HAUSDORFF DIMENSION OF SELF-SIMILAR SETS WITH OVERLAPS

SZE-MAN NGAI AND YANG WANG

ABSTRACT. We introduce the notion of “finite type” iterated function systems of contrac-
tive similitudes, and describe a scheme for computing the exact Hausdorff dimension of
their attractors in the absence of the open set condition. This method extends a previous
one by Lalley and applies not only to the classes of self-similar sets studied by Edgar,
Lalley, Rao and Wen, and others, but also to some new classes that are not covered by the
previous ones.

1. INTRODUCTION

Let {¢; ;]-:1 be an iterated function system (IFS) of contractive similitudes on R¢ defined
by

(1.1) ¢j(z) = pjRjz+bj, 1 <j <gq,

where for all j, 0 < |p;| < 1, b; € R%, and R; is a d x d orthogonal matrix. Let F be
the corresponding self-similar set (i.e. the attractor) and let dimg (F) denote the Hausdorff
dimension of F. It is well known that if {¢j}§:1 satisfies the open set condition (OSC) (see
[H], [F2]), then dimp(F) = «, where « is the unique solution of

q
> s =1
7j=1

In the absence of the OSC the images of F' under the ¢; have overlaps and the above
dimension formula fails in general. We say loosely that the corresponding IF'S has overlaps
and call F a self-similar set with overlaps. In this case it is much harder to compute
dimg (F). Nevertheless a number of results have been obtained.

Edgar [E] has computed the Hausdorff dimension of the so-called Barnsley’s wreath, the
attractor of the IFS ¢; : R?> — R? defined by six similitudes with a common rotation
through 7. Three of these similitudes have contraction ratio p = 1/2 and the other three
have p = 1/4. By decomposing the attractor F', Edgar is able to identify it with a graph
self-similar set of a nonoverlapping graph-directed construction (see [MW]). dimg(F) can
hence be computed in terms of the spectral radius of some construction matrix.

An algorithm is described by Lalley [L] to compute the Hausdorff dimension of the
attractor of ¢; : R — R defined by

¢j(z) =w 'z +b;, bj € D C Zw],
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where w is a Pisot number and D is a finite set. (A real algebraic integer w is a Pisot
number if |w| > 1 and its algebraic conjugates all lie inside the unit disk.)

The Hausdorff dimension of some other overlapping IFS has also been computed by Rao
and Wen [RW], Strichartz and Wang [SW], and Zerner [Z].

In view of the above discussions, it is natural to ask under what conditions on an IF'S with
overlaps can dimg(F) be computed. Our main objective is to set up a condition which is
as general as possible and will include all the above classes, as well as some interesting new
classes that are not covered by the previous methods. Under this condition, we will describe
an algorithm to compute the Hausdorff dimension of the attractor. Our algorithm is based
on same device as that in Lalley [L] — namely, the construction of a finite directed graph
from the IFS whose incidence matrix encodes geometric information about the attractor.
Our main objective is to show that this strategy can be adapted to a much larger class
of IFSs, including all those studied in [L], [E], [RW], and [SW]. The extension is rather
nontrivial mainly due to the fact that we allow the similitudes in the IFS to have different
contractions or rotations. As it turns out, our condition is indeed rather general. For
example, in §5 we compute the dimension of a self-similar set with overlaps in which the
reciprocal of the contraction ratio is neither an integer nor a Pisot number (Example 5.4).
To the best of our knowledge, it is the first time that the Hausdorff dimensions of such a
family of sets (nontrivial) are explicitly computed.

To describe our condition and algorithm we shall need some standard notation from
symbolic dynamics. Let ¥, = {1,2,...,¢} and 3} = Up>037 be the set of all finite words
in ¥y, where X7 is the set of all words of length n, with 22 containing only the empty word
0. For j € X7 let |j| = n denote the length of j. For i € 7 and j € X} let ij € X" be
the concatenation of i and j, and call i an initial segment of ij.

We define the iterated maps using these notations. Let j = (j1,---,jm) € 3g*. Then

G5 =Fji 00 bjs  PjI= Pir v Py By = Ry oo Ry,
Now let p = min{p;}. For all £ > 0 define

(12) A, = {jez;

(1.3) Py = {¢j(0)‘jeAk}.

Intuitively, all ¢; for j € Ay have comparable contraction ratios, which are in the order of

pF.

In [L], dimg (F') is determined by evaluating the growth rate of |Py|, the cardinality of
|P|. This is achieved by constructing a directed graph with elements in Py, for all £ > 0 as
vertices and words of unit length as directed edges going from Py to Pry1. This directed
graph allows one to obtain a linear recurrence relation for |Pg|. The algebraic properties of
Pisot numbers play a central role here.

p; < p'c but p; > pF if i is a proper initial segment of j},

When the similitudes in an IFS have different linear parts, as in the example in [E],
counting Py, using the method in [L] no longer works. The difficulty arises mainly from the
fact that there might be two different i,j € Ay such that $;(0) = ¢;(0) but nevertheless
piR; # p;R;. To overcome this difficulty we introduce the set

Vi = {(p;R;, $3(0), k) | j € Ax}.

Later we introduce graphs that use elements of V; as vertices, which allows us to evaluate
|Vk| as [L] has done with |Pg|. The dimension of F' can then be computed.
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Observe that each vertex v = (p;R;, $#;(0), k) completely determines ¢5(z) = p;Rjz +
#5(0). So we shall use ¢y (z) to denote ¢;(x). This notation has the added advantage that
if i,j € Ay, satisfy ¢; = ¢; then they correspond to the same vertex v.

