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Abstract

We consider the two-scale refinement equation f(x) =
∑N

n=0 cnf(2x − n) with∑
n c2n =

∑
n c2n+1 = 1 where c0, cN 6= 0 and the corresponding subdivision scheme.

We study the convergence of the subdivision scheme and the cascade algorithm when
all cn ≥ 0. It has long been conjectured that under such an assumption the subdivision
algorithm converge, as well as the cascade algorithm converge uniformly to a continu-
ous function, if and only if only if 0 < c0, cN < 1 and the greatest common divisor of
S = {n : cn > 0} is 1. We prove the conjecture for a large class of refinement equations.

Keywords: Nonnegative mask, cascade algorithm, subdivision scheme, refinement
equation, refinable function.

1 Introduction

The two-scale refinement equation

f(x) =
∑
n∈Z

cnf(2x − n),
∑
n

c2n =
∑
n

c2n+1 = 1 (1.1)

plays a central role in the construction of orthonormal wavelet bases and in the subdivision

scheme for curve and surface generations. An important question is the continuity of the

solutions f(x) and the convergence of the corresponding subdivision scheme. We will assume

that only finitely many cn 6= 0, which is the case for virtually all applications. It is well

known that under this assumption the refinement equation (1.1) has a unique (up to scalar
∗Research supported in part by NSF grant-97-06793 and a grant from the Center for Wavelets, Approx-

imation and Information Processing in the National University of Singapore
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multiplication) compactly solution f(x) in the sense of a tempered distribution. In this

paper we study the special class of refinement equations (1.1) in which all cn ≥ 0.

We first introduce some notations. For a given refinement equation (1.1) the mask is

the Laurent polynomial C(z) := 1
2

∑
n cnzn. The support of C is the set supp (C) := {n ∈

Z : cn 6= 0}. We say the mask C is nonnegative if all cn ≥ 0. A function f(x) ∈ L1(R)

is the assocaited refinable function of the refinement equation (1.1) if it satisfies (1.1) and∫
R

f(x) dx = 1. Not every refinement equation has an associated refinable function, since

the requirment f(x) ∈ L1(R) can not be met in general. When it does, the associated

refinable function is unique, and is compactly supported, see [DL1].

We shall study (1.1) primarily in conjunction with subdivision schemes. A comprehen-

sive discussion of subdivision schemes can be found in [CDM]. The subdivision scheme

relates to the refinement equation (1.1) as follows: Start with a set of vectors {v0
n : n ∈ Z}

with each v0
n ∈ Rm, and recursively define the vectors {vk

n : n ∈ Z} by

vk
n =

∑
j∈Z

cn−2jvk−1
j . (1.2)

We say that the subdivision scheme with mask C converges if for each bounded set of vectors

{v0
n : n ∈ Z} there exists a continuous function G : R −→ Rm such that

lim
k→∞

sup
n∈Z

∣∣∣G( n

2k

)
− vk

n

∣∣∣ = 0.

The function G(x) can be expressed as

G(x) =
∑
n∈Z

f(x − n)v0
n, (1.3)

where f(x) is the associated refinable function of (1.1). By taking m = 1 and v0
n = δn,0

one can easily check that the subdivision scheme (1.2) is equivalent to the following cascade

algorithm for finding the associated refinable function f(x):

f0(x) = χ[0,1)(x)1, fk(x) =
∑
n∈Z

cnfk−1(2x − n). (1.4)

More precisely, the two schemes relate to each other by the formula vk
n = fk( n

2k ). Therefore

a subdivision scheme converges if and only if the corresponding cascade algorithm converges

uniformly to a continuous function.

In this paper we study the convergence of subdivision schemes with nonnegative masks.

