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ABSTRACT. A refinable functignx) : R” — R or, more generally, a refinable function vectdrx) =

[p1(x), ..., - (0)]T isanL? solution of a system of (vector-valued) refinement equations involving expansion
by a dilation matrixA, which is an expanding integer matrix. A refinable function vector is called orthogonal

if {pj(x —a) : @ € Z",1 < j < r} form an orthogonal set of functions i (R™). Compactly supported
orthogonal refinable functions and function vectors can be used to construct orthonormal wavelet and multi-
wavelet bases df2(R"). In this paper we give a comprehensive set of necessary and sufficient conditions for
the orthogonality of compactly supported refinable functions and refinable function vectors.

1. Introduction

Let A be an expanding matrix i, (Z), that is, one with integer entries and all eigenvalues
[A| > 1. Arefinable functionp(x) : R” — R is a solution to aefinement equatiowith dilation
matrix A,

() =) cap(Ax — ), (1.1)

ael

in which {c, : « € Z} are complex coefficients. More generally, a vector valued functign =

[p1(x), ..., ¢,(x)]T is called arefinable function vectgif it satisfies avector refinement equation
with dilation A,
D)= Y Co®(Ax —a), 1.2)
aeZ
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where eaclC, is a matrix inM, (C). We calln the dimensiorandr the vector-multiplicityof the
refinable function vector. We only consider the case that such functions and vector-valued functions
have all components ih1(R").

Refinable function vectors are natural generalizations of refinable functioas 1). The
latter have been studied extensively due to their applications in constructing compactly supported
orthonormal wavelet bases and in approximation theory, see Daubechies [9], [10]. General construc-
tions are based on multiresolution analysis, for which see Mallat [28] and Jia and Shen [21]. More
recently, refinable function vectors have been used to construct orthonoutiaavelet basesee
for example Cohen et al. [4], Donovan et al. [12], Goodman and Lee [14], and Goodman et al. [15].
Multiwavelets can be made to combine smoothness with small support, an advantage that may be
important in applications.

In constructing orthonormal wavelet or multiwavelet bases, one requires that all integer trans-
lates of refinable functions or function vectors be orthogonal. A fundamental question in constructing
orthonormal wavelet or multiwavelet bases is thus: under what conditions does a refinable function
or function vectord (x) have the property that all its integer translafésx — «) : « € Z"} are
orthogonal?

This paper addresses the above question by giving a collection of necessary and sufficient
conditions for orthogonality, derived in terms of the coefficients of the refinement equations and the
dilation matrix A. We treat only the case where the vector refinement equation has finitely many
nonzero coefficients. In this case, if the equation has a solutibh(R"), then it must be compactly
supported- Also in this case, there is in principle a finite algorithm to determine whether a given
vector refinement equation has a nonzero solution which is orthogonal in the sense of Definition 1
below. The criteria of this paper typically do not make sense in the case of infinitely many nonzero
coefficients, but some sufficient conditions have been obtained by Conze et al. [7] in the infinite
coefficient case.

Various results regarding the orthogonality of compactly supported refinable functions and
function vectors are known, especially for= 1 andn = 1. Many (but not all) of these results
generalize to higher dimensions£ 1 andn > 1), and to compactly supported refinable function
vectors. However, few of these generalizations have been documented, and even in those papers
which discuss higher dimensional cases, the dilation matsivas usually chosen to bd,2 As we
see from Theorems 2 and 3 below, orthogonality conditions vary for different dilation matrices
The object of this paper is to provide a comprehensive set of orthogonality criteria for compactly
supported refinable functions and function vectors in the most general setting.

Definition 1. Let ®(x) be a compactly supported refinable function vector. We saydila} is
orthogonalif [z, ®(x)dx # 0 and

/ O(x —a)dT (x — B)dx = 845N, «,BeZ" (1.3)
Rl’l

wheres, g denotes the standard Kronecker symbol, Arisla diagonal matrix with positive diagonal
entries.

The conditionfRn ®d(x)dx # 0is necessa?yfor the construction of multiwavelet bases
associated to a multiresolution analysis. It is well known that for a compactly supported refinable
function vector®(x) to be orthogonal the coefficient matric€s of the corresponding vector
refinement equation (1.2) must satisfy the necessary conditions encoded in (i) and (ii) of the following
definition.

1The converse is false, see Strang et al. [33]. Furthermore, a refinement equation with finitely many nonzero
coefficients may also have a noncompactly suppakedolution, see Malone [29].
2|n fact this condition is automatically fulfilled under the orthogonality condition, see Lemma 2 (4) below.
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Definition 2. The vector refinement equation (1.2) with finitely mahy # 0 satisfies therthog-
onal coefficients conditiofwith respect toA whereA is a diagonal matrix with positive diagonal
entries) if the coefficient§, satisfy the two properties

() 1is an eigenvalue of the matrjxet(A)|~1 Y wezr Ca-
(if)
Y CaAClyap = S0 | det(A)| A . (1.4)

aeZ”

The necessity of condition (i) for orthogonality follows from Proposition 1 below. A proof of
condition (ii) can be found in Flaherty and Wang [13].

Unfortunately, the orthogonal coefficients condition is not sufficient for the orthogonality of
the corresponding refinable function vectbcx), even forr = 1. The simplest counterexample,
which hasr = 1 andn = 1, is the refinement equation

¢(x) =p(2x) +¢(2x - 3) .

