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Abstract

There have been extensive studies on non-uniform Gabor bases and frames
in recent years. But interestingly there have not been a single example of a
compactly supported orthonormal Gabor basis in which either the frequency
set or the translation set is non-uniform. Nor has there been an example in
which the modulus of the generating function is not a characteristic function
of a set. In this paper, we prove that in the one dimension and if we assume
that the generating function g(x) of an orthonormal Gabor basis is supported
on an interval, then both the frequency and the translation sets of the Gabor
basis must be lattices. In fact, the Gabor basis must be the “trivial” one in
the sense that |g(x)| = cχΩ(x) for some fundamental interval of the translation
set. We also give examples showing that compactly supported non-uniform
orthonormal Gabor bases exist in higher dimensions.

1 Introduction

Let F and T be two discrete subsets Rd, and let g(x) ∈ L2(Rd). The Gabor sys-
tem (also known as the Weyl-Heisenberg system) with respect to F , T and g is the
following family of functions in L2(Rd):

G(F , T , g) :=
{
e2πiλ·xg(x − p)

∣∣∣ λ ∈ F , p ∈ T
}

. (1.1)
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Such a family was first introduced by Gabor [12] in 1946 for signal processing, and
is still widely used today. We call G(F , T , g) an (orthonormal) Gabor basis if it
is an orthonormal basis for L2(Rd), and a Gabor frame if it is a frame for L2(Rd).
Gabor bases and frames have been extensively studied. Apart from their important
applications in digital signal processing, they are significant mathematical entities
on their own. They are an integral part of time-frequency analysis, and are closely
related to the study of wavelets and spectral sets. Some of the recent developments
on Gabor systems can be found in the bibliography of this paper.

Most of the study of Gabor bases have focused on “uniform” sets F and T , i.e.
they are taken to be lattices. For full rank lattices F = A(Zd) and T = B(Zd),
a Gabor basis G(F , T , g) must satisfy | det(AB)| = 1, see Rieffel [27] for d = 1
and Ramanathan and Steger [26] for arbitrary d. Conversely, if | det(AB)| = 1
then there exists a function g(x) ∈ L2(Rd) such that G(F , T , g) is an orthonormal
Gabor basis, see Han and Wang [15]. The function g is not necessarily compactly
supported. A compactly supported g can be found if F and T ∗ (the dual lattice of
T ) are commensurable. Also known is the Balian-Low Theorem, which states that
if G(F , T , g) is an orthonormal Gabor basis and g is compactly supported then g
cannot be very smooth, see [3].

The study of non-uniform or irregular Gabor bases and frames, i.e. those without
the lattice condition on F or T , has gained considerable interest (see e.g. Casazza and
Christensen [5]). It is known that if G(F , T , g) is a Riesz basis then both F and T
must be uniformly discrete, i.e. there exists an ε > 0 such that they are ε-separated.
The density result by Ramanathan and Steger [26] was actually established in a much
more general setting. In a Gabor basis G(F , T , g) the sets F and T satisfy the density
condition D(F)D(T ) = 1 where D(·) is the Beurling density. For a set J in Rd the
upper and lower Beurling density of J respectively are defined as

D+(J ) = lim sup
r→∞

sup
x∈Rd

|J ∩ (x + [0, r]d)|
rd

D−(J ) = lim inf
r→∞

inf
x∈Rd

|J ∩ (x + [0, r]d)|
rd

.

If D+(J ) = D−(J ) then D(J ) = D+(J ) = D−(J ) is the Beurling density of J .
But oddly, despite the many studies on non-uniform Gabor bases none of the papers
contained a single example of an orthonormal Gabor basis that is non-uniform in
the sense that either F or T is nonperiodic. In fact, we have not seen an example
given in the Gabor literature in which an orthonormal Gabor basis has non-lattice
F and T . Another observation is that there is not a single example of a compactly
supported orthonormal Gabor basis in which the generating function g(x) does not
satisfy |g(x)| = 1√

µ(Ω)
χΩ(x) for some bounded set Ω. These observations lead to the

following questions: Are there any non-uniform orthonormal Gabor bases, and are
there compactly supported orthonormal Gabor bases G(F , T , g) in which |g(x)| is
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not a characteristic function?

