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Abstract. We propose a denoising algorthm for medical images based on a combina-
tion of the total variation minimization scheme and the wavelet scheme. We show that
our scheme offers effective noise removal in real noisy medical images while maintaining
sharpness of objects. More importantly, this scheme allows us to implement an effective
automatic stopping time criterion.

1. Introduction

The advent of digital imaging technologies such as MRI has revolutionized modern

medicine. Today, many patients no longer need to go through invasive and often dan-

gerous procedures to diagnoise a wide variety of illnesses. With the wide-spread use of

digital imaging in medicine today, the quality of digial medical images becomes an impor-

tant issue. To achieve the best possible diagnoises it is important that medical images be

sharp, clear, and free of noise and artifacts. While the technologies for acquiring digital

medical images continue to improve, resulting in images of higher and higher resolution and

quality, noise remains an issue for many medical images. Removing noise in these digital

images remains one of the major challenges in the study of medical imaging.

While noise in medical images present a problem because they could mask and blur

important but subtle features in the images, many proposed denoising techniques have

their own problems. One of the widely discussed technique is the wavelet thresholding

scheme, which recognizes that by performing a wavelet transform of a noisy image, random

noise will be represented principally as small coefficients in the high frequencies. Thus in

theory a threshlding, by setting these small coefficients to zero, will eliminate much of the

noise in the image. The wavelet hard thresholding scheme, which sets wavelet coefficients

below certain threshold in magnitude to 0, easy to implement and fast to perform. And
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depending on the threshold it removes noise adequately. However, at the same time it

also introduces artifacts as a result of the Gibbs oscillation near discontinuities. Since

artifacts in medical images may lead to wrong diagnoises, the wavelet hard thresholding

scheme is not practical for use in medical imaging without being combined with other

techniques. An improvement over the the wavelet hard thresholding is the wavelet soft

thresholding scheme [14, 15], which significantly reduces the Gibbs oscillation but does not

eliminate it. The effectiveness of wavelet thresholding schemes in general are limited with

combining them with other techniques. These other more complex techniques often try to

take account of geometric informations by using wavelet-like bases that better characterize

discontinuities, such as curvelets [3, 4]. Nevertheless, they do not completely eliminate the

Gibbs phenomenon. Other methods with varying success have also been studied by different

authors, e.g. [2, 23, 9].

Another approach employs variational principles and PDE based techniques. In this

approach, a noisy image is modeled as z(x) = u0(x) + n(x) where u0 denotes the uncon-

taminated underlying image and n denotes the noise. To reconstruct u0 one considers the

problem of minimizing

(1.1) E(u) =
λ

2
‖u− z‖2

L2(Ω) +R(u),

where λ > 0, Ω is the domain on which z is defined, and the term R(u) is a regulariza-

tion functional. Earlier efforts focused on least square based functionals R(u)’s such as

‖∆‖2
L2(Ω), ‖∇u‖

2
L2(Ω) and others. While noise can be effectively removed, these regulariza-

tion functionals penalize discontinuity, resulting in soft and smooth reconstructed images,

with subtle details lost. Again, for medical imaging this is not practical, as subtle details

could very well yield crucial informations about the patients.

A better choice for R(u) was proposed in [24], in which R(u) is the total variation (TV)

of u given by

(1.2) R(u) = TV (u) :=

∫

Ω
|∇u|dx.

Intensive studies have shown that the total variation better preserves edges in u, thus it

allows for sharper reconstructions, e.g. [1, 6, 8, 13]. Among all the PDE based techniques,

the TV minimization scheme is a candidate that offers the best combination of noise removal

and feature preservation.
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Solving the minimizers for the TV minimization (1.2), or (1.1) in general, amounts to

solving certain PDEs, which is very similar to the aniostropic diffusion scheme proposed

first in [22]. For the TV minimization it is easy to show that the PDE is given by

(1.3) ∇ ·
( ∇u

|∇u|

)

− λ(u− z) = 0.

But in practice, one introduces the time variable t and solve for u(x, t) by time-marching

the equation

(1.4) ut = α∇ ·
( ∇u

|∇u|

)

− (u− z) = 0, u(x, 0) = z(x).

The end result u(x, T ), if T is large enough, will have all noise removed. An important

attribute of the TV minimization scheme is that it takes the geometric information of

the original images into account, in that it preserves significant edges. In fact significant

edges are sharpened. This is similar to the anisotropic diffusion methods, see [22, 26] and

references therein.