The details of our scheme for computing dimy(F) are described in §2. We give an
overview here in order to state our main results. Call a nonempty bounded open set Q C R?
a bounded invariant open set of the IFS {¢; ;1:1 if ¢;(©2) C Q for all j. Such an 2 always
exists. For example, one can check that the open ball Q@ = Bg(0) of radius R for any

R > max;|b;|/(1 — |p;]) is one. We say two vertices v, v/ € V}, are neighbors (with respect
to Q) if ¢y (2) N Py (Q) # (. The set

Qv) == {u ‘ u is a neighbor of v}

is called the neighborhood of v (with respect to ). Two vertices v € Vi and v/ € Vys are
said to have the same neighborhood type if there exists a similitude 7(z) = pk’_kUa: +c
where U is orthogonal and ¢ € R? such that

{rogu|uecQv)}={ow|u ecQV)} and 7o¢,=¢y.

The IFS (1.1) is said to be of finite type if there are finitely many distinct neighborhood
types. In this case we can define the incidence matriz S = [s;;] for the IFS as follows:
Suppose that there are N neighborhood types. Choose any vertex v that has neighborhood
type i. Its offspring in some reduced graph (defined in §2) will have various neighborhood
types. The entry s;; denotes the number of offspring that have neighborhood type j. As
we shall prove, s;; is independent of the choice of v. This leads to our main result:

Theorem 1.1. Let {¢; ;1-:1 be an IF'S defined as in (1.1). Suppose that the IFS is of finite
type with respect to a bounded invariant open set €, and let S be the corresponding incidence
matriz. Then the attractor F of the IFS satisfies

. . log A
(1.4) dimy (F) = dimp(F) = _‘iigp,

where p = min; p; and A = X(S) is the spectral radius of S.

We also study some properties of IFS of finite type. By making use of the incidence
matrix S in Theorem 1.1, we can show that the attractor F' of an IFS of finite type is an
s-set. Let H°® denote the s-dimensional Hausdorff measure.

Theorem 1.2. Let {¢;(x) ;1-:1 be the IFS defined in (1.1). Suppose that the IFS is of finite
type. Then the attractor F of the IFS satisfies
(1.5) 0 <H(F) < o0,

where s = dimpg (F).

It is not known in general whether a self-similar set in R¢ with Hausdorff dimension d
and positive measure must have interior points. We show that this is the case if the finite
type condition is satisfied.

Theorem 1.3. Let {¢;(z) ;1:1 be an IFS in R® given by (1.1). Suppose that it is of finite
type, and the attractor F has Hausdorff dimension d. Then F° # () and F° = F.

We remark that Zerner [Z] obtained analogous results of Theorems 1.2 and 1.3 for an
IFS satisfying the weak separation property (WSP). However, we are not able to show that
an IFS of finite type must possess the WSP. We conjecture:
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Conjecture. An IFS of finite type satisfies the weak separation property.’

This paper is organized as follows. In §2 we define the finite type condition and give
examples of different classes of IFS of finite type. In §3 we describe the algorithm to
compute dimg (F'), and prove Theorem 1.1. In §4, we study some properties of IFS of finite
type and prove Theorems 1.2 and 1.3. In §5 we provide some numerical computations using
our algorithm, focusing on IFS of similitudes with different linear parts or with contraction
ratios that are not the reciprocal of Pisot numbers.

Acknowledgments. Part of this research was carried out while the authors were visiting
the Department of Mathematics, Cornell University. They would like to thank the depart-
ment for its hospitality and support. They are also very grateful to Professor Strichartz
for many valuable discussions and comments. The first author would also like to thank
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2. OVERLAPPING IFS OF FINITE TYPE

In this section we describe a scheme for computing the Hausdorff dimension of the at-
tractor F' of the IF'S. This scheme is a generalization, albeit a nontrivial one, of the scheme
described in [L]. As stated in the introduction, the main ingredient of our scheme is the
notion of IFS of finite type.

We use the same notation in (1.2) and (1.3). Our objective is to find a way to count V.
As in [L], we achieve this goal by introducing two directed graphs, G and Gg. The vertex
set of G is the set of all triples (not counting multiplicity)

(2.1) Vi={ (iR5, ¢3(0),k) | § €A, k> 0},

Observe that ¢;(z) = p;R;z + ¢5(0), so the first two entries of a vertex triple encode ¢;(x).
Conversely, any given map ¢;(z) with j € Ay uniquely determines a vertex in the obvious
way. Hence we may equate a vertex with some iterated map ¢;. Note that if ¢; = ¢; for
some j,i € X} then they determine the same vertex, so the correspondence is well defined.
We use the following notation for simplicity:

¢v(z) == ¢5(z) i v = (p;R;, ¢5(0), k).
We also let 7 : UkZO Ar — V be the map

©(j) = (p;R;, #;(0), k) for j € =2
This map is onto but in general not one-to-one.

Given two vertices v and v', suppose that there exist j € Ay, j’ € Agy1 and k € P
such that v = 7(j), v/ = 7(j’) and j’ = jk for some k € 7. Then we connect a directed
edge k : v — v’ (so k is the label of the edge). We call v a parent of v/, and v/ an
offspring of v. Note that there might be several directed edges going from one vertex to
another. For example, for the IFS ¢1(z) = pz and ¢2(z) = p?z, whenever j = (2) is a
directed edge from one vertex to another, so will be j' = (11) because ¢@11) = ¢2. The so
obtained graph is our graph G. For the reduced graph Gg, fix an order for 37; here we use
the lexicographical order (although any order would do). The reduced graph Gg is obtained
from G by removing all but the smallest directed edge going to a vertex. In other words, for
each vertex v let ky, ..., k; be all the directed edges going from some vertices to v. Suppose

!This conjecture is recently proved by Nguyen [N].
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that k; < kg < --- <k, in the lexicographical order. Then we keep only the directed edge
k; and remove all other edges. This way we obtain Gp.