As we shall demonstrate, there are indeed non-uniform orthonormal Gabor bases
in dimension d ≥ 2. In the one dimension there exist orthonormal Gabor bases
G(F , T , g) in which neither F nor T is a lattice. These results follow rather easily
from the work on spectral sets. Nevertheless, if g is compactly supported we establish:

Theorem 1.1 Let g(x) ∈ L2(R) be compactly supported and let F , T be subsets of
R. Suppose that G(F , T , g) is an orthonormal Gabor basis and F is periodic. Then
T must be periodic.

If in addition we assume that supp(g) is an interval, then the main theorem of ours
below states that the only such orthonormal Gabor bases are the “trivial” bases:

Theorem 1.2 Let g(x) ∈ L2(R) such that supp(g) is an interval, and let F , T be
subsets of R. Suppose that G(F , T , g) is an orthonormal Gabor basis. Then both F
and T must be (possibly translated) lattices. In other words there exist real numbers
a > 0 and b1, b2 such that F = aZ + b1 and T = a−1Z + b2. Furthermore, |g(x)| =√

aχΩ(x) where Ω is an interval of length a−1.

We are indebted to Chris Heil for helpful discussions, and to the annoymous
referees for their valuable comments.

2 Proof of Theorems

Throughout of this paper we shall use e(x) to denote e2πix.

Lemma 2.1 Let f(x) be a compactly supported function in L1(R), and T ⊂ R be a
discrete set with D+(T ) < ∞. Suppose that

∑
p∈T f(x − p) = c for all x ∈ R. Then

T is a union of (possibly translated) lattices,

T =
N⋃

j=1

(LjZ + bj)

for some real Lj 6= 0 and bj, 1 ≤ j ≤ N .

Proof. See Kolountzakis and Lagarias [18].

Proof of Theorem 1.1. F is periodic so we may write F = LZ+A for some L 6= 0
and finite set A ⊂ R. Without loss of generality we assume that L = 1 and |A| = m.
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Since we have an orthonormal Gabor basis G(F , T , g), applying Parseval’s identity
to the function φt(x) = χ[t,t+1](x) yields

‖φt‖2 =
∑

p∈T

∑

λ∈F
|〈φt(x), e(λx)g(x − p)〉|2

=
∑

p∈T

∑

λ∈F

∣∣∣∣
∫ t+1

t

e(−λx)g(x − p) dx

∣∣∣∣
2

=
∑

p∈T

∑

a∈A

∑

n∈Z

∣∣∣∣
∫ t+1

t

e(−(n + a)x)g(x − p) dx

∣∣∣∣
2

.

Observe that {e((n + a)x) : n ∈ Z} is an orthonormal basis for L2([t, t + 1]) for any
t. Therefore another application of Parseval’s identity yields

∑

n∈Z

∣∣∣∣
∫ t+1

t

e(−(n + a)x)g(x − p) dx

∣∣∣∣
2

=

∫ t+1

t

|g(x − p)|2dx.

Thus

‖φt‖2 =
∑

p∈T

∑

a∈A

∑

n∈Z

∣∣∣∣
∫ t+1

t

e(−(n + a)x)g(x − p) dx

∣∣∣∣
2

=
∑

p∈T

∑

a∈A

∫ t+1

t

|g(x − p)|2 dx

= |A|
∑

p∈T

∫ t+1

t

|g(x − p)|2 dx.

Now set f(t) =
∫ t+1

t
|g(x)|2 dx. Then

∫ t+1

t
|g(x − p)|2 dx = f(t − p). We have

‖φt‖2 = 1 for all t. So

∑

p∈T

∫ t+1

t

|g(x − p)|2 dx =
∑

p∈T
f(t − p) = |A|−1. (2.1)

As g is compactly supported, so must be f(t), and
∫

R
f(t) dt < ∞. By Lemma 2.1 T

must be a union of (possibly translated) lattices,

T =
k⋃

j=1

(LjZ + bj)

for some real Lj 6= 0 and bj. We claim that all Li/Lj ∈ Q. If not, say L1/L2

is irrational, then a theorem of Kronecker (see [6]) states that L1Z − L2Z is dense
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in R. Hence there exist p1 ∈ L1Z + b1 and p2 ∈ L2Z + b2 such that p1 − p2 can
become arbitrarily small. This contradicts the fact that g(x − p1) and g(x − p2) are
orthogonal in L2(R). Hence all Lj must be commensurable. So T is periodic, proving
the theorem.