The time-marching of the equation (1.4) is in essence solving for the minimizer of E(u)

by gradient flow. Two approaches are used for achieving the best combination of noise

removal and feature preservation. The straighforward approach is to tune the parameter

λ. Obviously if λ is too large we may not remove enough noise. On the other hand, if λ

is too small it is well known that the scheme will remove too many features and end up

with a cartoon-like piecewise constant image [19, 21]. But tuning the parameter λ is time

consuming. Since in practice there is no orginal image to compare to, and the assumption

of i.i.d. Gausian noise is not always realistic, tuning λ often relies on experience and visual

inspection. There is no automatic way for it as far as we know. A more widely used approach

is to choose λ in a reasonable range without being precise about the choice. Instead, we try

to stop the time-marching before it reaches the ground state at a point that offers a good

combination of noise removal and feature preservation. But again here we face the problem

of deciding when to stop. There have been efforts in this direction, see e.g. [20, 28]. These

proposed criteria are typically cumbersome and are based on some a priori knowledge about

the noise such as the variance and type, which may not be realistic. With the explosion in

volumes of medical images, this is a very significant issue.
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In this paper we propose a wavelet TV denoising scheme. In our scheme, the wavelet

coefficients are selected and modified subjecting to minimizing the TV norm of the recon-

struced images. We demonstrate that while as effective as the TV scheme in removing noise,

the wavelet TV scheme allows us to modify the wavelet coefficients primarily in the high

frequency domain, something the regular TV scheme cannot do. Experiments show that the

wavelet TV scheme preserves details like the regular TV scheme but offers a slightly higher

PSNR in the reconstruction. It is also significantly faster in that far fewer iterations are

needed for noise removal. The details of these improvements will be presented in a separate

paper [27]. And unlike the traditional wavelet thresholding scheme, it does not introduce

Gibbs oscillations near discontinuities. These properties are consistent with other inves-

tigations that combine variational approaches with wavelet framework [5, 11, 10, 16, 18].

But more importantly, this scheme allows for an effective automatic stopping time criterion

based on certain statistical property of wavelet coefficents. An added advantage for our ap-

proach is that it leads to superior JPEG2000 compression for denoised images [11]. Given

the increased use of JPEG2000 standard in medical imaging, this is a significant bonus.

2. The Wavelet Total Variation Denoising Method

In this section, we describe our image denoising algorithm based on wavelet and TV

minimization.

We start with a standard noisy monochromatic image model

(2.1) z(x) = u0(x) + n(x),

where z(x), u0(x) and n(x) are real valued functions defined on R
2, and they are compactly

supported since they represent images in our study. The function u0(x) denotes the under-

lying noise-free image, z(x) the observed image, and n(x) the noise. In our general model,

we assume that z(x), u0(x) and n(x) are in some space of functions F , such as L2(Ω) for

some domain Ω. Let {ψj : j ∈ I} be a basis for F . This basis can be an orthonormal basis,

such as wavelets [12, 25] if F is a Hilbert space, or any other type of bases in general. So

for any f(x) ∈ F we have

f(x) =
∑

j∈I

cjψj(x),

for some real (cj).
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In [11] a wavelet TV minimization model is proposed, in which {ψj} is taken to be a

wavelet basis for F = L2(Ω). In that model, the wavelet coefficients are selected and

modified to achieve the goals of image processing such as denoising and compression. In this

paper, we refine the above model. Key to our innovation is an automatic stopping criterion,

a feature we believe to be very important for medical applications. Another improvement is

the multiscale fitting parameters targeting denoising in the high frequency domain, which

yields significant reduction in number of iterations needed to achieve the desired denoising

as well as a small performance improvement in terms of PSNR on simulated noisy images.

We first describe the denoising part in the general setting. Let

z(x) =
∑

j∈I

αjψj(x)

and denote

(2.2) u(x,β) :=
∑

j∈I

βjψj(x)

where β = (βj). Define the Total Variation functional by

(2.3) F (u) :=

∫

R2

|∇xu(x,β)|dx+
1

2

∑

j∈I

λj(βj − αj)
2,

where u = u(x,β), λj > 0. In practice we often replace |∇xu(x,β)| by

|∇xu|ε =
√

|∇xu|2 + ε, with 0 < ε� 1.

The small parameter ε is used to prevent denominators from vanishing in numerical imple-

mentations. The goal of denoising is to minimize F (u) and find the minimizer u∗ := u(x,β∗)

such that

(2.4) F (u∗) = min
β
F (u).