It satisfies the orthogonal coefficients condition, butthe solytian = xo,3)(x) has non-orthogonal
integer translates. To ensure orthogonality of refinable functions and function vectors, additional
conditions are needed. In the nonvector casel,n = 1, these conditions were found by various
authors, and the most prominent of these conditions is Cohen'’s Criterion, due to Cohen [3]. We shall
listthem in Section 3. It should be pointed out that many of the criteria are given in the contrapositive
form as conditions foi> (x) notbeing orthogonal.

The contents of this paper are as follows: in Section 2 we state the orthogonality criteria for
compactly supported refinable function vectors with arbitrary vector-multipliciand in Section 3
we state a larger set of orthogonality criteria that are available for the speciat easg i.e., for
compactly supported refinable functions. These criteria are then proved in Section 4 for arbitrary
and in Section 5 for = 1.

We add a comment on the novelty of the results. Many of the results for compactly supported
refinable function vectors stated in Section 2 are new, as is the Generalized Cohen'’s Criterion stated
there. In particular criterion (d) in Theorem 2 is new and (c) is stated for the first time. The proofs
extend some of the ideas of the= 1 case stated as Theorem 3 (a)—(d) in Section 3, but there is
extra complexity arising from products of matrices. The results in Section/3$ot and arbitrary
dimensionn have not all been stated before, but we do not claim significant novelty in the proofs.
The most important idea leading to the criteria in Theorem 3 (e)—(f) is a result on transfer operators
due to Cerveau et al. [2]. Other orthogonality criteria for the easel based on this result were
derived by Conze et al. [7]. Further remarks on previous results appear at the end of Section 3.

We are greatly indebted to K. Grdochenig for introducing us to this problem. The results and
techniques in his paper [16] for the case- 1 andrn = 1 inspired our results. Several of his proofs
generalize to dimensiom > 1, see the discussion after Theorem 3. We are also indebted to Ingrid
Daubechies, Andy Haas, Chris Heil, and Jianao Lian for helpful discussions and references. Finally,
we would like to thank the anonymous referee for carefully reading the manuscript and providing
valuable comments and suggestions.

2. Orthogonality Criteria for Refinable Function Vectors
Throughout this paper we will be concerned with compactly supported refinable function
vectors. Therefore, we assume that the vector refinement equation

O(x) = Y Co®(Ax —a) (2.1)

aeZ
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whereC, € M, (C) has only finitely many nonzero coefficient matrigégs In this section we state
orthogonality criteria; the proofs are given in Section 4.

Definition 3. For a given vector refinement equation (2.1) we definsyitabolm (&) to be

m(&) = |det(A)| "t Y Che @ (2.2)

aeZ”

The symbolm together with the expanding integer matrxspecifies the vector refinement
equation uniquely, where we view as a formal object containing all the coefficieats. However,
we also view the symbol as defining a matrix-valued functigg) : R” — M, (C). Suppose that
®(x) is a refinable function vector satisfying (2.1). Then the Fourier transfordn(ej satisfies

) =m (B—lg) 3 (B—lg) , (2.3)
whereB := AT, and the Fourier transform is applied term-by-term to the ve®i@n. Denote

L (R") = [<I>(x) = [¢1(x). ... ¢, (0)]" : eachy;(x) € LP (R”)} . (2.4)

The following is a necessary condition for the orthogonalitybak ):

Proposition 1.
Let ®(x) be a compactly supported orthogonal refinable function vector satisfying

d(x) = Z Co®(Ax — )

aeZ

with finitely manyC, # 0. Then 1 is a simple eigenvalue of thex r matrix m(0), and all other
eigenvalues. of m(0) satisfy|A| < 1.

Proposition 1 is a corollary of a stronger result of Hogan [20], in which the orthogonality
of ®(x) is replaced by the weaker condition of stability. We include an independent proof of
Proposition 1 in Section 4 for completeness.

To state the general orthogonality criteria we must introduce the transfer op€ratasso-
ciated to the symbah and dilation matrixA [and hence to (2.1)]. LeR,«,(R") denote the linear
space ofr x r Hermitian matrices whose entries are trigonometric polynomials with complex co-
efficients, i.e., functions of the form(e—27é1, ... , e~27in) whereg is a Laurent polynomial in
variables, witht = (&1, ..., &,) € R". Note that eaclt’ (&) € Q,«,(R") is Z"-periodic, so we may
view 2, (R") as a subspace of the Hilbert spa(afé(’}l‘"))r”. For any trigonometric polynomial
F(€) =), cqn Fye 2" r%) of matrix coefficients we define its support to be

suppF) ={y €Z": F, #0} .
Definition 4. Thetransfer operatoiCy, is a linear operator o, (R") defined by

CmF(E) =Y m (B_l(E + d)) F (B_l(é} + d)) m* (B—l(s + d)) : (2.5)

de&

in which B = AT and€ is a complete set of coset representative&'ofB(Z").

It is not hard to check, using the computations in Section 4,8xatF) € Q. (R") for any
F € @, (R"), and it is independent of the choice of the coset representafivédaurthermore,
if (2.1) satisfies the orthogonal coefficients condition with respect taghenCm A = A. The
linear space?, - (R™) is infinite-dimensional, but we will show that when the vector refinement
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equation with symboi has finitely many nonzero coefficients we can restrict the action of the
transfer operator to certain finite dimensional invariant subspac&s ,of(R") depending on the
symbolm and onA which contains the crucial information for orthogonality.

