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ABSTRACT

Recent work has shown that the mathematics of fractal geometry can be used to provide a quantitative signature
for the drip paintings of Jackson Pollock. In this paper we discuss the calculation of a related quantity, the “en-
tropy dimension” and discuss the possibility of its use a measure or signature for Pollock’s work. We furthermore
raise the question of the robustness or stability of the fractal measurements with respect to variables like mode
of capture, digital resolution, and digital representation and include the results of a small experiment in the step
of color layer extraction.

Keywords: fractal dimension, multifractal dimension, stylometry

1. INTRODUCTION

Mathematics, computer science, and statistics are beginning to play a larger role in the field of art history and
connoisseurship. This is largely due to advances in imaging technology which now make possible the relatively
inexpensive high resolution digital capture of a work of art. Once transformed to numbers, a work of art becomes
a rich source of data, open to the methods of modern mathematics and computational analysis. In this setting
it is natural to ask if resident in the numbers that represent a work on a computer (henceforth called the digital
representation of the work) lies a numerical or mathematical signature characteristic of the creator of the work,
i.e., is there perhaps a way to quantify the style of an artist? In the case of the literary arts there has, over
the past hundred years or so, been great progress on this question, and an active field of stylometry now exists,
which uses methods of advanced statistical analysis as applied to the numbers derived from various kinds of
word counts as a means of identifying an author or deriving a quantitative measure of stylistic or intellectual
development over a writer’s career. In the visual arts we are at the beginnings of such a field and make no
mistake, it is coming (see, e.g.,}3).

To date, the most striking result toward a visual stylometry has been the work of physicist Richard Taylor in
his use of the mathematics of fractal geometry for the study of the drip paintings of Jackson Pollock. Taylor has
used fractals to track the development of Pollock’s work? and of late, has begun to tie the numbers produced by
a fractal analysis of a Pollock painting to the unique interplay of physiology and artistry that Pollock employed
in making his drip paintings. Most famously however, in the employ as a consultant to the Pollock-Krasner
Foundation, Taylor has used his mathematical methods as a means of authentication, finding particular fractal
properties that seem characteristic of Pollock and virtually unreproducible by an artist hoping to pose as Pollock.
The most newsworthy of these stylometric authentications was Taylor’s recent analysis that cast significant doubt
on the provenance of a sampling of a cache of dripworks in a storage bin in Long Island, New York.!

This paper continues the examination of the fractal methodology as a tool for Pollock stylometry. On the
one hand we aim to elaborate on Taylor’s work, showing how the calculation of the “entropy dimension” of the
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painting, a quantity related to fractal dimension, may also be of interest as a means of providing yet another
quantification of Pollock’s drip style. On the other hand, we also perform something of a stability analysis of these
fractal-based techniques. That is, any computational procedure involves choices, properties like the resolution
of the digital representation or means of color extraction and it is important to ask to what degree - if any - the
results depend on these choices (this is the first question a connoisseur should ask regarding the introduction of
these digital technique into the arena of authentication). We believe that such analyses are necessary for pushing
the field forward.