The objective functional in (2.3) differs somewhat from the one used in [11], where all λj ’s

are uniformly set to a single parameter λ. With uniform parameter λ and an orthonormal

basis {ψj} the objective functional F (u) is the same as the objective functional E(u) in

(1.1). Hence the minimizer of F (u) would be the same as that of E(u) for the regular

TV scheme. By taking a basis that is not an orthonormal basis, such as a bi-orthogonal

wavelet basis as we do in our implementation, F (u) is typically not the same as E(u), even

with uniform parameter λj . With nonuniform λj ’s the objective functional F (u) can be

significantly different from E(u) in the orginal TV scheme. Like the regular TV denoising
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scheme, the wavelet TV scheme proposed here retain sharp edges without creating Gibb’s

phenomenon.

One can use simple calculus of variation to obtain the derivative of the objective functional

(2.3). For u = u(x,β) where β = (βj),

∂F (u)

∂βj

=

∫

R2

∇xu

|∇xu|
· ∇xψjdx+ λj(βj − αj)

= −

∫

R2

∇x ·

[

∇xu

|∇xu|

]

ψjdx+ λj(βj − αj).

Then the Euler-Lagrange equation for the model is

(2.5) −

∫

R2

∇x ·

(

∇xu

|∇xu|

)

ψj(x)dx+ λj(βj − αj) = 0.

In practice, rather than solving the Euler-Lagrange equation (2.5) directly to denoise an

image, we introduce an artificial time parameter t and time-march the image using gradient

flow. More precisely, we set β = β(t) = (βj(t)) and solve the following time evolution

equation,

(2.6)
∂βj

∂t
=

∫

R2

∇x ·

(

∇xu

|∇xu|

)

ψj(x)dx− λj(βj − αj), βj(0) = αj.

The minimizer of the TV wavelet model is the steady state of the above equation.

However, it is well known that TV minimization often leads to images with cartoonish

features. More precisely, the denoising algorithm will remove noise as well as fine struc-

tures, such as textures and subtle details, from an image. The consequence is that unless

the parameter λ in (1.1) is carefully calibrated, if one evolves equation (2.6) for an extended

time, the denoised image is often over-smoothed to the point that the it is almost piecewise

constant. The wavelet TV denoising scheme has the same issue. This is certainly unaccept-

able for most medical applications. In the original TV minimization scheme introduced in

[24] or similar schemes such as anisotropic diffusion, there was no mechanism for stopping

the time evolution. In fact, since the objective functionals don’t measure information per-

taining to noise in the processes, a mechanism to stop the time evolution automatically is

virtually impossible. But in our wavelet TV denoising scheme this can be naturally done.

The reason is that high frequency wavelet coefficients are well known to encode information

about noise in an images. This property of high frequency wavelet coefficients has served

as the basis for virtually all wavelet denoising methods, such as the widely used hard or

soft thresholdings, or wavelet shrinkage. Now, by choosing {ψj} to be a wavelet basis, the
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same principle allows us to design a natural automatic stopping criterion for the wavelet

TV minimization method, making it an extremely viable scheme for medical applications.

We now describe our automatic stopping criterion with the basis {ψj : j ∈ I} being a

wavelet basis — in our case we usually take the bi-orthogonal wavelet basis generated by

the well known 7-9 bi-orthogonal wavelets. (We remark that the conventional notation for

wavelet bases use two or more indices, such as {ψjk}. In this paper we only use one index for

conciseness, and there should not be any confusion). Like in the wavelet hard thresholding

scheme, we first choose a threshold ρ > 0. Let Jρ = {j ∈ ID : |βj(0)| = |αj | ≤ ρ}, where

ID ⊂ I is the index set corresponding to the diagonial portion of the highest frequency

wavelet coefficients. Intuitively speaking, as in the wavelet hard thresholding scheme, the

coefficients {βj(0) : j ∈ Jρ} will indicate how noisy the image is. In a noise-free image

these wavelet coefficients will mostly be very close to 0. But in a noisy image they will be

more substantial. Define µ(t) = 1
|Jρ|

∑

j∈Jρ
|βj(t)|. So µ(t) measures the noise in the image

at time t. The key idea is that an automatic stopping criterion of the time evolution can

be designed by measuring the reduction in the value µ(t) from the orginal value µ(0).