Such schemes arise in many practical applications. Let C(z) be the nonnegative mask of the
1Observe that f0 is not continuous. In practice it is better to choose f0 to be the hat function. The

uniform convergence of the cascade algorithm are equivalent for both cases [W].
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refinement equation (1.1) such that supp (C) is finite. By applying a suitable translation we

may without loss of generality assume that supp (C) ⊆ {0, 1, . . . ,N} with 0,N ∈ supp (C)

for some N ≥ 1. Equation (1.1) now becomes

f(x) =
N∑

n=0

cnf(2x − n),
∑

n

c2n =
∑
n

c2n+1 = 1, (1.5)

where c0, cN 6= 0. The convergence problem is stated as the following conjecture:

Conjecture: Suppose that the refinement equation (1.5) satisfies c0, cN 6= 0 and all cn ≥ 0.

Let C(z) be its mask. Then the subdivision scheme with mask C converges if and only if

0 < c0, cN < 1 and gcd (n : n ∈ supp (C)) = 1. (1.6)

It is known that (1.6) is necessary for the convergence of the cascade algorithm and the

subdivision scheme, see e.g. [CDM] or [W]. The sufficiency is still open, and appears to

be rather difficult. It has been discussed extensively in Cavaretta, Dahmen and Micchelli

[CDM] and is stated as an important unresolved problem. Various partial results have

been obtained. Micchelli and Prautzsch [MP1] show that the subdivision scheme converges

if supp (C) = {0, 1, . . . ,N} for N ≥ 2. This condition is weakened by Gonsor [G] to

supp (C) ⊇ {0, 1,N − 1,N} for N ≥ 2. Melkman [M] further relaxed the condition to

supp (C) ⊇ {0, p, q, p + q} for some gcd (p, q) = 1, who also shows that the subdivision

scheme converges if supp (C) contains two consecutive integers in addition to (1.6) with

N ≥ 2. It should be pointed out that the related results in [CDM] are all in the higher

dimensional setting. In such settings the problem is also studied in Jia and Zhou [JZ], who

prove that the convergence of the subdivision scheme depends only on the support of the

mask, not on the actual values of the coefficients. An algorithm for checking the convergence

is also given in [JZ].

A particularly interesting class of refinement equations (1.5) is those that supp (C)

contains a single odd integer 0 < p < N , the simplest and most intriguing example of which

is

f(x) = af(2x) + f(2x − p) + (1 − a)f(2x − N) (1.7)

where 0 < a < 1, N ≥ 2 is even and gcd (p,N) = 1. If this happens and if condition (1.6)

is met, the associated refinable function f(x) is interpolatory in the sense that

f(p) = 1 and f(n) = 0 for n ∈ Z \ {p}. (1.8)
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Interpolatory refinement equations are important for applications in computer generated

graphics, because the curve G(x) given by (1.3) from the subdivision scheme actually passes

through the points v0
n, i.e. G(p + n) = v0

n. Unfortunately, as pointed out in [M], none of

the existing sufficient conditions mentioned above cover, or are even applicable to, the

refinement equation (1.7). In fact, other than the condition supp (C) ⊇ {a, a + 1} none of

them are applicable to any interpolatory subdivision schemes. By numerical computation

it is shown in [M] that the subdivision scheme corresponding to (1.7) with N = 8 and p = 3

converges. However, such method cannot be used for the general setting.

The objective of this paper is to establish a sufficient condition on the convergence of

the subdivision scheme that will cover a substantially larger class of schemes, including the

interpolatory schemes given by (1.7) and many other interpolatory schemes. We prove:

Theorem 1.1 Let C = 1
2(a + zp + (1 − a)zN ) be the mask for the refinement equation

f(x) = af(2x) + f(2x − p) + (1 − a)f(2x − N)

where 0 < a < 1, N ≥ 2 is even and gcd (p,N) = 1. Then

(i) The subdivision scheme with mask C converges.

(ii) The cascade algorithm converges uniformly to the associated refinable function, which

is continuous.