We next prove our main theorem, Theorem 1.2. We will break it down into several
lemmas.

Lemma 2.2 Let G(F , T , g) be an orthonormal Gabor basis. Then D(F) and D(T )
both exist and D(F)D(T ) = 1.

Proof. It was shown in [26] that D(F × T ) exists and is equal to 1. But it is easy
to show that D−(F × T ) = D−(F)D−(T ) and D+(F × T ) = D+(F)D+(T ). The
lemma follows immediately.

Lemma 2.3 Let F be a uniformly discrete subset of R with D+(F) ≤ 1. Suppose
that for some sequence {cλ : λ ∈ F} ∈ `2(F) we have

∑

λ∈F
cλe(λx) = 0

in L2([a, b]) with b − a > 1. Then cλ = 0 for all λ ∈ F .

Proof. Assume cλ0
6= 0 for some λ0 ∈ F . Let F0 = F \ {λ0}. Then

e(λ0x) =
∑

λ∈F0

bλe(λx)

where bλ = −cλ/cλ0
in L2([a, b]). A theorem of Young (see [30], page 129) states that

{e(λx) : λ ∈ F0} is complete in L2([a, b]).

Now Theorem 2.4 of Seip [29] states that F can be extended to F ′ so that {e(λx) :
λ ∈ F ′} is a Riesz basis for L2([a, b]). Therefore

‖
∑

λ∈F
cλe(λx)‖2 ≥ B

∑

λ∈F
|cλ|2

for some B > 0. This is a contradiction.

Lemma 2.4 Let F be a uniformly discrete subset of R such that D−(F) > 0. Let
{cλ : λ ∈ F} be a sequence in `2(F). Then f(x) :=

∑
λ∈F cλe(λx) ∈ L2([a, b]) for

any interval [a, b], and ‖f‖2 ≤ C
∑

λ∈F |cλ|2 where C depends only on F and b − a.
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Proof. The fact that F is uniformly discrete and D−(F) > 0 implies that there exists
a sufficiently small δ > 0 such that {e(λx) : λ ∈ F} is a frame for L2([s, s + δ]) for
any s. Let ‖ · ‖Ω denote the L2-norm for L2(Ω). It follows from Duffin and Schaeffer
[9] that the sum converges in L2([s, s + δ]) with

‖f‖2
[s,s+δ] ≤ B

∑

λ∈F
|cλ|2, (2.2)

where B is the upper frame bound for the frame. Subdividing [a, b] into K ≤ (b−a)/δ
intervals of length δ or less yields

‖f‖2
[a,b] ≤ KB

∑

λ∈F
|cλ|2. (2.3)

We remark that if the condition D−(F) > 0 is dropped in the above lemma then
f(x) :=

∑
λ∈F cλe(λx) ∈ L2([a, b]) still holds, see [30], section 4.3. It is unclear

whether (2.3) also holds. Nevertheless the weaker result is sufficient for our purpose.

Lemma 2.5 Let G(F , T , g) be an orthonormal Gabor basis for L2(R) with supp(g) =
[0, a]. Suppose that D(F) = 1 and let T = {yn : n ∈ Z} with yn < yn+1. Then
yn+1 − yn ≤ 1 for all n ∈ Z.

Proof. Assume the lemma is false. Then without loss of generality we may assume
y1 − y0 > 1 and y0 = 0. We shall derive a contradiction.

Clearly a ≥ y1, for if not then any function h(x) ∈ L2(R) with supp(h) ⊆ [a, y1]
will be orthogonal to all functions in G(F , T , g), a contradiction. We now choose
ε > 0 such that y1 − ε > 1 and y−1 + ε < 0. Let f(x) be any L2 function supported
in [a − ε, a]. Then

f(x) =
∑

n∈Z

∑

λ∈F
cn,λe(λx)g(x − yn), (2.4)

where cn,λ =
∫ a

a−ε
f(t)e(−λt)g(t − yn) dt. By the choice of ε the coefficients cn,λ = 0

for all but finitely many n, in particular cn,λ = 0 for all n < 0. So

f(x) =

N∑

n=0

∑

λ∈F
cn,λe(λx)g(x − yn)

=
∑

λ∈F
c0,λe(λx)g(x) +

N∑

n=1

∑

λ∈F
cn,λe(λx)g(x − yn). (2.5)

For n > 1 we have yn ≥ y1 > 1, so g(x − yn) = 0 for x ∈ [0, y1 − ε].

