(x)dx = ∆d

∫
E(Ω)

g∆(y)dy = ∆dµ
(
J∆ ∩ E(Ω)

)
.

Let z0 be a point in Ω1 and ε > 0 be sufficiently small. We first assume that

diam(B(Ω1)) < ε. Define

U ε = {x ∈ Ω2 : dist(x, ∂Ω2) ≥ ε} and T ε =
{
x ∈ RN−d : dist(x,Ω2) < ε

}
.

Let m1 = m1(∆, ε) and m2 = m2(∆, ε) be defined respectively by

m1 = #
{

α ∈ Zd : α ∈ J−∆ and τ(B(α + z0),ZN−d) ∈ U ε
}
,

m2 = #
{

α ∈ Zd : α ∈ J+
∆ and τ(B(α + z0),ZN−d) ∈ T ε

}
,

where J−∆ := [− a
∆ + 1, a

∆ − 1]d and J+
∆ := [− a

∆ − 1, a
∆ + 1]d. It is easy to see that

m1 µ(Ω1) ≤ µ
(
J∆ ∩ E(Ω)

)
≤ m2 µ(Ω1).

By Lemma 2.2 we have lim∆→0
m1

(2∆−1a)d = µ(U ε) and lim∆→0
m2

(2∆−1a)d = µ(T ε). But there

exists a C > 0 such that µ(T ε) < µ(Ω2)+Cε and µ(Ω2) < µ(U ε)+Cε. Thus for sufficiently

small ∆ > 0 we have

(2.5) (2a)d
(
µ(Ω2)− 2Cε

)
µ(Ω1) ≤ ∆dµ

(
J∆ ∩ E(Ω)

)
≤ (2a)d

(
µ(Ω2) + 2Cε

)
µ(Ω1).

In general we may partition Ω1 as a disjoint union of cubes D1, . . . , Dk with diam(Dj) < ε

for each j. Then for each j and sufficiently small ∆ we have

(2a)d
(
µ(Ω2)− 2Cε

)
µ(Dj) ≤ ∆dµ

(
J∆ ∩ E(Dj × Ω2)

)
≤ (2a)d

(
µ(Ω2) + 2Cε

)
µ(Dj).
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Summing up the above inequalities we obtain (2.5) for arbitrary Ω1 whenever ∆ is suffi-

ciently small. Thus

lim
∆→0

∆dµ
(
J∆ ∩ E(Ω)

)
= (2a)dµ(Ω1)µ(Ω2) = µ(Ω)

∫
g.

The lemma follows from (2.4).

Lemma 2.4. Suppose that G has the form (2.1) and the rows of GT are independent over

Q. Let X be an absolutely continuous random vector in Rd. Then Z∆ = 1
∆τ(GTX,∆ZN )

is aymptotically uniformly distributed in [−1
2 ,

1
2 ]N as ∆→0.

Proof. Let f(x) be the probability density function of X. We prove (2.3) for any cube

Ω ⊂ [−1
2 ,

1
2 ]N . For any ε > 0 we may approximate f by gε =

∑k
j=1 cjgj such that each gj

is an indicator function of a cube in Rd and ‖f − gε‖L1 < ε. Now∫
∆E(Ω)

gε − µ(Ω)
∫
gε =

k∑
j=1

cj

(∫
∆E(Ω)

gj − µ(Ω)
∫
gj

)
.

It follows from Lemma 2.3 that for ∆ sufficiently small we have |
∫

∆E(Ω) gε−µ(Ω)
∫
gε| < ε.

Since
∫
f = 1 and ‖f − gε‖L1 < ε we have |

∫
gε − 1| < ε, which yields∣∣∣∫

∆E(Ω)
gε − µ(Ω)

∣∣∣ < (1 + µ(Ω))ε ≤ 2ε.

Finally ∣∣∣ ∫
∆E(Ω)

f − µ(Ω)
∣∣∣ ≤ ∣∣∣ ∫

∆E(Ω)
gε − µ(Ω)

∣∣∣+ ‖f − gε‖L1 < 3ε.

This establishes (2.3), which proves the lemma.