Based on Theorem 1.1 we prove the following more general theorem:

Theorem 1.2 Suppose that the refinement equation

f(x) =
N∑

n=0

cnf(2x − n),
∑
n

c2n =
∑
n

c2n+1 = 1

has a nonnegative mask C(z), with 0 < c0, cN < 1. Suppose that there exist r < p < q in

supp (C) such that gcd (q − r, p − r) = 1 and 2|q − r. Then

(i) The subdivision scheme with mask C converges.

(ii) The cascade algorithm converges uniformly to the associated refinable function, which

is continuous.

In particular, if there exist an odd p and an even q in supp (C) such that 0 < p < q and

gcd (p, q) = 1. Then the convergence properties (i) and (ii) hold.
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2 Reductions

In this section we make several reductions to transform the problem of convergence of

subdivision schemes into one of combinatorics and number theory. Given the refinement

equation (1.5) define the N × N generating matrices

P0 = [c2j−i]0≤i,j<N , P1 = [c2j−i+1]0≤i,j<N , (2.1)

where the rows and columns are indexed by 0 ≤ i, j < N (instead of the conventional

1 ≤ i, j ≤ N). Both P0 and P1 are row stochastic matrices, i.e. the sum of elements

of every row is 1. Suppose that f(x) is the associated refinable function of (1.5). Let

vf (x) = [f(x), f(x + 1), . . . , f(x + N − 1)] for x ∈ [0, 1). Then it is well known (see [DL2])

that

vf (x) = vf (τmx)Pdm · · ·Pd2Pd1 (2.2)

for any m ≥ 1, where x =
∑∞

j=1 2−jdj with dj ∈ {0, 1} and τ is the shift function τx =∑∞
j=1 2−jdj+1. Note that [1, 1, . . . , 1]T is a common 1-eignevector of P0 and P1. So taking

a nonsingular matrix C whose first column is [1, . . . , 1]T yields

C−1PiC =
[

1 ∗
0 Ai

]
, i = 0, 1. (2.3)

Lemma 2.1 The subdivision scheme corresponding to the refinement equation (1.5) con-

verges if and only if the joint spectral radius ρ̂(A0, A1) < 1.

Proof. The convergence of the subdivision scheme is equivalent to the convergence of the

cascade algorithm, which is shown in [W] to be equivalent to ρ̂(A0, A1) < 1. See also [DGL].

It is shown in [DL3] that ρ̂(A0, A1) < 1 if and only if all products Adm · · ·Ad2Ad1

converge to the zero matrix, where dj ∈ {0, 1}, which in turn is equivalent to all products

Pdm · · ·Pd2Pd1 converge to a rank one matrix, c.f. [W]. This leads to our next reduction:
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Lemma 2.2 The subdivision scheme corresponding to the refinement equation (1.5) con-

verges if and only if for all sequences (d1, d2, . . .) ∈ {0, 1}N and x ∈ RN we have

lim
m→∞ ∆(Pdm · · ·Pd2Pd1x) = 0, (2.4)

where for any vector y = [y1, y2, . . . , yN ]T ∈ RN ,

∆(y) := max
i

yi − min
i

yi.

Proof. Let V = RN/W be the quotient space where W is the subspace spanned by the

vector [1, 1, . . . , 1]T . Since W is invariant under P0 and P1, the two matrices induce two

linear maps on V , which we denote by P̃0 and P̃1, respectively. Observe that the (N − 1)×
(N − 1) matrices A0, A1 are matrix representations of P̃0, P̃1 respectively, with respect to

the basis represented by (v2, . . . ,vN ) in which vj is the j-th column of the matrix C in

(2.3). Therefore ρ̂(A0, A1) < 1 if and only if ρ̂(P̃0, P̃1) < 1, which in turn is equivalent to

limm→∞ ‖P̃dm · · · P̃d2P̃d1(z)‖ = 0 for any sequence (d1, d2, . . .) ∈ {0, 1}N and z ∈ V , where

‖.‖ is some norm on V , see [DL3]. The lemma now follows from the fact that ∆(x) for

x ∈ RN induces a norm on V .