6



We now restrict f(x) to x ∈ [0, y1 − ε] as a function in L2([0, y1 − ε]), which
is 0. Note that F is uniformly discrete and D−(F) > 0 because G(F , T , g) is an
orthonormal basis. By Lemma 2.4 each sum

∑
λ∈F cn,λe(λx) converges in L2([0, y1−ε])

for each n. Note that g(x − yn) = 0 on [0, y1 − ε] for all n > 0, so (2.5) yields

0 = f(x) =
∑

λ∈F
c0,λe(λx)g(x)

on [0, y1 − ε]. But g(x) 6= 0 on [0, y1 − ε]. Thus

∑

λ∈F
c0,λe(λx) = 0

on [0, y1 − ε]. It follows from Lemma 2.3 that c0,λ = 0 for all λ ∈ F . However,

c0,λ = 〈f(x), e(λx)g(x)〉 = 0 implies that f(x)g(x) is orthogonal to the set of func-
tions {e(λx) : λ ∈ F} for all functions f(x) with supp(f) ⊆ [a − ε, a]. This is a
contradiction.

For any F ∈ R the upper asymptotic density Du(F) is defined as

Du(F) := lim sup
r→∞

|F ∩ [−r, r]|
2r

.

It is easy to see that D−(F) ≤ Du(F) ≤ D+(F). In particular if D(F) exists then
Du(F) = D(F). The following lemma is a key to proving Theorem 1.2. It was proved
in  Laba and Wang [20] in a much stronger form. We include the weak form here for
completeness.

Lemma 2.6 Let F be a subset of R with D(F) = 1. Suppose that Du(F − F) ≤ 1.
Then F − F = Z.

Proof. Without loss of generality we assume that 0 ∈ F . Hence F −F ⊇ F . Clearly
this means Du(F − F) ≥ D(F) = 1. This yields Du(F − F) = 1. We prove F − F
is a group.

Denote G = F − F . For any a ∈ F observe that F − a has Beurling density
D(F − a) = 1. But F − a ⊆ G and Du(G) = 1. This implies that G = (F − a) ∪ Ea

with Du(Ea) = 0. Similarly G = (F − b) ∪ Eb for any b ∈ F with Du(Eb) = 0. Denote
Fa,b = (F−a)∩ (F −b). We therefore must have Du(Fa,b) = 1 since G \Fa,b = Ea∪Eb

has Beurling density 0. It follows that Du(Fa,b+b) = 1. In other words, F∩(F−a+b)
has upper asymptotic density 1.

Now take any a1, a2, b1, b2 ∈ F . The above yields that both F ∩ (F − a1 + b1)
and F ∩ (F − a2 + b2) have upper asymptotic density 1. But both are subsets
of F , which itself has upper asymptotic density 1. Therefore the two sets must
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intersect, or the upper asymptotic density of F would have to be at least 2. This
means there exist c1, c2 ∈ F such that c1 − a1 + b1 = c2 − a2 + b2, which gives us
(b2 − a2) − (b1 − a1) = c1 − c2 ∈ G. Since a1, a2, b1, b2 ∈ F are arbitrary, we conclude
that G is closed under subtraction. Hence G is a group.

The only discrete subgroups of R with bounded densities are cyclic groups. So
G = LZ for some L ∈ R. But the density of G is 1. Hence G = F − F = Z.

Proof of Theorem 1.2. Without loss of generality we may assume that D(F) =
D(T ) = 1 by Lemma 2.2, 0 ∈ F , 0 ∈ T and that supp(g) = [0, a]. Since T is
uniformly discrete we may write it as T = {yn : n ∈ Z} in ascending order.

Claim: F = Z and if 0 < a − (yk − yn) ≤ 1 then a − (yk − yn) = 1.