Let 2 C R? be a bounded invariant open set of the IFS {¢; ;1-:1, ie. ¢;(2) CQ for all

j. Let Vg := w(Ag). We say two vertices v, v/ € Vy, are neighbors (with respect to Q) if
dv(Q) Ny () # @. The set

Qv) == {¥v' ‘ v' is a neighbor of v}
is called the neighborhood of v (with respect to Q).

We define an equivalence relation on the set of neighborhoods. For vertices v € Vi and
v' € Vi, we say Q(v) is equivalent to Q(v'), and denoted this relation by Q(v) ~ Q(v') (or
more precisely Q(v) ~; Q(v')), if there exists a similarity map 7(z) = p* *Uz + ¢, where
U is orthogonal and ¢ € R? such that ¢,/ = 7 o ¢, and (counting multiplicity)

{pw | ' € QV)} ={T0du|uecQ(v)}.
It is easy to check that ~ is indeed an equivalence relation. We shall use [©(v)] to denote
the equivalence class, and call it the neighborhood type of v (with respect to Q).

Lemma 2.1. Let vi, vo € Vi and let uy, uy be their offspring, respectively. If vi and vo

are not neighbors, then neither are u; and us.

Proof. Observe that ¢u; = ¢v; o fi; for some k; € X7, j = 1,2. Since ¢y, (2) C (2, we have
bu; (2) N $u, (2) € dv, (2) N By, () =10,

proving the lemma. |

Proposition 2.2. Let Q2 be a bounded invariant open set for the IFS {¢; ;1-:1 given by (1.1)
and let Gg be the corresponding reduced graph. Then

(a) There exists a unique path in Gr from the root verter Vioor := (D) to any given
vertez.
(b) Let v and v' be two vertices with offspring wy, ..., uy and ul, ..., uj in Gg, respec-
tively. Suppose that [Q(v)] = [Q(V')]. Then
(2:2) {Q)] [ 1<i<m}={[Qu)]|1<i<l}

counting multiplicity. In particular, m = [.

Proof. (a) The existence of a path is obvious. If there are two different paths in Gg from
Vioot 10 & vertex v, then the vertex at which the two paths cross will have two parents in
Gr, a contradiction.

(b) Let v € Vi and v/ € Vy. Suppose that Q(v) ~, Q(v') where 7(z) = p¥' *Uz + ¢ for
some orthogonal U and ¢ € R?. We label Q(v) and Q(v') by
Q(v) = {vo =V, Vi, ..., vn}, QW) = {v6 =v, v, ..., v%}

such that ¢V9 =170 ¢y;, 0 < j < n. We prove part (b) of the lemma via two claims below.

Claim 1: For each 0 < j < n, the vertez v; has an offspring in (the non-reduced) graph G
by edge k € 37 if and only if the vertex v; does.

Proof of Claim 1. Fix a j, and assume that v; = 7(j) and vg- = w(j’) for some j € Ay
and j' € Ap. Suppose that v; has an offspring in G by edge k. Then jk € Agy1. Now,
py = p¥ Fp; and k' — k € Z, so jk € Ay implies j'’k € A 1. Hence v;; has an offspring
in G by edge k also. The above argument will prove the converse as well. [J
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Claim 2: Let 0 < 4,5 < n and suppose that in the graph G we have edges ky, ko such that
ki: vi—u, ko: vj— u, and
ki: vi—ul, ko: v;-|—>u'2.
Then uy = g if and only if w| = ), and vy, uy are neighbors if and only if v, u), are.
Proof of Claim 2. Observe that

(23) ¢u1 = ¢v; 0 ¢k1 =TO ¢V¢ ° ¢k1 =TO ¢u1-

Similarly we have Pu, = T 0 Pu,. Hence ¢u, = Py, if and only if $u = by, and so u; = uy
if and only if u} = u). For the second part,

Gu, () N by, () =0 if and only if 70 ¢y, (Q) N T 0 ¢y, () = 0.
This proves the claim. O

Let U and U' be the set of offspring of the vertices in Q(v) and Q(v'), respectively. We
now introduce a map «y from U to U’ as follows: Suppose that u is an offspring of v; by
edge k then we let y(u) be the offspring of v] by edge k. Claims 1 and 2 show that +y is
well defined, and is in fact a one-to-one correspondence. Furthermore, by (2.3) we have

(24:) ¢7(u) =TO gbu.

Part (b) of the lemma now follows quite easily. First, by Lemma 2.1 only vertices in Q(v)
(respectively, Q(v')) can be the parents of any offspring of v (respectively, v') in G. Again
by Claims 1 and 2, u is an offspring of v in Gg if and only if y(u) is an offspring of v/ in
Gr. This yields m = [. Now, (2.2) follows immediately from (2.4).

Definition 2.1. We say the IFS (1.1) is of finite type if there exists a bounded invariant
open set ) such that {[Q2(v)] | v is a vertex of G} is a finite set. In this case, we say the
IF'S is of finite type with respect to 2, and € is a finite type condition set.

In the rest of this section we establish classes of IFS of finite type.

Theorem 2.3. Suppose that the IFS {¢;(x) ;1-:1 given by (1.1) satisfies the OSC with open
set (). Assume that log p1, . ..,log py are commensurable. Then the IFS is of finite type with
respect to €.