We callanonempty s& C Z" (m, A)-invariant ifforanyy ¢ Stheelementdy+o—8 ¢ S
for all , B € supgm). An important(m, A)-invariant set is

Smoa:=1{y €Z": Tman (Tma+y)# 9} (2.6)

whereTy_ 4 is the attractor of the iterated function systeAT(x + y) : y € supgm)}. Clearly
Sm. 4 is finite if suppgm) is.

Proposition 2.

(i) Sm.a is (m, A)-invariant.
(i) LetS be afinite(m, A)-invariant set. Then

Qrxr (R",S) :={F (&) € Qrxr (R") : SUpF) € S}
is a C-invariant finite dimensional subspace®f., (R").

By results of Cohen et al. [5] or Heil and Collela [19], if 1 is a simple eigenvalue(@) and
all other eigenvalues of m(0) have|r| < 1, then forB = AT the infinite (right) product

b = [ m (B7¢) 27)

j=1
converges uniformly on any compact seffdf. This defineg(¢) : R” — M, (R"). We have:

Theorem 1.
Let ®(x) be a compactly supported refinable function vector satisfying

O(x) = Y Co®(Ax —a)

aeZ”

where A € M, (Z) is expanding and finitely mangy, # 0. Suppose that the vector refinement
equation satisfies the orthogonal coefficients condition and that 1 is a simple eigenvai(e) of
while all other eigenvalues of m(0) satisfy|A| < 1. Then the following statements are equivalent:

(@ @(x)is notorthogonal.

(b) There exists aiF' (&) € Q,«,(R"), F(§) # aA foranya € C, such thatCin F = F.

(c) LetS be afinite(m, A)-invariant set containingm_ 4. The eigenvalue 1 of'y, restricted
to Q,«,(R", S) is a multiple eigenvalue.

(d) There exisy € R" \ Z" and a nonzero vectarg € C” such that

upp(n+a) =0, alla e Z". (2.8)

The equivalence of (a) and (b) in Theorem 1 was established by several authors in the one
dimension for the dilation 2, see Plonka [31] and Lian [27]. It was established in all dimensions for
the dilation matrixA = 21I,, in Shen [32], and his proof should generalize to work for an arbitrary
dilation matrix A. In addition, it was shown in [32] that under the hypotheses of Theorem 1 the
orthogonality of® (x) is equivalent to the stability b (x) and is equivalent to th&?-convergence
of the cascade algorithm. Several variations of criterion (b) were also given in [27].

Remark. We shall see in Section 4 that the equivalence of (a) and (c) relies only on the orthogonal
coefficients condition, not on the assumptions regarding the eigenvalug®pf The equivalence
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of (a) and (c) gives rise to an algorithm for checking the orthogonality of a refinable function vector
®(x), which is a generalization of the algorithm in Lawton [25] fo= 1 andr = 1. In fact, all
we need is to find a finitém, A)-invariant setS containingSm_4 and check the multiplicity of the
eigenvalue 1 foC, restricted ta2, - (R", S). Such asetis quite easy to find. Sintes expanding,
there exists a norri.|| onR"” such that|A|| > s > 1. LetL be the diameter of sugm). One such
Sis
L
S:{an”: ||oe||§—} . (2.9)
s—1
The drawback with thisS is that it is often much larger thafim 4, making the dimension of
Q- (R", 8) much larger than necessary. Fortunately there is a simple algorithm t&fingd
Here we skip the details; they can be found in Strichartz and Wang [34].
A corollary of Theorem 1 is the following generalization of Cohen’s Criterion. Recall that a

setK c R" is afundamental domaiof Z" if K is congruent tg0, 1) moduloZ”.

Corollary 1 (Generalized Cohen’s Criterion).
Under the assumptions of Theorem 1, suppose that forieaehC" there exists a fundamental
domaink,, of Z" such that
ugp®) #0,  allg e Kyp -
Then® (x) is orthogonal.

This corollary differs in appearance from the original Cohen’s Criterion in the casel.
This is due to the occurrence of infinite products of matrices which do not commute in general. For
the special case = 1, ugp(é) # O is equivalent tp(B~/€) # Oforall j > 1. In this case the
condition of Corollary 1 is equivalent to(B—/£) # 0 for all j > 1, whereB = AT, on some
fundamental domain d£”. This is precisely the original form of Cohen'’s Criterion, see Cohen [3].

3. Orthogonality Criteria for Refinable Functions

More detailed criteria are available for orthogonality in the case 1, i.e., of refinable
functions inR”. In this section we state such criteria; the proofs are given in Section 5.

The criteria of Theorem 1 can be strengthened-fer 1, especially when the dilation matrix
A is irreducible ove#Z. A matrix A € M, (Z) is irreducible overZ if its characteristic polynomial
fa(A) isirreducible ovefZ. In particular, ifA € M,,(Z) is expanding andldet(A)| is a prime, then
A is irreducible ovefZ.

Note that ifr = 1, thenQ, «,(R") = Q1x1(R") is the space of alieal trigonometric polyno-
mials overR”, and we sef2(R") := Q1,1(R"). Let the invariant sebm 4 be as in (2.6) and set
Q(R",S) :={F(¢) € Q(R") : sup(F) € S}.

Theorem 2.
LetA € M, (Z) be an expanding matrix that is irreducible ov&r Suppose that the compactly
supported nontrivial (x) € L2(R") satisfies the refinement equation

) =Y cad(Ax —a),
aeZ”

which satisfies the orthogonal coefficients condition and has finitely myagy 0. Letm (&) be its
symbol andB = A”. Then the following statements are equivalent:

(@) The refinable functiog (x) is not orthogonal.
(b) There exists a nonconstayits) € Q(R") such thatCim f = f.
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(c) LetS be afinite(m, A)-invariant set containingm 4. The eigenvalue 1 o€, restricted
to Q(R", S) is a multiple eigenvalue.