A sufficient condition for (2.4) to hold is that

∆(Pdm0
· · ·Pd2Pd1x) < ∆(x) (2.5)

for some fixed m0 and all sequences (d1, . . . , dm0) ∈ {0, 1}m0 . This follows from the obser-

vation that if (2.5) holds then

∆(Pdm0
· · ·Pd2Pd1x) ≤ α∆(x)

where α < 1 is given by

α = max
(d1,...,dm0 )

max
∆(x)=1

∆(Pdm0
· · ·Pd2Pd1x)
∆(x)

.

We will reduce the convergence problem further. Before doing so we introduce more

notations. The vectors in RN will be indexed by 0 ≤ i < N rather than the conventioanl 1 ≤
i ≤ N . For x ∈ RN let maxx := maxi xi and minx := mini xi. So ∆(x) = maxx − minx.

We shall use ZN to denote the set {0, 1, . . . ,N − 1}. For any T ⊆ ZN we let 1T be the

vector [x0, . . . , xN−1]T such that xi = 1 if i ∈ T and xi = 0 otherwise. Now any nonnegative

N × N row stochastic matrix B induces a map ΦB : 2ZN −→ 2ZN by

ΦB(T ) =
{
j ∈ ZN : (B1T )j = 1

}
. (2.6)
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Lemma 2.3 Let B be a nonnegative row stochastic matrix. Then

(i) ∆(Bx) ≤ ∆(x).

(ii) ΦB(T1) ∩ ΦB(T2) = ∅ if T1 ∩ T2 = ∅.

(iii) Let C be another nonnegative row stochastic matrix. Then

ΦBC = ΦB ◦ ΦC . (2.7)

Proof. (i) follows easily from the fact that max(Bx) ≤ max(x) and min(Bx) ≥ min(x).

To prove (ii), let T = T1 ∪ T2. Then 1T = 1T1 + 1T2 . So every entry of B(1T ) =

B(1T1) + B(1T2) is no greater than 1. Hence ΦB(T1) ∩ ΦB(T2) = ∅.

Finally, ΦBC(T ) = {j : (BC1T )j = 1}. Since max(C1T ) ≤ 1, unless ΦC(T ) = ∅ (in

which case the lemma is obviously true) we have

ΦBC(T ) = ΦB({j : (C1T )j = 1}) = ΦB ◦ ΦC(T ).

For simplicity we shall use Φi to denote ΦPi for i = 0, 1.

Lemma 2.4 Suppose that there exists an m0 > 0 such that for all (d1, . . . , dm) ∈ {0, 1}m

with m ≥ m0 and T ⊆ ZN we have

Φdm ◦ · · · ◦ Φd1(T ) = ∅ or Φdm ◦ · · · ◦ Φd1(T
c) = ∅, (2.8)

where T c := ZN \ T . Then the subdivision scheme correponding to (1.5) with nonnegative

mask converges.

Proof. We prove that ∆(Pdm0
· · ·Pd1x) < ∆(x) for all x ∈ RN with ∆(x) > 0 and

(d1, d2, . . . , dm0) ∈ {0, 1}m0 . Without loss of generality we assume that maxx = 1 and

minx = 0, for we may always normalize it to such form. Let

T = {j ∈ ZN : (x)j > minx}.

Then x ≤ 1T , and hence Pdm0
· · ·Pd1x ≤ Pdm0

· · ·Pd11T . But{
j : (Pdm0

· · ·Pd11T )j = 1
}

= Φdm0
◦ · · · ◦ Φd1(T ),{

j : (Pdm0
· · ·Pd11T )j = 0

}
= Φdm0

◦ · · · ◦ Φd1(T
c).