Proof. Let p = min; p;. Since {log pj}g-:l are commensurate the set {p~%p; | j € Ay, k > 0}
is finite. Observe that by the OSC, for a given k all ¢;(€2), j € A, are disjoint. Hence
each Q(v), v € Vy, consists of the single vertex v. So for j € A and j’ € Ay we can find
a 7(z) = p¥ ~*Uz + ¢, where U is orthogonal and ¢ € R%, such that ¢y = 1o ¢; if and
only if p~Fp; = p ¥ pj- So there are finitely many equivalence classes among Q(v), v € V.
Therefore the IFS is of finite type. [ |

Let My(R) and My4(Z) be the sets of all d x d matrices with entries in R and Z respectively.
Theorem 2.4. Let {¢;(z)}I_; be an IFS in R? having the form
pj(z) = A"z +b;, 1<j<gq,

where A is a contractive similitude in My(R), n; € N and b; € R?. Assume that A~ €
My(Z) and all b; € Z4. Then the IFS is of finite type with respect to any bounded invariant
open set Q of the IFS.
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Proof. Let r be the contraction ratio of 4, p; = ™ and p = minj<j<4p; = ¥ where
N := maxi<j<gn;. Hence for all j € Ay we have p;R; = A™ for some Nk <m < N(k+1).
This means

(2.5) {a iy | je pgk =0} c {a

O§i<N}.

Suppose that Q is a bounded invariant open set of the IFS with diam(Q2) = C. For a
vertex v € Vi we look at the “inflated neighborhood”

ATNEQ(v) = { (A7 gy Ry, A Vr5(0) ‘j € A, () € 9w }.

Observe that by (2.5) A="*p;R; € {477 | 0 < i < N}, so it can take on no more than N
possible values. Now, A=Vk¢;(0) C ANZ for j € Ag. Furthermore, A=Vk¢;(9) is an open
set with diameter no more than C. So it follows from the lattice property of ANZ< that there
are only a bounded number of translationally inequivalent sets {4 Vk4;(0) | 7(j) € Q(v)}
among all v € V;, and all k£ > 0. Together with the finiteness of A=V kijj among all j € Ay

and k > 0 it implies that there are only finitely many equivalence classes among all (v),
v EV. [ |

Remark. From the proof it is clear that the conditions A1 € My(Z) and all b; € Z¢ in
Theorem 2.4 can be replaced by the following more general condition: There exists a full
rank lattice £ in R? such that A71L C £ and all b; € L.

Theorem 2.5. Let {d)j(x)}g—:l be an IFS in R having the form
bile) =w Rz +b;, 1<j<q,

where w > 1 is a Pisot number and for 1 <j <gq,n; €N, b; € R and R; is an orthogonal
matriz. Assume that {Rj}g-:1 generates a finite matriz group G, and

G{bj | 1<j<q} CrZw]x - xrqLw]

for somery,...,rq € R. Then the IFS is of finite type with respect to any bounded invariant
open set Q of the IFS.

Proof. A well-known property concerning a Pisot number w is: For any finite D C Z, there
exists an g9 > 0 such that for any polynomials h(x), g(z) € D[z] we have either h(w) = g(w)
or |h(w) — g(w)| > €9. An immediate corollary is that the above property still holds if we
assume that D is a finite subset of rZ[w] rather than Z (see [G], [L], [LN]).

Let E = G{bj | 1 < j < ¢} and AE := E — E. AE is a finite set in R? whose i-
th component is in r;Z[w]. It follows that there exists an €y > 0 such that for any vector
coefficient polynomials h(z), g(x) € AE[z] we have either h(w) = g(w) or |h(w) —g(w)| > &o.
This “uniform discreteness” implies that for any given radius R > 0 there are only a bounded
number of translationally inequivalent sets among all {f(w) | f(z) € E[z]} N Br(y) (not
counting multiplicity), y € R¢.

Now, let pj = w™™ and p = w™" where N = max;<;j<,7n. Suppose that  is a bounded
invariant open set of the IFS with diam(Q2) = C. For a vertex v € Vi, we look at the
“inflated neighborhood”

pr(v) = { (0 FosFs, 0 "45(0)) | § € Akm() € Q) |-

Note that p *p;R; € {w 'S |0 <i < N,S € G}, so it can take on no more than N|G]|
possible values. Observe that p=%¢;(0) C Ew] for j € Ay. Furthermore, p=%¢;(Q2) is an
open set with diameter no more than C. So it follows from having a bounded number of
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translationally inequivalent {f(w) | f(z) € E[z]} N Br(y) that there are only a bounded
number of translationally inequivalent sets {p~%¢;(0) | 7(j) € Q(v)} among all v € V; and
all k& > 0. Together with the finiteness of p*kijj among all j € Ay and k > 0 it implies
that there are only finitely many equivalence classes among all Q(v), v € V. [ |

Note that Theorem 2.5 implies that the classes of IFS in [E], [L], §5 of [RW], and §3 of
[SW] are of finite type.

Remark. An interesting special case of the IFS (1.1) is when all p;R; = A for some
similitude A, i.e. the IFS has uniform contraction. Under this assumption, all vertices in
Vi have identical linear part A*. So each vertex v is of the form (A%, 4;(0), k) where j € Ay
is uniquely determined by ¢y (0) = ¢;(0). It is fairly easy to check that two neighborhoods
Q(v) €V, and Q(v') C Vg are equivalent if and only if the sets

{A*kqﬁu(O) ‘ uc Q(v)} and {A*k’ngu/(O) ‘ u e Q(v')}
are translationally equivalent. This observation simplifies the computation of the Hausdorff

dimension of an overlapping IF'S with uniform linear part.