Proof of Theorem 1.1. Again we first consider the case L = ZN . Hence A = Id. Assume

that the matrix G has rank r ≤ d. It follows that we can find a nonsingular matrix

Q ∈Md(R) and a permutation matrix P ∈MN (R) such that

PGTQ =
[
Ir 0
B 0

]
where B is a (N − r)× r matrix. Let G1 = [Ir, BT ], which is a r×N matrix such that the

rows of GT
1 are linearly independent over Q. Let X̃r ∈ Rr be the vector whose entries are

the first r entries of the vector Q−1X. Note that Q−1X is absolutely continuous, and thus

X̃r is also absolutely continuous. Let

Z̃∆ :=
1
∆
τ(GT

1 X̃r,∆ZN ).
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By Lemma 2.4 Z̃∆ is asymptotically uniformly distributed in [−1
2 ,

1
2 ]N . Now P is a permu-

tation matrix, and hence so is P−1. Thus P−1Z̃∆ is asymptotically uniformly distributed

in [−1
2 ,

1
2 ]N . Finally we can easily check that for L = ZN we in fact have Z∆ = P−1Z̃∆.

This proves the theorem for L = ZN .

In the general case L = AZN for some nonsingular A ∈ MN (R), to prove that Z∆ is

asymptotically uniformly distributed we only need to show that for any Ω ⊂ V (0) with

diam(A−1(Ω)) < 1 we have

lim
∆→0

Prob (Z∆ ∈ Ω) =
µ(Ω)

µ(V (0))
.

But Z∆ ∈ Ω is precisely GTX ∈ ∆Ω + ∆AZN , which is equivalent to

A−1GTX ∈ ∆A−1(Ω) + ∆ZN .

This is the PCM case for the matrix A−1GT , and hence we have

lim
∆→0

Prob (Z∆ ∈ Ω) = lim
∆→0

Prob
(
A−1GTX ∈ ∆A−1(Ω) + ∆ZN

)
= µ

(
A−1(Ω)

)
.

But µ
(
A−1(Ω)

)
= µ(Ω)/| det(A)| = µ(Ω)/µ(V (0)). This proves the theorem.

Lemma 2.5. Let G and F be compact Abelian topological groups with probability Haar

measures νG and νF , respectively. Let ϕ : G−→F be a continuous homomorphism that is

surjective and has finite kernel. Assume that Z is a random variable on G that is uniformly

distributed with respect to νG. Then ϕ(Z) is uniformly distributed on F .

Proof. For any E ⊂ F define ν(E) = νG
(
ϕ−1(E)

)
. It is standard that ν(·) defines a

probability (Radon) measure on F . For any a ∈ F we have ϕ−1(a + E) = ϕ−1(E) + c,

where c ∈ G is any element with ϕ(c) = a. Thus

ν(a+ E) = νG
(
c+ ϕ−1(E)

)
= νG

(
ϕ−1(E)

)
= ν(E).

It follows that ν is a probability Haar measure and hence ν = νF by the uniqueness. Now,

Prob
(
ϕ(Z) ∈ E

)
= Prob

(
Z ∈ ϕ−1(E)

)
= νG

(
ϕ−1(E)

)
= νF (E).

Thus ϕ(Z) is uniformly distributed on F .

Proof of Theorem 1.2. Again, we first consider the PCM case L = ZN . Assume without

loss of generality that the first m rows of GT are linearly independent over Q while the
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remaining rows are rational combinations of the first m rows. Write G = [G1, G2], where

G1 consists of the first m columns of G. Let Y = GT
1 X. Then

(2.6) GTX =
[

Y
BY

]
,

where B is an (N−m)×m rational matrix. Let B = 1
KB0 where K ∈ N and B0 is an integer

matrix. Now set W∆ := 1
∆τ(Y,∆KZm). By Theorem 1.1, W∆ is asymptotically uniformly

distributed in [−K
2 ,

K
2 ]m. We now identify [−K

2 ,
K
2 )m with the torus Tm

K := Rm/KZm. Thus

W∆ is asymptotically uniformly distributed on Tm
K with respect to the probability Haar

measure on Tm
K .

Next we consider the map ϕ : Tm
K−→Tm

K × TN−m given by

ϕ(x) =
[

x
Bx

]
,

where T = T1 = R/Z is the standard torus. Since KB is an integer matrix, ϕ is well defined,

and satisfies assumptions of Lemma 2.5. Thus ϕ(W∆) is asymptotically uniformly dis-

tributed on ϕ(Tm
K). Next let πK : TK−→T be the standard projection πK(x) = x (mod 1).

We construct another map φ : Tm
K ×TN−m−→TN by the standard projection of the first m

entries into T and leaving the remaining N −m entries the same. Then φ ◦ ϕ also satisfies

the assumptions of Lemma 2.5. Thus, φ ◦ ϕ(W∆) is asymptotically uniformly distributed

on G := φ ◦ ϕ(Tm
K) with respect to the probability Haar measure on G.