Condition (2.8) now yields ∆(Pdm0
· · ·Pd11T ) < 1. Hence ∆(Pdm0

· · ·Pd1x) < 1, which is

sufficient for the hypothesis of Lemma 2.2 to hold, proving the convergence.
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Corollary 2.5 The subdivision scheme corresponding to (1.5) with nonnegative mask di-

verges if and only if there exist disjoint proper subsets T and T ′ of ZN and a sequence

(d1, . . . , dm) ∈ {0, 1}m for some m ≥ 1 such that

T = Φdm ◦ · · · ◦ Φd1(T ) and T ′ = Φdm ◦ · · · ◦ Φd1(T
′). (2.9)

Proof. Suppose that the subdivision scheme diverges there exist a sequence (e1, . . . , en) ∈
{0, 1}n with n > 22N and a proper subset T0 of ZN such that

Φen ◦ · · · ◦ Φe1(T0) 6= ∅ and Φen ◦ · · · ◦ Φe1(T
c
0 ) 6= ∅.

Denote Tj := Φej ◦ · · · ◦ Φe1(T0) and Rj := Φej ◦ · · · ◦ Φe1(T
c
0 ) for 0 ≤ j ≤ n. Clearly all

Tj and Rj are nonempty. Since ZN has 2N − 1 nonempty subsets and n > 22N , there exist

j1 < j2 < · · · < jk with k > 2N such that Tji = T for some nonempty T ⊂ ZN for all

1 ≤ i ≤ k. Now, k > 2N implies that there exist js < jt such that Rjs = Rjt = T ′ where T ′

is nonempty. Hence

Φejt
◦ · · · ◦ Φejs+1(T ) = T and Φejt

◦ · · · ◦ Φejs+1(T
′) = T ′.

Now Tj ∩ Rj = ∅ for all j by Lemma 2.3 (ii). So in particular T ∩ T ′ = ∅. (2.9) follows by

setting (d1, . . . , dm) = (ejt , . . . , ejs+1).

Conversely, suppose that (2.9) holds. By taking x = 1T we then have

∆
(
(Pdm · · ·Pd1)

nx
)

= 1

for all n ≥ 0. This shows that the subdivision scheme diverges. .

We compute Φ0 and Φ1 explicitly. For the refinement equation (1.5) with mask supp (C)

we denote

S = supp (C), S0 = supp (C) ∩ 2Z, S1 = supp (C) ∩ (2Z + 1).

Define

Ψ(T ) =
{ ⋂

q∈S0

(2T − q)
}
∪

{ ⋂
p∈S1

(2T − p)
}
.

Lemma 2.6 For any T ⊆ ZN we have

Φ0(T ) = Ψ(T ) ∩ ZN , Φ1(T ) = (Ψ(T ) + 1) ∩ ZN . (2.10)

Furthermore, for any (d1, . . . , dm) ∈ {0, 1}m we have

Φd1 ◦ · · · ◦ Φdm(T ) = (Ψm(T ) + k) ∩ ZN , (2.11)

where k =
∑m−1

j=0 dj 2j .
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Proof. We first prove (2.10). Write P0 = [bij] := [c2j−i]N−1
i,j=0. Let Ii = {j : bij 6= 0}. It is

easy to check that

Ii =




S0 + i

2
, i = 2r

S1 + i

2
, i = 2r + 1.

Now i ∈ Φ0(T ) if and only if (P01T )i = 1, which in turn holds if and only if Ii ⊆ T . For

even i, this is equivalent to 1
2(S0 + i) ⊆ T , or i ∈ ⋂

q∈S0
(2T − q). Similarly, for odd i we

have i ∈ Φ0(T ) if and only if i ∈ ⋂
p∈S1

(2T − p). This proves (2.10) for Φ0(T ). For Φ1(T )

the proof is essentially identical.

To prove (2.11) we first let Ψ0 = Ψ and Ψ1 = Ψ + 1. Then one easily checks that

Ψd1 ◦ · · · ◦ Ψdm = Ψm + k, k =
m−1∑
j=0

dj 2j .