3. ProoF OF THE MAIN THEOREM

We begin by proving two lemmas.

Lemma 3.1. Suppose that the IFS (1.1) is of finite type with respect to some Q. Let E, U
be any subsets in R? with diam(U) < Kip* and diam(E) < K. Then there exists an
M = M(K, K3) > 0 such that for all k > 0,

#{vEVk‘ Uﬂ¢v(E)7é(D} <M.

Proof. Define a norm || - || on the set of all affine maps ¢(z) = Az + ¢ in R? by
el = [|Allo + [el,

where || - ||o is any chosen matrix norm and | - | is the Euclidean norm on RY. Then it is
clear that there exists an gy > 0 such that for any j, k € Ay,

(3.1) 165 — ¢icll < cop® = 5(Q) N () # 0.

Denote

U:{VEV;C‘ UNgy(E) #0}.

Observe that there exists a K > 0 (independent of k) such that for any v,u € U we must
have ||¢v — ¢u|| < Kp*. Suppose that the cardinality of ¢ can be arbitrarily large. Then
by the Pigeonhole Principle we may find a subset W of U with arbitrarily large cardinality
such that for any v,u € W we have ||¢y — dul| < €0p*. Now it follows from (3.1) that
W C Q(v) where v is any element in W. But the finite type property of the IFS implies
that the cardinality of all neighborhoods are uniformly bounded. This is a contradiction. W

Lemma 3.2. Suppose that the IFS (1.1) is of finite type. Then the attractor F satisfies

liminflogiwl€| < dimp(F) < limsupM.
k—oo —klogp k—oo —klogp

Proof. Let N(cp*) be the minimal number of balls of radius cp* needed to cover F. Then
for any c¢;, c2 > 0 there exist positive constants K (cy,co) and K~ (c1, co) such that

K~ (c1,e2)N(c1p*) < N(eop®) < KT (cr,c0)N(e1p").
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Observe that F' = [J;jcp, 85(F) = Uyey, #v(F), and there exists a ¢g > 0 such that each
¢v(F) can be covered by a ball of radius cop".

Now let By, ..., By(s) be balls of radius § > 0 that cover F. We may uniquely write § =
cp® for some k and p < ¢ < 1. By Lemma 3.1 the cardinality of {v € Vy | B; N ¢y (F) # 0}
is bounded by some fixed M > 0 for all 1 < j < N(d). Therefore [V;| < MN(6). On the
other hand,

(3.2) Vil > N(cop®) > K~ (¢, c0)N(ep®) = K~ (¢, co) N (8).
Therefore
log N 1 M 1
dimp(F) > Timinf 28O S fin ing 0BWVEM) g 108 Vil
i—»0 —logé k—oo — log(cpk) k—oo —klogp
Similarly, applying (3.2) we obtain

1 1 K- 1
dimB(F) S limsupoi up Og(|Vk|/ SCC, CO)) _ limsup Og|Vk| '
60 —logd k—00 —log(cp”) k—oo —klogp

We can evaluate |Vi| using a matrix S. The matrix S has rows and columns indexed by
the neighborhood types. Suppose that the IFS (1.1) is of finite type with respect to 2. So
{[Q(v)] : v € V} is a finite set, where V is the set of vertices defined in (2.1). We label the
neighborhood types as {71, 72, ..., Tn}. The entries of S = [s;j]nxn are defined as follows:
For any 1 <17 < N, take a vertex v € V of Gg such that [2(v)] = T;. Let uy,...,u; be the
offspring of v in Gr. Then

(3.3) sij = #{l| 1<I<k, [Qw)] =T;}.
Observe that s;; is independent of the choice of the vertex v by Proposition 2.2 (b).

Definition 3.1. We call the matriz S defined above the incidence matrix of the a finite
type IFS (1.1) with respect to S2.

Now without loss of generality we label the neighborhood type [2(Vyoot)] as 71. Then
Proposition 2.2 implies that

(3.4) Vil = el'ske,

where € = [1,1,...,1]7 and e; = [1,0,...,0]” are vectors in RV .

Proof of Theorem 1.1. Observe that all vertices in Gr are descendants of vyget, so all
neighborhood types are generated from 77 (in finitely many steps). Hence there exists a

ko > 1 such that el'S%0 > 0 (i.e. it is a positive vector). Let |z]1 = Zjvzl |zj| be the
L'-norm on RV. Then
lim (el §%¢)'/* = lim (e] $%05%¢)'/* = lim ||Ske||}/lc =\
k—o0 k—o0 k—o0
Now let § > 0 be arbitrary. Then for all k sufficiently large,
(A —0)F < ef'Ske < (A + 6)F.
Using the fact ef S¥e = [Vy| from (3.4), and applying Lemma 3.2, we get
log(A —d 1 1 log(A + 0
108(A = 9) i inf 2B VEL i (F) < tim sup 208l  108(A+9)
—logp k—oo —klogp kooo —klogp —logp
Letting 6 — 0 yields the second equality in (1.4). Finally, dimp(F) = dimg(F') always
holds ([F1], [F3]). This proves the theorem. |
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4. PrROPERTIES OF IFS OF FINITE TYPE

In this section we will establish Theorems 1.2 and 1.3. We shall adopt the notation G,
Ggr, m, V, Vi from §2. For simplicity we denote by vi—pu if v, u € V and u is an offspring
of v in the reduced graph Gg.