For 0 < b := a − (yk − yn) ≤ 1 let h(x) = g(x − yn)g(x − yk). Then h(x) is
supported on an interval of length b ≤ 1. The orthogonality of the Gabor basis yields
ĥ(ξ) = 0 for all ξ ∈ F − F , ξ 6= 0. (We would even have ĥ(0) = 0 if k 6= n.)

But note that by the Paley-Wiener Theorem ĥ is an entire function of exponential
type restricted to the reals, and such functions cannot have “too many” zeros. In
fact it follows from Theorem 8.4.16 of Boas [2] that the set of zeros of ĥ has an upper
asymptotic density at most b, i.e. D+(F − F) ≤ b ≤ 1. It follows from D(F) = 1
and Lemma 2.6 that b = 1 and F − F = Z. Since 0 ∈ F we get F ⊆ Z.

Now suppose that F 6= Z. Then we may replace F by Z and the orthonormality
is again satisfied with the new Gabor system G(Z, T , g). This contradicts the fact
that G(F , T , g) is a basis. Therefore F = Z. The Claim is proved. 2

We next prove T = Z by proving that for any n we have yn − yn−1 = 1. Assume
that this is not true, then there exists an n such that yn − yn−1 < 1. We choose
k to be the largest index such that 0 ≤ yk − yn < a. Since each yj+1 − yj ≤ 1 by
Lemma 2.5, 0 < a − (yk − yn) ≤ 1. It follows from the Claim that a − (yk − yn) = 1.
But we now have 0 < a − (yk − yn−1) < 1 because yn − yn−1 < 1. This contradicts
Claim 1. Hence yn − yn−1 = 1 for all n, and T = Z.

Finally we prove a = 1 and |g(x)| = χ[0,1](x). It is easy to see that a ≥ 1, which
in fact follows from the Claim. Assume that a > 1. Then there exists an n 6= 0 such
that 0 < b := a−n ≤ 1. (The Claim actually gives b = 1, but we don’t need it.) Now
the function h(x) = g(x)g(x − n) is supported on [n, a] and is orthogonal to e(λx)
for all λ ∈ F = Z. This is impossible unless h(x) = 0, which is not the case since g is
supported on [0, a]. Hence a = 1. So |g|2(x) is orthogonal to e(λx) for all λ ∈ Z\{0}.
This forces |g|2(x) = c. The orthonormality of the Gabor basis now yields c = 1 and
|g| = χ[0,1].
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3 Examples and Questions

The study of orthonormal Gabor bases is actually closely related to the study of
spectral sets and their spectra, a link that has not been exploited in the Gabor
literature. A measurable set Ω in Rd with positive and finite measure is called a
spectral set if there exists an F ⊂ Rd such that the set of exponentials {e(λ · x) :
λ ∈ F} is an orthogonal basis for L2(Ω). In this case F is called a spectrum of Ω.
A spectral set Ω may have more than one spectrum. Spectral sets have been studied
rather extensively, particularly in recent years. We list some of these studies in the
bibliography of this paper. The major unsolved problem concerning spectral sets is
the following conjecture of Fuglede [11]:

Fuglede’s Spectral Set Conjecture: Let Ω be a set in Rd with positive and finite
Lebesgue measure. Then Ω is a spectral set if and only if Ω tiles Rd by translation.

Here by Ω tiles we mean there exists a T ⊂ Rd such that Ω + T is a measure-
disjoint covering of Rd, i.e.

∑
p∈T χΩ(x − p) = 1 for almost all x ∈ Rd. The set T is

called a tiling set for Ω. The Spectral Set Conjecture remains open in either direction,
even in dimension one and for sets that are unions of unit intervals. Furthermore,
there appears to be a one-to-one correspondence between spectra of a spectral set and
its tilings. In this section we give several examples, based on the study of spectral
sets. First we establish:

Lemma 3.1 Let Ω ⊂ Rd with 0 < µ(Ω) < ∞. Suppose that Ω is a spectral set
with a spectrum F and it tiles Rd by the tiling set T . Let g(x) be any function with
|g| = 1√

µ(Ω)
χΩ. Then G(F , T , g) is an orthonormal Gabor basis for L2(Rd).