(d) There existgjp € R" \ Z" that has the property: for eadl € Z" there exists g («) > 1
such thatm(B =/ (g + &)) = 0.

(e) Thereexist§y € R"\Z" suchthatB" & = & (modZ") forsomeV > 0,andm(B’&) = 1
forall j > 0.

(f) There existgo € R" \ Z" such thatB" &y = & (modZ") for someN > 0, andm(B/& +
B~Y)=o0forall j > 0andall l € Z" \ B(Z").

We derive Theorem 2 as a special case of a more general result that applies to an arbitrary
expanding integer matriA, given below as Theorem 3, which requires a more complicated gener-
alization of (e) and (f). To state it, for eatle Z" we denote

0 = (A7) €+

A rational subspacefR" is a linear subspad& having a basis consisting of rational vectors Q".
Asetofvectordz; : 0 < j < N}inR" is aperiodic orbitof AT (modZz") if

ATZj+1EZj (modZ”), O§j<Ns

wherezy = zo. We let€ denote an arbitrarily chosen complete set of coset representatives of
7" AT (ZM).
Theorem 3.

Let A € M, (Z) be an expanding matrix. Suppose that the compactly supported nontrivial
#(x) € L2(R") satisfies the refinement equation

P(x) =Y cap(Ax —a),
aeZ”

which satisfies the orthogonal coefficients condition and has finitely magy 0. Letm (&) be its
symbol andB = A”. Then the following statements are equivalent:

(&) The refinable functiog (x) is not orthogonal.

(b) There exists a nonconstayit¢) € Q(R") such thatCy f = f.

(c) LetS be afinite(m, A)-invariant set containingm_ 4. The eigenvalue 1 &, restricted
to Q(R", S) is a multiple eigenvalue.

(d) There existgjp € R" \ Z" that has the property: for eadl € Z" there exists g («) > 1
such thatm(B~/© (59 + a)) = 0.

(e) There exists a propeB-invariant rational subspacév of R" and a periodic orbit{z; :
0 < j < N} of B (modZ") with everyz; ¢ W + Z", such that

Yo m@mE)P=1 3.1)
7 (g)ez/-lff+w+Z”
for

all £ € z; + W, where0 < j < N with zy := zp and£ is a set of complete coset repre-
sentatives of." / B(Z").

() There exists a propeB-invariant rational subspacév of R" and a periodic orbit{z; :
0 < j < N}of B (modZ")withz; ¢ W 4 Z", such that

m(7(E) =0 if leZ'andy(§) €zj4.1+W+2Z"

forall £ € z; + W, where0 < j < N andzy := zo.
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Remark. A transfer operator applied to wavelet bases apparently first appears in the appendix of
Daubechies [9], and such operators were analyzed in Conze and Raugi [8]. The orthogonality criteria
in Theorem 3 in dimension = 1 for the case = 1 were found by Cohen [3], Lawton [25], Conze

and Raugi [8], and Cohen and Sun [6], and an elegant summary can be found in Gréchenig [16].
The equivalence of (a), (b), and (d) in dimensios 1 is proved here by generalizing the arguments

of Grochenig in one dimension. In higher dimensions, Lawton et al. [26] gave an orthogonality
criterion similar to (b), using the wavelet-Galerkin operator definetf 6f") instead of the transfer
operator. Criteria (e) and (f) in Theorems 2 and 3 are much harder to prove. The proof given here
uses as a principal ingredient a recent result of Cerveau et al. [2] concerning the structure of the set
of zeros of eigenfunctions of transfer operators in the multidimensional case. The paper of Conze
et al. [7], Section IlI, applies this result to give various orthogonality criteria, some of which apply
even when an infinite number of # 0in (1.2).

4. Proof of Orthogonality Criteria for Function Vectors

For a given positive definite Hermitian matrX € M, (C) we define the nornj.||o onC"
by ||x|lo = v/**Qx wherex* = 7. This norm induces a matrix norm i, ., (C), which we
also denote by.||¢. Throughout this sectiom\ denotes a diagonal matrix with positive diagonal
entries.

Lemma 1.

Suppose that the vector refinement equation (2.1) has finitely Many 0 and satisfies the
orthogonal coefficients condition with respect to the diagonal matrix

(1) Let& be any set of complete coset representativeg"giB(Z") whereB = AT. Then
CmA = A.

(2) m*E)||la < 1forall & e R".

(3) Letwv be a lefti-eigenvector oin(0) with |A| = 1. Thenv is a left A-eigenvector of
Ay = Zﬂezn Coqapforala e Z".

(4) For any l-eigenvectagg of m(0), the vector refinement equation (2.1) has a unique com-
pactly supported solutio® (x) € L,(R") such thatfR,, ®(x)dx = ug.

Proof. (1) Letq = |det(A)| andB = AT. Then

CmA = Y m (g + B—ld) Am* (g + B—ld)
de&

_ ‘1_22 Z Z CQAC;e—izn(a—ﬁ,erB*ld)

de€ aeZ" BeZ"

= ¢2 Z Z CoaACyy, Ze—i2n’<y’§+3—ld> .

aeZ yel de&

It follows from

Ze—izﬂ(y,é—i—B’ld) _ ge 1 E ify e A (Z") ,
- 0 otherwise

def



Orthogonality Criteria for Compactly Supported Refinable Functions and Refinable Function Vectors 161

that

aeZ" BeZ"

Bez" aeZ’

= 4t Z T 1ZTABE) 50 0 A
IBGZ”

= A.