But Φd1 ◦ · · · ◦ Φdm(T ) = Ψd1 ◦ · · · ◦ Ψdm(T ) ∩ ZN , proving (2.11).

3 Proof of Theorems

We first prove Theorem 1.1, which is essential to proving other results in the paper. The

refinement equation (1.7) has S0 = {0,N} and S1 = {p}, where N = 2M and gcd (p,N) =

1. The map Ψ is given by

Ψ(T ) =
(
2T ∩ (2T − N)

)
∪ (2T − p). (3.1)

A key observation is that if f(x) satisfies (1.7) then the function f̂(x) := f(N − x) satisfies

the “reversed” refinement equation

f̂(x) = (1 − a)f̂(2x) + f̂(2x − (N − p)) + af̂(2x − N), (3.2)

which has mask Ĉ = e2πiN C̄ and supp (Ĉ) = {0,N −p,N}. The subdivision scheme and the

cascade algorithm converge for (1.7) if and only if they converge for (3.2). For any subset

T of integers define T̂ := N − T and

Ψ̂(T ) =
(
2T ∩ (2T − N)

)
∪ (2T − N + p).

Then one verifies that

Ψ̂(T̂ ) = Ψ̂(T ). (3.3)

Furthermore, suppose that T ⊆ ZN then

Φ̂0(T ) = Ψ̂(T̂ ) ∩ (ZN + 1), Φ̂1(T ) = (Ψ̂(T̂ ) − 1) ∩ (ZN + 1). (3.4)
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It follows from iterating (3.3) and (3.4) that

Φ̂d(T ) = (Ψ̂m(T̂ ) − k) ∩ (ZN + 1), (3.5)

for all d = (d1, . . . , dm) ∈ {0, 1}m and k =
∑m−1

j=0 2jdj , where Φd := Φd1 ◦ · · · ◦ Φdm .

Lemma 3.1 Let T be a subset of Z and suppose that p − r 6∈ T . Then np − 2mr 6∈ Ψm(T )

for all 1 ≤ n ≤ 2m.

Proof. Since Ψ(T ) ⊆ 2T ∪ (2T − p) with the union being disjoint, if a 6∈ T then 2a, 2a −
p 6∈ Ψ(T ). Hence 2p − 2r, p − 2r 6∈ Ψ(T ). This leads to

2(p − 2r), 2(p − 2r) − p, 2(2p − 2r), 2(2p − 2r) − p 6∈ Ψ2(T ).

In other words, np − 4r 6∈ Ψ2(T ) for all 1 ≤ n ≤ 4. This iterative argument proves the

lemma, by induction on m.

Proof of Theorem 1.1. Assume that the subdivision scheme diverges. Then by Corollary

2.5 there exist a sequence (d1, . . . , dm′) and disjoint nonempty sets T, T ′ ⊂ ZN such that

Φd1 ◦ · · · ◦ Φdm′ (T ) = T and Φd1 ◦ · · · ◦ Φdm′ (T
′) = T ′.

It follows from Lemma 2.6 that

T = (Ψm′
(T ) + k′) ∩ ZN and T ′ = (Ψm′

(T ′) + k′) ∩ ZN (3.6)

where k′ =
∑m′−1

j=0 2jdj . Denote d = (d1, . . . , dm′) and Φd = Φd1 ◦· · ·◦Φdm′ . Then iterations

yield Φq
d(T ) = T and Φq

d(T ′) = T ′ for all q ≥ 0. Set q = (N −p)pφ((N −p)p)t and m = qm′

where φ(n) is the Euler’s function of number of elements in Zn that are coprime with n,

and t ≥ 1. Then Lemma 2.6 yields

T = (Ψm(T ) + km) ∩ ZN and T ′ = (Ψm(T ′) + km) ∩ ZN (3.7)

where km = k′ ∑q−1
j=0 2m′j . Note that 2φ((N−p)p) ≡ 1 (mod (N − p)p). We prove that

km ≡ 0 (mod (N − p)p), 2m ≡ 1 (mod (N − p)p). (3.8)