Now observe that by identifying [−1
2 ,

1
2)N with TN , the random vector Z∆ projected

onto TN is precisely φ ◦ ϕ(W∆). Thus Z∆ projected onto TN is asymptotically uniformly

distributed on G with respect to the probability Haar measure on G. It is easy to see that

G is the projection of the subspace V (ZN , G) =
{[

y
By

]
: y ∈ Rm

}
onto the torus TN . The

standard projection from RN to TN maps bijectively the set Λ(ZN , G) ∩ [−1
2 ,

1
2)N onto G.

Furthermore Λ(ZN , G) is locally an m-dimensional hyperplane, and all these hyperplanes

have the same normal vectors. Therefore the probability Haar measure on G lifted onto

Λ(ZN , G) is precisely the normalized Hausdorff measure Hm. This proves Theorem 1.2 for

the PCM case L = ZN .

The proof for the general lattice L = AZN case from the PCM case is exactly the same

as that in the proof of Theorem 1.1. We omit it here.
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Example. It is not always easy to check whether a set of vectors are linearly dependent

over Q. Here we examine an important class of tight frames called the harmonic frames.

Let N ≥ d. The harmonic frame Hd,N in Rd is defined as follows: For d = 2d′ we have

Hd,N = {wj}N−1
j=0 where

wj =

√
2
d

[
cos

2πj
N

, sin
2πj
N

, cos
4πj
N

, sin
4πj
N

, . . . , cos
2d′πj
N

, sin
2d′πj
N

]T
.

For d = 2d′ + 1 we have Hd,N = {wj}N−1
j=0 where

wj =

√
2
d

[ 1√
2
, cos

2πj
N

, sin
2πj
N

, . . . , cos
2d′πj
N

, sin
2d′πj
N

]T
.

It is well known that Hd,N is a unit norm tight frame with frame bound λ = N
d . Let

F = [w0,w1, . . . ,wN−1] be the corresponding frame matrix. The canonical dual frame

matrix is G = d
NF . Using the notation of Theorem 1.2 we now consider the case L = ZN .

Thus A = I. We claim: For even d the columns of G are never linearly independent over

Q. For odd d the columns of G are linearly independent over Q if and only if N has no

proper divisor greater than d/2.

To see this, for even d it is easy to check that
∑N−1

j=0 wj = 0. Therefore they are

linearly dependent over Q. For odd d = 2d′ + 1, assume that the columns of G are linearly

dependent over Q. Then there exist a0, a1, . . . , aN−1 ∈ Q such that
∑N−1

j=0 ajwj = 0. Let

f(z) =
∑N−1

j=0 ajz
j . This is equivalent to f(ωk

N ) = 0 for 0 ≤ k ≤ d′, where ωN is a primitive

N -th root of unity. Of the roots ωk
N for 0 ≤ k ≤ d′ the algebraic conjugating classes are

represented by 1 and {ωr
N : r|N, r ≤ d′}. Let Φn(z) denote the cyclotomic polynomial of

order n. Then z − 1|f(z) and ΦN/r(z)|f(z), where r|N, r ≤ d′. It follows that

(2.7) deg(f) ≥ 1 +
∑

r|N,r≤d′

deg(ΦN/r) = 1 +
∑

r|N,r≤d′

φ
(N
r

)
,

where φ is the Euler function. However, it is well known that
∑

r|N φ
(

N
r

)
= N . If N has

no proper divisor greater than d/2 then

deg(f) ≥ 1 +
∑

r|N,r≤d′

φ
(N
r

)
=
∑
r|N

φ
(N
r

)
= N.

But deg(f) ≤ N − 1. This is a contradiction. So in this case the columns of G are

independent over Q. Conversely, if N does have a proper divisor greater than d/2 then

1 +
∑

r|N,r≤d′

deg(ΦN/r) ≤ N − 1.
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Thus by taking f(z) as the product of z−1 and ΦN/r(z), r|N , r ≤ d′, we have deg(f) ≤ N−1.

For every 1 ≤ k ≤ d′, if c is the greatest common divisor of k and N , we have ωk
N = (ωc

N )k1 ,

where k1 is coprime with N/c. Hence, ΦN/c(ωk
N ) = 0, c|N , and c ≤ d′. Since f(1) = 0, we

have f(ωk
N ) = 0, 0 ≤ k ≤ d′, which yields the linear dependence of the columns of G over

Q.

The above argument can in fact be used to obtain m, the maximal number of linearly

independent columns of G over Q. It is given by m =
∑

r|N,r≤d′ φ
(

N
r

)
− 1 for d = 2d′, and

m =
∑

r|N,r≤d′ φ
(

N
r

)
for d = 2d′ + 1. We’ll omit the proof here.
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