We define a path in Gg to be an infinite sequence (vg,v1,Ve,...) such that v; € V; and
vj— V41 for all j > 0, with vo = vieer = m(0). Let B be the set of all paths in Gg. For
the given vertices vo = Vigot, V1, -- ., Vg such that v;——pgv;1 we call the set

IVOyVI,---,Vk = {(uo,u1,u2, .. ) e B ‘ u; =vj for0<j; < k}
a branch. Observe that by Proposition 2.2 (a) the path from vy to vy is unique, so we may
simply denote

Ivk = Ivo,vl,...,vk -

Proof of Theorem 1.2. Since H*(F) < oo always holds (see [H], [F3]), we only need to
show that H*(F') > 0. We achieve this by constructing a mass distribution on F' and apply-
ing the standard mass distribution principle. We begin by first defining a mass distribution
on B using the branchs described above.

Suppose that the IF'S is of finite type with respect to the bounded invariant open set
Q. Let T1,...,7Tn be the neighborhood types of the IFS, with 77 being the neighborhood
type [©2(Vroot)]- Let S be the corresponding incidence matrix. We have shown that s =
—log A/ log p where A = A(S) is the spectral radius of S. Since all vertices in G are
descendants of vyoot, and all neighborhood types are eventually generated by 71, we may
find a M-eigenvector z = [by,...,bx]|T of S such that b; > 0 and all other bj > 0. Let
T, = lai,...,ayn]T where a; = b;j/bi. So we have Sz, = Az,, aj > 0 and a; = 1.

We now define the mass distribution ¢ on B. For each branch Z,, where v; € V} such
that [Q(vg)] = T; we let
(4.1) 1(Zy,) = A" a;.

We prove that u indeed defines a mass distribution on B. Observe that two branchs Z, and
I, with v € Vi, v/ € V, and k < [ intersect if and only if v/ = v for k = [ and v’ is a
descendant of v for k£ < [. In both cases Z,» C Z. So all we need to show is that for any
vevy,

(4.2) > Ty = (),
ueD

where D is the set of offspring of v. Suppose that v € Vj and [Q(v)] = 7;. Then by (4.1)
w(Zy) = A"*a;, and by the definition of S (see (3.3)),

N
Z /A(Iu) = Xﬁkil(z sijaj) = Afkfl)\ai = Aikai.
ueD 7j=1

So (4.2) holds. It follows now from u(B) = p(Zy,,,.) = 1 that u is indeed a mass distribution
on B.

To prove our theorem we must transport p to a mass distribution on the attractor F.
Note that for all £ > 1 we have

(4.3) F=J aiF) = | ¢o(P).

jEAk VEVk
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Since ¢y (F) C ¢y (F) if v/ is a descendant of v in Gg, each path (vg,vi,vo,...) € B
corresponds to a point z in F, which is the unique point in [, ¢v, (F). We shall call
(vo,Vv1,V2,...) € B the address of z. A point z € F has at least one address in B by (4.3),
but may have more than one. For any subset U of R? let C(U) be the set of all paths in
B that are addresses of points in F N U, and define p*(U) = p(C(U)). Then clearly u* is a
mass distribution supported on F'.

Finally, let 0 < § < p. For any set U C R? with diam(U) < § assume that pF*t! <
diam(U) < p*. Lemma 3.1 implies that U can intersect no more than M of all ¢, (F)’s,

v € Vi, where M > 0 is some fixed constant independent of k. For [ < M, let vq,...,v; be
the vertices in V, such that U N ¢y, (F) # 0. Then

l

* F) < T,,) < M7k i}
p(UN )_]Z_:lu( ve) S MATF max {a;}

Now, A~! = p°. Hence
)\fk — pks — p*Sp(k-i-l)S < pfs (dlam(U))s

It follows that p*(U N F) < ¢(diam(U))” where ¢ = Mp~* max;{a;}. By the mass distri-
bution principle (see Falconer [F2], Chapter 4), we have H*(F) > u*(F)/c > 0. |

Proof of Theorem 1.3. By Theorem 1.2 we have m(F) = H4(F) > 0, where m(-) denotes
the Lebesgue measure on R¢. Hence there exists a Lebesgue point z* € F, and in particular

F N Byn(x*
(4.4) cp = al P ia: ) 1 as n —» 00,
m (B (z*))
where p = min; p; as usual. Note that F' = [J;c5, ¢;(F). We define
Fui={i €| &(F) N By(a") £0}.

Then |J,| < M for some M independent of n. Let p;(z) = p™"¢5(x) — p~"z*. So
Fo={ien| (PN Bi0) £0}.
Let By = Ujez, i(F). Then by (4.4) we have
m(Ey, N B1(0)) = cpm(B1(0)).

Choose a subsequence {n;} of {n} such that E,, converges to a compact set E in the
Hausdorff metric. Then E,, N B;(0) converges to £ N B;(0) in the Hausdorff metric. It
follows from

m(E N B1(0)) > klim m(Ep, N B1(0)) = m(B1(0))
—00

that £ N B1(0) = B1(0).

Observe that each ¢; translates, rotates and dilates. But the dilation scale is between
1 and p~!. Now each E,, is covered by {¢i(F)}jes,, with [Tn,| < M. The diameters
of all ¢;(F) are uniformly bounded. By the compactness of the Hausdorff metric we have
E = U]L-:1 F; where L < M and each F; is the limit of some {¢;j (F)}. Hence each
Fj = 7j(F) for some similarity map 7; on R%. Since E° # ), we have F? # 0 for some j.
Therefore F° # ().