The latter congruence is rather clear. For the first congruence,

km = k′
q−1∑
j=0

2m′j
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= k′
(N−p)pt−1∑

l=0

φ((N−p)p)−1∑
j=0

2m′j+m′lφ((N−p)p)

= k′
(N−p)pt−1∑

l=0

φ((N−p)p)−1∑
j=0

2m′j2m′lφ((N−p)p)

≡ k′
(N−p)pt−1∑

l=0

φ((N−p)p)−1∑
j=0

2m′j (mod (N − p)p)

≡ k′(N − p)pt

φ((N−p)p)−1∑
j=0

2m′j (mod (N − p)p)

≡ 0 (mod (N − p)p).

We derive a contradiction using Lemma 3.1. To do so we first without loss of generality

assume that p < N − p, and divide the proof into three cases.

Case 1. (d1, . . . , dm′) 6= (0, . . . , 0) and (d1, . . . , dm′) 6= (1, . . . , 1).

In this case we may choose t sufficiently large so that km > N and 2m − km > N . We

prove that either T = ∅ or T ′ = ∅, hence a contradiction.

Suppose that p − r 6∈ T for some 0 < r ≤ p. Then by Lemma 3.1 np − 2mr 6∈ Ψm(T )

for all 1 ≤ n ≤ 2m. Hence np − 2mr + km 6∈ T for all 1 ≤ n ≤ rm. The fact that km > N

together with (3.8) imply that no element of the form lp − r are in T . In other words, if

a 6∈ T for some 0 ≤ a < p then T contains no element congruent to a modulo p.

The key idea is to apply (3.5) by considering the “reversed” refinement equation (3.2),

which yields

T̂ = (Ψ̂m(T̂ ) − km) ∩ (ZN + 1) and T̂ ′ = (Ψ̂m(T̂ ′) − km) ∩ (ZN + 1). (3.9)

Suppose that N − p− r 6∈ T̂ . Then again Lemma 3.1 implies that n(N − p)− 2mr 6∈ Ψ̂m(T̂ )

for all 1 ≤ n ≤ 2m. Therefore by (3.9) n(N − p) − 2mr − km 6∈ T̂ . It follows again from

(3.8) and the fact 2m − km > N that T̂ ∩ZN contains no element of the form n(N − p)− r.

In other words, if a 6∈ T̂ for some 1 ≤ a ≤ N − p then T̂ contains no element congruent to

a modulo N − p.

Now by assumption p < N −p. Suppose that a 6∈ T for some 0 ≤ a < p. Then lp+a 6∈ T

for all l. In particular l0p + a 6∈ T where N − p ≤ l0p + a < N . Hence N − l0p − a 6∈ T̂ .

Observe that 1 ≤ N − l0p − a ≤ p < N − p. So (N − l0p − a) + (N − p) 6∈ T̂ , which yields

a′ = (l0 + 1)p + a − N 6∈ T . Since 0 ≤ a′ < p, this implies that T contains no element

congruent to a′ modulo p.
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For each 0 ≤ a < p define the map g(a) = a′ as above. Then 0 ≤ g(a) < p and a′ ≡ a−
N (mod p). But N and p are coprime. This means {gj(a) : 0 ≤ j < p} = {0, 1, . . . , p − 1}.
It follows that if for some 0 ≤ a < p we have a 6∈ T then {0, 1, . . . , p − 1} ∩ T = ∅. But we

have already shown that if a 6∈ T for any 0 ≤ a < p then T contains no element congruent

to a (mod p). So T = ∅. The same statement holds for T ′. Since T and T ′ are disjoint, we

infer that either T = ∅ or T ′ = ∅, as a 6∈ T or a 6∈ T ′ for any a. This gives a contradiction.

Case 2. (d1, . . . , dm′) = (0, 0, . . . , 0).