(2) Choosef so that Oc £. By part (1), foranyw € C",

Z vim (5 —+ B_ld) Am* (S —+ B_ld) v="1v*Av.
de&

Thus,||m*(&)v|la < |lv|la for all & by takingd = 0, proving (2).

(3) LetD be a complete set of coset representativé8"¢fA (Z"). Then)_,.p Aq = gm(0), and
one easily checks that

D ALAAN; =gA.
aeD

The above together with the Schwarz inequality yield
2

2 2 2
<q Y IvAql} =q%IvlA.
A aeD

Z VA,

aeD

and the equality holds if and only if allA, are equal. Now

2

= gm0 = llgavl|s = ¢®lvl5 -
A

Z VA,

aeD

SovA, = voforalle € D, and)_,.p vA, = qum(0) = giv implies thatvg = Av. Finally, for
anyp € Z" there is arx € D such thatAg = A,. This proves (3).

(4) Forn = 1 andr = 1 this is a well-known result of Mallat [28]. Mallat's proof generalizes easily
to the general case. A proof of this part can be found in Flaherty and Wang [13]. We remark that
the solution® (x) is given by® (&) = (]‘[7":1 m(B™/£))uo. O

A proof of Proposition 1 can be found in Hogan [20]. Here we present a different proof.

Proof of Propositionl. LetA be an eigenvalue ofi(0) andug be a lefti-eigenvector ofn(0).
By (2) of Lemma 1 we havgi| < 1. Suppose thgt| = 1. Defineg(x) = )", zn (<I>(x + ), ug).
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We view g(x) as a function inL1(T"). Observe that

glx) = Z Z (Cp@(Ax + Aa — B), uf)

aeZ BeZ"

= D D (Caamy®(Ax +y), u)

aeZ" yeZ

= Z (A_, ®(Ax +y), up)
yeZ

= > (®Ax+y). A%, up)
yeZ"
= hg(Ax),

whereA_, = > o Caag—y andA’jyug = Aug by (3) of Lemma 1. Sdg(x)| = |A||g(Ax)[. It
follows from the ergodicity ofA on T" that|g(x)| = ¢ for some constant, sog(x) € L2(T").
Consider the Fourier expansion@fv) = >,z bae'?™@*). The equalityg(x) = rg(Ax) yields
by, = Oforalla # 0andbg = 0 if A # 1, by comparing the Fourier coefficientsgfc) andig(Ax).
If A # 1, theng(x) = 0 almost everywhere. But this is impossible becabige) is orthogonal. So
A = 1. In this case, the ergodicity of on T" implies thatg(x) = ¢ almost everywhere for some
constant.

We show that 1 is a simple eigenvaluenof0). If not, becaus¢m(0)| o < 1 for some positive
definite diagonal matrixA, m(0) must have two independent left 1-eigenvecters up € C'.
Therefore, there exists a nonzero linear combinatiofiu1, u2 such that

Z (@(x —a),u*)=0 ae..
aeZ
Again this contradicts the orthogonality &f(x). L]
Proof of Proposition 2. (i) By definition A(Tm. 4) = Tm. 4 + SUpAm). For anyy € Sm. 4 we
have
§ = A(Tman(Tma+y))
= (Tm,a + suppm)) N (Tm 4 + Ay + SUppm))

= U (T, a N (Tma+ Ay +a — B)) + B
o, fesupam)

S0Ay +a — B € Sm 4 forall a, B € supgm). ThereforeSm 4 is (m, A)-invariant.
(i) Let F&) =Y ,cs F,e™i27r8) e @, (R", S). Itis straightforward to check that
(CmF) &) =Y Gye &8 whereG, = Y CaFayip-oCh .
yeZ a,Bel”

Suppose thaf, # 0. Thenthere exist, g € Z" suchthaCaFAH,g_aC;g # 0,s0¢, B € supgm)
andAy + 8 —a € S. Itfollows thaty € S. HenceCm F € Q,«,(R", S). ]

We now prove the orthogonality criteria for refinable function vectors. We firstintroduce some
notation to simplify our exposition. For aty> 0 we letmy (&) denote the (right) product

my(€) = ﬁ m (B"—fs) —m (Bk_l§> m (Bk—zg) em (305)

Jj=1
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whereB = AT. Given a complete set of coset representaif/e$ Z" / B(Z") let
Epi:=E+BE+---+ B,
Observe that

ChF® =Y m (B¢ +ad)F (B¢ +a)m (B¢ +a) . (4.1)

de€p i

Proof of Theorem 1. The standard Possion Summation Formula gives

> (/ O (x)D*(x + @) dx) dE) = N D(E+ )P (E + o). (4.2)

aeZ R aeZ”

(&)= (b). The proof here is a generalization of the proof in Grochenig [16] for thecasel,
r = 1. Suppose thab(x) is not orthogonal. Then

F() = Z (f]R" ()P (x + ) dx) 2 (8)

aeZ”

isin Q,«,(R") andF (&) # aA foranya € C. We show thaC F = F. Let& be any complete
set of coset representatives 6t/ B(Z"). Denotet; := B~1(¢ +d). Then

CmFE) = Y ma)F (E)m* )

de&

= > ) mE) P+ o) P (E +a)m* (E)
de& ael

= Y Y mE+o)®E+a) P (E+o)m (G +a)
de€ aeZ!