Finally, F' := F° is also invariant under the IFS in (1.1) and is compact and nonempty.
So F=F. [ |
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Remark. The finite type property is generally destroyed by a small perturbation of the
IFS. This is easily seen from the following example: It follows from the projection theorem
(see [M] or [F2]) that the Hausdorff dimension of the IF'S

1 1 1
$1(z) = 3% $1(z) = 5(55 +1), ¢1(z) = g(ﬂv +a)
is 1 for almost all a. For any irrational a the attractor has !-measure (Lebesgue measure)
0 (see [K] or [LW]). Therefore, the IFS is not of finite type for almost all irrational a. But
the IF'S is of finite type for all rational a. Therefore a small perturbation generally destroys
the finite type property.

5. NUMERICAL COMPUTATIONS

In this section we will illustrate our algorithm by some examples. We will also compare
dimg (F) with the similarity dimension of F. For the IFS in (1.1), the similarity dimension
of its attractor F', denoted by dim,(F'), is the unique solution « of the equation Zgzl pj =1
It is known that dimg (F) < dim,(F). Strict inequality holds in each of our examples, which
provides another way to see that the OSC fails.

Example 5.1. The similitudes in the following IFS have non-uniform linear parts, with
the second map involving a reflection.

hl@) =30, ble)=—gat g bsl@) = gat g hala) = ga o

4 4 4 4
By Theorem 2.5, this IFS is of finite type. We will fix Q = (0,1) as a finite type condition
set, and let 71 denote the neighborhood type of the root vertex. Now

Ay ={(1),(2),3),(4)}

and
1 11 11 13
Vl - {(Z,O’ 1)’(_15 151)5(13 171)5(15 Zal)}

Denote by vy, va, vs, vy the vertices in V; according to the above order. Both v and v4
are of neighborhood type 77. vi and v, are neighbors (with respect to Q = (0,1)). They
are also of the same neighborhood type (by considering the similitude 7(z) = —z + 1/4),
which will be denoted by 7. So the root vertex generates two offspring of type 71 and two
offspring of type 73, all of them belong to Gr. We denote this symbolically as

Ti — 271 + 275.

Note that although ¢1(0) = ¢2(0) (see Figure 5.1), it is necessary to distinguish between
¢1 and ¢9 because they have different linear parts and, as we will see, they generate different
offspring.

v1 and va generate two common offspring. The four offspring in G generated by vy corre-
spond to the words (11),(12), (13), (14) € Ag; they are of neighborhood types 72,72, 71, T1
respectively. Those generated by vo are defined by the words (21), (22), (23), (24) € As.
Note that (12) and (24) are common offspring, so are (14) and (22). Since (2) < (4) in the
lexicographical order, we will keep (12) and remove (14) when constructing Gg. Thus we
have

To — T1+275.
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k=0 =7—1
0 1
k=1 =T2 =T1 =T1

offspring of v;

I —e I

L e e e e e e e e e - - - J
SooIIIIIiiioIiiio

| —O0 —e—e

Lo - __ J ~—~ offspring of vo

FI1GURE 5.1. Figure showing the vertices in Vi for k£ = 0,1,2. Overlapping
vertices are separated vertically to show distinction and multiplicity. Points
in Py are represented by dots (or circles). For k = 2, only offspring of
vy = (1/4,0,1) and vy = (1/4,3/4,1) are shown, and those indicated by a
circle are to be removed when constructing Gg.

T1, T2 are the only neighborhood types and the process above also yields the incidence

matrix
2 2
-[13)
The spectral radius of S is A = 2 + /2 and by Theorem 1.1,

_ log(2+ V2)

dimg (F) = ogd 8857766515

The similarity dimension of F' is equal to 1.

Example 5.2. The similitudes in the following IFS have two different contraction ratios,
1/3 and 1/9 :

1 1 8

$1(z) = 3% ¢do(z) = =z +

1 2
9 ﬁa ¢3($) - §$+_

3

Again by Theorem 2.5, {¢1,d2,d3} is of finite type. Fix Q = (0,1) as a finite type
condition set and let 77 be the neighborhood type of the root vertex. Now

Ay = {(11)a (12)a (13)’ (2)’ (31)5 (32)’ (33)}

and

1 8 1 2 1 8 1 2 1 62 18}

1
Vl = {(_’0’1)’(ﬁ5 8_1’1)’(57 gvl)a(ga 2_7:1)5(67 5’1)’(ﬁa 8_1’1 5 9

9

We classify all vertices in V; according to their neighborhood types as follows:
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Vertex Neighborhood Type
(5:5:1) Ti
(5:0:1), (5,3,1) T2
(370 510 1) (375 815 1) T3
55 1) Ta
(5,97 1) Ts

Thus a vertex of neighborhood type 71 produces one offspring in G of each of the neighbor-
hood types 71, T4, 75, and two offspring of each of the neighborhood types 75 and 73. All
of these offspring are also in Gg and therefore

Ti—>Ti+2T+2T3+T1+ Ts.

The vertices vi = (%, 0,1) and vo = (%, %, 1) have a common offspring. vy is defined by
the word (11) € A; and is of neighborhood type 75. It generates seven offspring in G with
corresponding words

(1111), (1112), (1113), (112), (1131), (1132), (1133) € Ao,

which are of neighborhood types 7s, 73, T4, 75, T2, T3 and T3, respectively. vo corresponds
to the word (12) € A; and is of neighborhood type 73. It produces three offspring in G
corresponding to
(121), (122), (123) € A,.
Note that u = (8%, 8%,2) is a common offspring because ¢(1133) = P(121)- Since (1) < (33),
the edge k = (33) connecting v; to u is removed when constructing the reduced graph Gg.
Consequently we have
Tz = 2T2+ 2Tz + Ta + Ts,
T3 — T+ Tz + Ts.
Using the same argument, one can check that
To = To+Ts+Ta+Ts,
Ts = Ti+2T2 +2T3+ Ta + Ts.