In this case km = 0. We choose m so that 2m > N . The proof for Case 1 needs to

be modified for Case 2, because now we can only infer that if a 6∈ T for some 1 ≤ a < p

(as opposed to 0 ≤ a < p in Case 1) then T contains no element congruent to a (mod p).

However, in this case, if p 6∈ T then lp 6∈ T for l ≥ 1 (but not necessarily l = 0).

Similarly, if a 6∈ T̂ for some 1 ≤ a < N − p (as opposed to 1 ≤ a ≤ N − p) then T̂

contains no element congruent to a modulo (N − p).

By assumption p < N − p. For each 1 ≤ a ≤ p such that a 6∈ T we define g(a) 6∈ T with

0 ≤ g(a) < p as follows: a + lp 6∈ T for all l ≥ 0. So b = a + l0p 6∈ T where N − p ≤ b < N .

This yields N −b 6∈ T̂ . But 1 ≤ N −b ≤ p < N −p. It follows that b1 = N −b+(N−p) 6∈ T̂ .

Therefore a′ = N − b1 = a + (l0 + 1)p − N 6∈ T . We set g(a) = a′. In addition to g(a) 6∈ T

we have 0 ≤ g(a) < p and g(a) ≡ a − N (mod p). In particular, if a 6≡ N (mod p) then

g(a) > 0 and hence g2(a) = g(g(a)) 6∈ T .

Now, p 6∈ T or p 6∈ T ′. So we may assume without loss of generality that p 6∈ T . Observe

that gj(p) ≡ p − jN ≡ −jN (mod p). Since N and p are coprime, gj(p) 6= 0 for 0 ≤ j < p.

They are all distinct since they are not congruent modulo p, and none of them are in T .

So {1, 2, . . . , p} ∩ T = ∅. Finally gp(p) = 0 because gp(p) ≡ 0 (mod p), yielding 0 6∈ T .

Therefore T = ∅, a contradiction.

Case 3. (d1, . . . , dm′) = (1, 1, . . . , 1).

In this case km = 2m − 1. We choose m so that 2m > N . Again the proof for Case 1

needs to be modified. Note that if a 6∈ T for some 0 ≤ a < p then we still infer that T

contains no element congruent to a (mod p). However we can only infer that if a 6∈ T̂ for

some 1 < a ≤ N − p (as opposed to 1 ≤ a ≤ N − p) then T̂ contains no element congruent

to a modulo (N − p).

Nonetheless, this problem can be overcome easily. Note that the assumption p < N − p

means there are only two elements in ZN that are congruent to 1 (mod (N − p)): 1 and

12



N − p+1. Since one of T̂ and T̂ ′ does not contain N − p+1, say, N − p+1 6∈ T̂ , it is still a

true statement that if a 6∈ T̂ for some 1 ≤ a ≤ N − p then T̂ contains no element congruent

to a (mod (N − p)).

Clearly N − p + 1 6∈ T̂ is equivalent to p − 1 6∈ T . The proof in Case 1 now carries

through to show that T = ∅, proving the theorem in this case.

We now prove the more general Theorem 1.2, which follows from the results of Jia and

Zhou [JZ].

Proof of Theorem 1.2. Observe that by Theorem 1.1 the subdivision scheme associated

with the mask

C1(z) =
1
4

+
1
2
zp−r +

1
4
zq−r

converges, and hence so does the subdivision scheme with mask

C2(z) =
1
4
zr +

1
2
zp +

1
4
zq

since it is a simple shift from C1. By Theorem 1.2 of Jia and Zhou [JZ] the subdivision

scheme with mask C(z) =
∑N

n=0 cnzn converges as long as cr, cp, cq > 0 and the sum rule∑
n c2n =

∑
n c2n+1 = 1 is satisfied, independent of the actual value of c′ns. This proves

the convergence of the subdivision schemes for the given mask, and the convergence of the

cascade algorithm also follows.
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