= Y ) B +d+Ba)d ¢ +d+ Ba)
de& aeZ!

= Y PE+)PE +a)
aeZ”

= F(§).

(b) = (c). Since sup@d) C T 4, We see that sugp’) € Sm.4. ThereforeF € Q,,(R",S)
sinceS containsSm_ 4. Observe that O Sm 4, SOG(E) := A € Q. R",S), and is also a
1-eigenvector oCy. So 1 is a multiple eigenvalue @iy, restricted ta2, - (R", S), proving (c).

(c) = (b). Since 1 is a multiple eigenvalue Giy restricted toQ2,«,(R", S), either Cyy has
two independent 1-eigenvectors . (R”, S), in which case we complete our proof, 6(;1 is
unbounded in2, ., (R", S) ask — oco. We show that the latter is impossible. Assume that it did,
then there exists & (£) € Q,,(R", S) such thaC*F is unbounded a8 — co. By addingaA
to F for a sufficiently largez > 0 we may without loss of generality assume th&£) is positive
definite for all¢. LetT" be the positive definite diagonal matifix:= +/A. Then for any € R" and
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ueCr,

T T (Cm) FEOTHTu) = u* (CmF) E)u
= Y w'm)F (Ea)m* Ea)u

de&

= Y wwmEnr (M e r ) rm* @)u

de&

pr(F) Y u*m (&) TTm* (5a) u
de&
or (F)u™Au

pr(F)(Tu)*(Tu) ,

IA

whereg,; := B~1(¢ +d) andpr(F) is the supreme over &l of the spectral radip (1 F (&)~ 1).
Therefore, the spectral radius Bf 1(Cm F)(£)I'~1 is bounded byor(F). This implies that for
all k the spectral radius df ~1(Ck, F)(&)I' "1 is bounded bypr(F). But this would mean that
F‘l(C{%F)(g)I‘—l is bounded for alk andk because it is Hermitian. This is a contradiction.

(b) = (d). SinceF (¢) is bounded and periodic (mdl'), there existi,, a_ € R such that

ar = inf {a €R: aA — Fis positive definite for alk € R"} ,
a- = sup {aeR: F—aAis positive definite for alf € R"} .

Let F1(§) = ar A — F(§) andF_(§) = F(§) — a_A. Then bothF, and F_ are nonnegative
definite but neither is positive definite for glle R". To simplify our notation we lefA := m(0).
The hypotheses of the theorem implies th&f := lim;_ o, A exists and is a rank one matrix
whose columns are 1-eigenvectorsAof

Claim 1.
Suppose thaf, (§) (resp., F_(§)) is singular foré € Z" only. ThenF,(0)vg = O (resp.,
F_(0)vg = 0) wherevg # 0is a 1-eigenvector ofn*(0).

Proof of Claim 1. We prove the claim fof, (¢), the proof is identical foF_(¢). Letv € C”
such that|v||s = 1, v*F;(0) = 0. Then it follows fromC, F1. = F that

0= v FOu= Y v'm (B‘kd> Fy (B_kd) m (B_kd) v. (4.3)
de€p i

SinceCy, is independent of the choice 6fwe choose 0c £. Now all F,.(B*d) are positive
definite unlessB~*d e Z", which holds only ford = 0. We thus haven}(B~*d)v = 0 for all
d € €k, d # 0. Note that the orthogonal coefficients condition gives

5 o (5-)off =i 1.

dEgB.k

Hence[m}(O)v[la = [(A%)*v|la = 1. It follows by lettingk — oo thatvy := (A®)*v # 0.
Clearlyvg is the unique (up to scalar multiples) 1-eigenvectono6f By (4.3) vg F+(O)vo = 0, and
henceF, (0)vp = 0 by the nonnegative definitenessiof(0), proving the claim. L]

Claim 2.
Either G(§) = F (&) or G(§) = F_(&) has the property thah*>G(0) # 0 and G(n) is
singular for some) € R" \ Z".
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Proof of Claim 2. Firstwe observe that, (¢) + F_(¢) = (a; —a_)A is always nonsingular, so
Claim 1 implies that at least one #f_(£) andF_ (§) is singular for someg € R" \ Z". Assume that
Claim 2 is false. Then eithek®G(0) = 0 or G(n) is nonsingular for all € R" \ Z", whereG (&)

is eitherF (&) or F_(&). Now A®(F,(0) + F_(0)) # 0 becausd (0) + F_(0) is nonsingular,
so eitherA®F,(0) # 0 or A®F_(0) # 0. If both are nonzero then we have a contradiction.
So without loss of generality we assume tiag® F, (0) = 0 and thusF_(n) is nonsingular for
all n € R"\ Z". By Claim 1 we haveF_(0)vg = 0, whereug is a 1-eigenvector oA*. Now,

Vg A® = v§. So

vy (F1+(0) + F-(0)) vo = v§A™ (F+(0) + F-(0)) vo = 0.