These are all the neighborhood types and the incidence matrix is

12 211
02 2 11
S=1(1 110 0
01111
12211
The spectral radius ) of S is the root of the polynomial 2% — 622 + 5z — 1 and
log A
dimy(F) = 22 = (.7369177683. .. .
log9
The similarity dimension of F' is
1 2—-1
dim, (F) = log(V2—1) _ ¢ eoom08122 ...
—log3

Remark. The size of the matrix S above can be further reduced. Indeed, note that Q(vy) =
Q(vy) = {vi,va} and Q(v4) = Q(vs), so together with Q(vyeet), there are only three
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translationally inequivalent “types” of such neighborhoods. We may generalize the notion
of neighborhood types (originally for vertices) to such neighborhoods, and construct an
analogous incidence matrix S’. In the above example, this yields

1 21
S'=11 31
1 3 2

With suitable modifications if necessary, this argument can also be applied to other ex-
amples. However, in order to avoid additional technical details, we will not pursue such
simplifications here.

Example 5.3. Consider the following variant of the Sierpinski gasket in R? defined by the
IFS {$j(2)}}—1:
$1(z,y) = (pz,py),  2(z,9) = (pz + 0%, py),  $a3(z,y) = (0*z, P’y + p),
where p = (v/5 —1)/2 (see Figure 5.2).
The IFS {$1, ¢2, ¢3} is of finite type since p ! is a Pisot number and {(0, 0), (p?,0), (0,p)} C
Z[p] X Z[p] (Theorem 2.5). A finite type condition set €2 can be obtained by taking the filled

open triangle with vertices at (0,0),(1,0), and (0,1). Let 77 denote the neighborhood type
of the root vertex. Upon one iteration we get

A= {(11)5 (12)5 (13)5 (21)’ (22)1 (23)5 (3)}a
V= {(pQ, (0,0),1), (0% (6*,0),1), (>, (0, %), 1), (0°, (0°,0),1), (6%, (p,0), 1),
(0, (0%, 9%),1), (9 (0,p),1) |

The vertex (p?, (0,p),1) is of neighborhood type 7i. The rest of the vertices are classified
as follows:

Vertex Neighborhood Type
(0 0,0°),1), (0% (0%, 9%),1) T2
(v*,(0,0),1) T3
(0% (6%,0),1) Ts
(v (0*,0),1) T
(% (p,0),1) Ts

Hence we have
Ti=>Ti+2T2+ T3+ Ta+Ts+ Te-

It is easy to see that upon one more iteration,
T2 = T2+ T3+ Ts.
Common offspring are generated when iterating the other vertices in V;. The vertex
vi = (p?,(0,0),1) generates seven offspring in G, defined by the words
(113), (1113), (1123), (1111), (1112), (1121), (1122) € A,.

The first six of them are of neighborhood types T1, 72, T2, T3, Ta, T5, respectively. The last
one is of a new neighborhood type, which we shall denote by 77.



16 S.-M. NGAI AND Y. WANG

09r-

0.8

0.7r

0.6

03

021

0.1r-

EREE

FIGURE 5.2. The attractor F' of the IFS in Example 5.3.

The vertex vo = (p2, (p?,0),1) also generates seven offspring in G, with the offspring
u = (p*, (p%,0),2) (labeled by the edge (11)) coinciding with the offspring generated by v;
by the edge (22). When constructing Gg, the edge (22) connecting v; to u is removed. As
a result,

T3 = Ti+2T2+ T3+ T+ Ts.
The same argument also yields
Ta—=>Ti+T2a+ T+ Tr,
Ts =T1+ 275 + Ty + 27,
Ts »Ti+2T2+Ta+Ts + T + Tz

The vertex (p*, (p?,0),2) (of neighborhood type 77) generates seven offspring in G upon
one more iteration. It can be checked as above that in Gg,

Tr—=>Ti+2To+Ta+Ts+ Tr-

The above process exhausts all possible neighborhood types and yields the incidence matrix

1211110
0110010
1211100
=111 01 0 0 1
1201200
1201111
120110 1]

The spectral radius X is the root of 23 — 622 + 5z — 1 and

log A
dimy (F) = %ng = 1.6823919818... .,

which is strictly less than dim,(F) = %521 = 18315709239 .
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Example 5.4. We will show that each IFS in the following class is of finite type and
compute its Hausdorff dimension:

¢1(z) = pz,  ¢o(x) =pr+p, ¢s3(z)=pz+1, 0<p< %

It is known that for the given range of values of p, {¢1, ¢2, ¢3} does not satisfy the open
set condition (see [LNR]). We will show that it is of finite type. Let Q@ = (0,1/(1 — p)).
Let 71 denote the neighborhood type of the root vertex, and 73, 73 denote neighborhood
types of the vertices (p,0,1) and (p,p,1) € Vi, respectively. (The vertex (p,1,1) is also of
neighborhood type 77.) Obviously,

Ti—=>Ti+ T2+ Ts.

(p,0,1) and (p, p,1) generate a common offspring (p?, p,2) in G, defined by the words (13)
and (21) respectively. In the reduced graph, the edge connecting (p,0,1) to (p?,p,2) is
removed, and we have

To = T2+ Ts,

T3 = Ti+T2+Ts.
Since no new neighborhood types are generated, we conclude that the IFS is of finite type
and obtain the transition matrix

1 1 1
S=1(0 11
1 11
The the spectral radius of S is A = (3 +1/5)/2 and thus
1 —log2
dimp (F) 0g(3 +v/5) — log ’
—logp
while dim,(F) = J(;gg?’p.
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