We can use two different approaches in setting the automatic stopping criterion. The

first approach is the relative criterion. In the relative criterion, we consider µ(t)/µ(0). We

will stop the time evolution whenever this value goes below a threshold b. For example, we

may set b = 0.1. This threshold intuitively says that we stop the time evolution when we

have reduced noise by 90%. The second approach is the absolute criterion. In the absolute

criterion, we stop the time evolution if µ(t) drops below a threshold c. Since in a noise-free

image we expect µ(t) to be very close to zero, it is reasonable to set an absolute threshold

for µ(t) to achieve a desired denoising effect.

In the actual implementation the value ρ does not seem to affect the automatic stopping

time sensitively. We usually take ρ = 2
|ID|

∑

j∈ID
|αj |. Both the relative criterion and the

absolute criterion work well, although we typically use the relative criterion. For an image

with moderate noise we set the threshold b to be between 0.05 and 0.1. In the more noisy

cases such as the images shown in this paper, we use smaller threshold b around 0.03. We

tested the automatic stopping time criterion on a number of MRI images for one lab. The

thresholds for optimal performance stayed remarkably consistent. This is an important

property for batch processing of medical images.
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3. Examples

In this section we provide some examples to illustrate the performance of our algorithm.

The first example is for testing. Artificial noise is added to an otherwise rather clean brain

scan (Figure 1). The standard Peak Signal to Noise Ratio (PSNR) is employed to quantify

the performance of denoising, where

PSNR = 10 log10

(

2552

‖u− u0‖2
2

)

(dB),

where 255 is the maximum intensity value of the gray scale images, u0 the noise free original

image, z the noise added image, and ‖ · ‖2 the standard L2 norm. A conventional criterion

is that larger PSNR signifies better performance. In addition, we use visual inspection to

compare the performance in preservation of edges and other geometric features, which is not

reflected through the PSNR measurement. In all examples shown here, we use Daubechies

7-9 biorthogonal wavelets with symmetric extensions at the boundaries.

We performed denoising on the noised added brain scan image using the standard wavelet

thresholding schemes and our wavelet TV scheme. The threshold in the wavelet hard

thresholding was chosen after some trials to ensure the best performance (in terms of PSNR)

for fairness. This actually exemplifies the problem we try to solve: The only way to get

optimal result is through trial and error experiments with the threshold. For our wavelet

TV scheme we use the relative approach and have set the auto-stopping threshold b = 0.03.

We show results for two different choices of the parameters λj. In the first one we choose

uniform λj = 5. In the second, the fitting parameters λj for the first three coarsest level

wavelet coefficients are all set to λj = 100. Afterwards with each finer level we decrease λj ’s

by a factor of 4. As one can see, the wavelet TV scheme in both examples outperforms the

wavelet thresholding significantly. But more importantly, the wavelet TV image maintained

sharpness and many fine details, while the wavelet thresholding image looks soft with details

lost. The uniform fitting parameter example performed similarly to the regular TV scheme

with the same parameter. The multiscale fitting parameters wavelet TV scheme has a small

advantage in PSNR, and in our opinion is visually better. However, the number of iterations

is significantly smaller than either the uniform λj wavelet TV scheme or the regular TV

scheme (by roughly a factor of 5).
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Figure 1. Left: Original image. Right: Image with artificial additive
Gaussian white noise, with PSNR = 2.55(dB)

Figure 2. Left: Denoised image by wavelet hard thresholding
PSNR = 8.65(dB), with the selected threshold that returns the best
PSNR performance. Right: Denoised image by wavelet soft thresholding
PSNR = 8.36(dB), the threshold is selected to reach best PSNR improve-
ment.

In the next example (Figure 2), we apply the algorithms (with uniform λj = 5 and relative

automatic stopping time criterion threshold b = 0.9) to a real image without artificial noise.
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Figure 3. Left: Denoised image by TV wavelet with fixed fitting parameter
λj, the PSNR = 10.05(dB). This image and the PSNR measurement are
very similar to those of the regular TV scheme with the same parameter.
Right: Denoised image by TV wavelet with variable fitting parameter λj on
different wavelet scales, the PSNR = 10.28(dB)
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Figure 4. Left: Original image. Right: Denoised image using the TV
wavelet algorithm.

The original image appears quite noisy. We cannot judge the performance by examining

the PSNR as we do not have a noise free image with which we can compare. However, by

visual inspection it is evident that the denoised image, while removing a substantial amount

of noise, suffers virtually no degradation in sharpness and details.
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