This contradicts the positive definitenesstof(0) + F_(0), proving Claim 2. L]

To finish proving (b)= (d), letG(§) be F.(¢) or F_(&¢) such thatA®G(0) # 0 andG(n)
is singular for someg € R" \ Z". Let G(n)ug = O for some nonzerag € C". We show that
ughb(n +a) = Oforalla € Z". For a giverw € Z", we writea = B'B for somep € Z" \ B(Z").
Choosef sothatQ g € £. Then for allk > [/ we havex € Ep . It follows from C{%G = G that

0=usGmuo= Y ujmy (B’k(r; + d)) G (B’k(n + d)) m (B*"(n + d)) “o .
de€p i

In particular we have
wimy (B_k(n + a)) G (B_k(n n a)) m (B—"(n + a)) wo=0.
It follows by lettingk — oo that
ugh(n +a)GO)p*(n + uo =0,
and the nonnegative definitenessx0) yields
upp(n +a)G(0) =0.

Observe thap(&) = p(E)A®. Sop(E)G(0) = p(§)A*®G(0). SinceA*G(0) # 0 andA has
rank 1, there exists a nonzero columnin A*°G(0), which is clearly a 1-eigenvector df. Hence
all columns ofp(&) are scalar multiples gf(é)v1. Thusugp(n + o) = 0.

(d) = (a). Itfollows from®(&) = p(£)d(0) thatuid(n + «) = O for all« € Z". Hence by the
Poisson Summation Formula,

Z ug (/ O (x)D*(x — &) dx) uge 2T len — Z ”36(77 + a)a*(n Yo =0
Rn

aeZl acZlt

Therefore,

> (/ D (x)P*(x —a)dx) etZrlen £ K
Rll

aeZ
for any diagonal matrix\ with positive diagonal entries, and ggx) cannot be orthogonal. [

Proof of Corollary 1. It follows easily from the fact that for any fundamental dom&imne of
n + a in (d) of Theorem 1isirk. L]
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5. Proof of Orthogonality Criteria for Refinable Functions

LetT” be then-dimensional torug¥” := R"/Z", andr, : R" — T" be the canonical covering
map.

Lemma 2.
LetV be a subspace dk”. Thenr, (V) is closed inl" if and only if V is a rational subspace
of R".

Proof. We first show that ifV is a rational subspace @", thenm, (V) is closed inT". Let
w1, wy, ..., w, € Z" form a basis ofV. Suppose that* € T” is in the closure ofr, (V). Then
we may find a sequende;} in V such that lim_, o 7, (x;) = z*. Write

r
Xj = ij’kwk .
k=1

Since allwy € Z", we may choose alt; < [0, 1). Therefore we can find a subsequefigg} of
{j} such that
lim bj, x = b, all<k=<r.
m—00

Letx* = ) j_q biwy. Clearly,m,(x*) = z*. Hencez* € m,(W). Therefores, (V) is closed in
T,

We next prove the following fact: 16 € R", then the closure aof, (Rv) in T” is a rational
subspace. To see this, ket= [1, . .., 8,17 . Without loss of generality we assume tifat . . ., 3,
are linearly independent ov&r while g, = Z;zl ag,jBj witha, ; € Qforall1 <k <n. The set

B1
ml| (MmodZ") : meZ

Br
is dense irl” (see Cassels [1], Theorem I, p. 64). NowVgt= {Ax : x € R"} whereA = [ay ;].
ThenVj is a rational subspace &', andr, (Vp) is contained in the closure af, (Rv). But, (Vo)
is closed and/y © Rv. Hence the closure of, (Rv) is 7n (Vo), proving the fact.

Finally, letvs, ..., v- be abasis o¥. Suppose tha¥’; is the closure ofr, (Rv;) in T". Then

the closure ofr, (V) containsWy + --- + W,.. But Wy + --- + W, is closed inT" because it is a

rational subspace, and it containg V). Hence the closure of, (V) is Wy + - - - + W, proving the
lemma. L]

Corollary 2.

Letf : R" — C be continuous and periodic (mdatf) andV be a subspace dR”. If vg+ V
is contained in the zero set ¢f(x) for somevg € R”, then so isig + W whereW is the smallest
rational subspace oR” containingV'.

Proof. First, let{V,} be a set of rational subspacesRf. Thenm, (N, Vo) = Ny 7n(Va) is
closed inT", so(), Vo must be a rational subspacel®f. This implies that the minimal rational
subspacéV containingV exists. Sincef (x) is periodic (modZ") we may view it as a continuous
function defined orf™. Now, 7, (vg) + 7, (W) is the closure ofr, (vg) + 7, (V) in T". Hence
7n(vo) + m, (W) isin the zero set of : T" — C. Thus,up+ W C Z;. L]

We derive the following key lemma from a result of Cerveau et al. [2]. First, we define the
notion of t-invariancein R”. Let m(x) be the symbol of a given dilation equation that satisfies
the orthogonal coefficients condition. L&tbe a given complete set of coset representatives of
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7" AT (Z"). A closed set C R" is t-invariantif for any ! € &,
weY and m((w)| >0 = 7w eY. (5.1)
A compactz-invariant set isninimalif it contains no smaller nonempty compagetnvariant set.

Proposition 3.
Let (& € Q(R") andY be a minimal compaat-invariant set contained in the zero setfag).
Then there exist a subspa¥eof R"” and a periodic orbit{z; : 0 < j < N — 1} of AT (modZ™)

such that
N-1

vyl JGEi+v).
j=0

Proof. This is Theorem 2.8 of Cerveau et al. [2]. The theorem of Cerveau et al. is actually valid
in a more general setting, whefés) andm(&) are allowed to be any real analytic functions. []
Lemma 3.