Proof. The proof is rather standard, and we shall give a quick sketch here. The
orthonormality is clear. Take any e(λ1 ·x)g(x−p1) and e(λ2 ·x)g(x−p2) in G(F , T , g).
If p1 6= p2 then g(x − p1) and g(x − p2) have disjoint support as a result of the tiling
property. So the two functions are orthogonal. If p1 = p2 then λ1 6= λ2. Hence
〈e(λ1 · x), e(λ2 · x)〉 = 0 by the spectral set property. Therefore

〈e(λ1 · x)g(x − p1), e(λ2 · x)g(x − p1)〉 = 〈e(λ1 · x), e(λ2 · x)〉 = 0.

To see the completeness observe that the set of functions {e(λ ·x)g(x−p) : λ ∈ F} is
complete in L2(Ω + p) because F is a spectrum for Ω + p and |g(x− p)| is a nonzero
constant on Ω + p. Now every f(x) ∈ L2(Rd) can be expressed as f(x) =

∑
p∈T fp(x)

where fp(x) := f(x)χΩ(x−p) as a result of the tiling property. But fp(x) ∈ L2(Ω+p).
Standard argument now implies G(F , T , g) is complete in L2(R), proving the lemma.

We shall refer to an orthonormal Gabor basis obtained in such a way as a stan-
dard orthonormal Gabor basis. Standard Gabor bases nevertheless yield nontrivial
examples of non-uniform Gabor bases.
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Example 3.1 In dimension d ≥ 2 there exist compactly supported orthonormal Ga-
bor bases G(F , T , g) in which both F and T are nonperiodic.

Let Ω = [0, 1]d be the unit d-cube. It is well known that there are nonperiodic tilings
using the unit cube. In fact, for d ≥ 3 there are completely aperiodic cube tilings, see
Lagarias and Shor [22]. (For d = 2 the tilings must be half periodic in the sense that
it must be periodic either in the horizontal or in the vertical direction.) One simple
nonperiodic tiling set for the cube [0, 1]2 in the two dimension is

T = {(n, m + en) : n, m ∈ Z},

which is obtained from the standard lattice tiling by shifting the n-th column by en.
Let T be any nonperiodic tiling of Ω and set F = T . Now a theorem of Lagarias,
Reeds and Wang [21] (and independently by Iosevich and Pedersen [16]) states that
F must also be a spectrum for Ω. Therefore for g(x) = χΩ(x) the Gabor system
G(F , T , g) is an orthonormal Gabor basis. By assumption neither F nor T is uniform.

Example 3.2 In the one dimension there exist compactly supported orthonormal Ga-
bor bases G(F , T , g) in which neither F nor T is a lattice.

Let Ω = [0, 1]∪[2, 3]. We know that this is a spectral set with spectrum F = Z+{0, 1
4
},

see e.g. Lagarias and Wang [24]. Ω tiles with the tiling set T = 4Z + {0, 1}. Now
for g(x) = 1√

2
χΩ(x) the Gabor system G(F , T , g) is an orthonormal Gabor basis.

However, neither F nor T is a lattice.

Example 3.3 In an orthonormal Gabor basis G(F , T , g) having one of F or T being
a lattice does not imply the other must be, even in the one dimension.

Let Ω = [0, 1] ∪ [3, 4]. Again we know that this is a spectral set with two distinct
spectra: F1 = Z + {0, 1

6
} and F2 = 1

2
Z. Ω also has two distinct tiling sets T1 =

6Z + {0, 1, 2} and T2 = 2Z. Let g(x) = 1√
2
χΩ(x). We have an orthonormal Gabor

basis G(F , T , g) by taking F = F1 and T = T2, or by taking F = F2 and T = T1.
In either case, one is a lattice and the other is not.

We conclude this paper with the following conjecture on orthonormal Gabor bases
G(F , T , g).

Conjecture: Let g(x) ∈ L2(Rd) be compactly supported. Let F and T be dis-
crete subsets of Rd. Suppose that G(F , T , g) is an orthonormal Gabor basis. Then
G(F , T , g) must be standard. In other words, there exists a spectral set Ω in Rd such
that
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(a) F is a spectrum of Ω.

(b) T is a tiling of Ω.

(c) |g(x)| = 1√
µ(Ω)

χΩ(x).
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