Let f(§) € Q(R") such thatCy f = f, and IetE]? ={& eR": f(&) = infr f(w)}.
Then there exists a rational subspaseand a periodic orbit{z; : 0 < j < N} of AT (modZ")
such thatF := U] 0 (z, +W)<E, and F is t-invariant.

Proof. We first observe thaE; is T-invariant. This follows from

CmfE) =Y Im@mE)P f(@E) = fE).
le€

Since) ;¢ Im(y@ENZ=1,if¢ e E; then all f (7;(§)) > f (&) so equality can hold above only
if /m(;(&))] > 0 impliest; (&) € EJI

We construct a nonempty minimal compaeinvariant set’ in E; as follows. Take any point
So€ E, and setXo = {40} and recursively define the finite s¢; : j > 0} by letting X ; consist
of all points; such that; = 7;(§;_1) with&;_; € X;_; andl € £ suchthaim(£;)| > 0. Thenthe
t-invariance ofE’; givesX; € E, forall j > 0. The set 720 X lies in a bounded region iR"
because the mappingsare uniformly contracting with respect to a suitable nori’ir(cf. Lagarias
and Wang [23], Section 3). Thus the closufgof U(;io X is compact, andp < E; because

is a closed set. We show thHg is t-invariant. Ifow € Yo and|g(t;(w))| > O wherel € &,
ta{<e a subsequenég, € X, that converges t@, so thatr;(§;,) — ©(w). Now |m(7;(§;,))| > O
for k sufficiently large, hence;(§,) € X, +1; SO we may construct a sequence havif@) as a
cluster point, proving;(w) € Yp. The existence of a honempty minimal compagdhvariant set’
contained inYg follows by Zorn’s Lemma argument.
It follows now from Proposition 3 that there exists Ah-invariant subspac® and a periodic
orbit{z; € Y : 0 < j < N} such that

U z,+V CEf

with the property that the SQJ NS (zj + V) is r-invariant. Now letW be the smallest rational

subspace aR” containingV. SlnceAT(W) is also a rational subspace containiigind it has the
same dimension a&, AT (W) = W. BecauseE; is the zero set of (¢) := f(&) — inf, f(w),

Corollary 2 applies togf to give

Lj z,+W CE]?



168 Jeffrey C. Lagarias and Yang Wang

Finally, sincer, (=5 (zj + W)) is the closure ofr, (U} -5'(z; + V)) in T", we conclude that
ijz’ol(zj + W) is r-invariant. ]
Proof of Theorem 3. Observe that for = 1 criterion (d) of Theorem 1 is equivalent to cri-

terion (d) of Theorem 3. Therefore, the equivalence of (a)—(d) of this theorem has already been
established in Theorem 1.

(b) = (e). Letthe nonconstant(¢) € Q(R") satisfyCm f = f. Without loss of generality we
assume thaf (0) # min,, f(w), or else we can replacg(&) by — f(¢). By Lemma 3 there exists
an AT -invariant rational subspad® and a periodic orbifz; : 0 < j < N} of AT (modZ") such

thatUN Ol(zj +W)<CE; is T-invariant. We prove the following claim: Léte z; + W. Suppose
that|m(n(§))| > Oforsomd € Z". Theny(¢§) e z;41 + W+ Z" wherezN = Z20.
Assume that the claim is false. Then thénvariance OU/: (zj + W) implies thatr; (§)

1+ W+ Z" # zj11+ W+ Z". Hencet € AT (zxq1 + W) +Z" = z + W + Z". But this
could happen only if
w+WHZ' =z; +W+7Z".

Applying the operatotA”)¥ 1 to both sides of the above equality yields

N-1 N-1
s+ W (A7) (@) =g+ W (aT) (@)
and addindZ" to both sides then gives
Ul +WHZ =zj 1+ WHZ",

which is a contradiction.
It now follows from the claim that for ang € z; + W,

1= m@EPE= > Im@eE)?.

= le&E
TE)ezjp+W+Z"

Finally, z; ¢ W + Z" because otherwise we would haye+ W + Z" = W + Z" C E,
contradicting 0¢ E.
(€)= (). Itfollows from (e) thatm(z;(§)) = Ofor& € z; + W and! e £ such thatr;(§) ¢

zZj+1+ W + Z", wherezy := zo. Now for any! € Z" there exists an’ € £ such thatr;(§) =
77(€) (modZ"); hence (f) follows.

() = (d). Choose any € zo+ W. Thenn ¢ Z" becauseg ¢ W + Z". For anya € Z" consider
the sequence
—k
a)k=<AT) (n+a)7 k=011721"'

Then link_ oo wr = 0. SlnceU] 0 (z, + W) + Z" is locally compact and is disjoint frotd", for
sufficiently largek we must havey, ¢ U 0 (z] +W)+7Z". Nowwo = n+«a € zo+ W, so there

exists ako > 0 such thatu,_1 € U, 0 (z, + W) +Z" butwy, ¢ U] g (z, + W)+ 7",
We show thaim(wi,) = 0. Assume thady,—1 € z; + W + Z". SOwi,—1 = &0 + [ for some
éezj+Wandl e Z". Now

o= (A7) " 1= (A7) @0+ D =160 |

Butwy, = 11(0) € zj+1+ W + Z", wherezy := zo. Som(wy,) = 0 by (f), proving (d). L]
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Proof of Theorem 2. AT is irreducible because it has the same characteristic polynomial as
does. So the only”-invariant rational subspac& of R” with dim(W) < nis W = {0}, see
Theorem I11.12 of Newman [30]. Theorem 2 now follows immediately from Theorem 3.[]
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