2. TECHNICAL BACKGROUND

The application of fractal techniques in arts begin with high resolution digital scans or photographs of the
paintings. Key to fractal analysis is the notion of dimension of a fractal. The standard way to understand
dimension of an object is from its scaling property. For example, we generally consider a line segment to have
dimension 1, a square to have dimension 2 and a cube to have dimension 3. This translates nicely into scaling
properties. If we double the size of these objects, the length of the line segment becomes 2 times the original
length; the area of the square becomes 22 = 4 times the original area; the volume of the cube becomes 23 = 8
times the original volume. But some objects can be more intriguing. Take the Sierpinski gasket (Figure 1) as
an example.* If we double its size we end up with 3 Sierpinski gaskets of the original size. So what is the
dimension of it? Rather naturally we consider its dimension to be the number « such that 2% = 3, which is
a =log3/log2 =~ 1.585.
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Figure 1. The Sierpinski gasket
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It is not always as easy to find the dimension of an object. The most commonly used scheme for finding the
dimension is the box-counting scheme. Since we are only concerned with paintings we shall demonstrate how this
scheme works by looking at objects in the plane. In the box-counting scheme, the plane is divided into square
grids of certain size, and we look for the number of grid squares that contain pieces of our objects. For example,
assume our object is a right triangle of sides 1, 1, /2 and the size of the grid is 1/10 as shown in Figure 2, we get 55
grid squares that contain pieces of the triangle. After this counting we compute the number log 55/ log 10 =~ 1.74.
Now if we reduce the size of the grid to 1/100 it is not hard to figure out that there are now 5050 grid squares
that contain pieces of the triangle. We now have log 5050/ log 100 =~ 1.85. We can continue this process with
increasingly reduced grid size, and we will notice that the number we compute gets closer and closer to 2, which
is the dimension of the triangle we are computing. For example, if we make the grid size to be 1/100000 then
there are 5000050000 grid squares that contain pieces of the triangle. The number log 500050000/ log 100000 is
approximately 1.94. This box-counting scheme can be applied to the Sierpinski gasket in Figure 1. If we make
the grid size to be 1/2F it is not difficult to count that there are 3* grid squares that contain pieces of the

*See http://en.wikipedia.org/wiki/Sierpinski_triangle for a a detailed description of its construction.
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Sierpinski gasket. The corresponding numbers are log 3¥ / log 2¥ = log 3/ log 2, regardless of k. So the dimension
is log 3/ log 2.

Figure 2. Basic grid showing the boxes for a single iteration of box-counting. The Sierpinski gasket would fit in the lower
triangle covered by 55 boxes.

The dimension computed from the above box-counting scheme is called the boz-counting dimension. It often
yields important clues about a fractal. Unfortunately in real world applications we do not have the luxury of
infinitely small scales, as the scales are limited by the resolution. This is certainly the case for digital images.
Nevertheless the same box-counting scheme can be adapted to obtain the dimension of a fractal image even with
limited resolution. To understand how it works, we consider the case in which our digital image is a binary black
and white image, where the white pixels represent the background and the black pixels represent the fractal
image to be analyzed. To compute the box-counting dimension of the fractal we first subdivide the image into
squares of side length k. Let Ny denote the number of these squares that contain black pixels. We typically
start from a small k and gradually increase it to a suitably large value. As we gradually increase k the points
(log Ny, —log k) are plotted. This plot is know as the boz-counting dimension plot. A fractal image is effectively
defined as one for which these points lie essentially on a straight line, and we designate the slope of the best
fitting line as the box-counting dimension of the fractal. Note that if these points lie (approximately) along a line
of slope d, the implication is that roughly k% squares with a side of length 1/k are needed to cover the (black)
image.

The box dimension of a fractal is a way to measure its overall density and distribution. A good practical
example is to look at the location plot of cell phone towers. There are currently around 175,000 cell phone
towers in the country. These towers are not uniformly scattered around the country. If we divide the country
into 10 miles by 10 miles grids, then we divide the country into roughly 40,000 grid squares. We may count,
say, 6,000 of them that contain cell phone towers. If we make the grid size to be 40 miles by 40 miles we may
only count 300 grid squares that contain cell phone towers. Thus the box-counting dimension plot tells us in
certain quantitative way that some places are rather densely packed with cell phone towers while other places
have none. Applied to drip paintings, one may hope that the box-counting dimensions will yield quantitative
informations that lead to digital signatures. This turns out to be quite naive. Box-counting dimensions alone
do not yield enough significant informations. A much more powerful technique is to examine the box-counting
dimension plots. By analyzing the breaks and other geometric properties of these plots a wealth of informations
can be obtained. Such is the foundation of the analysis performed by Taylor et al.>® for the drip paintings by
Jackson Pollock. This analysis has ultimately led to what they believe to be digital signatures of Pollock.

While the box-counting dimension is an important measurement of the density, a fractal set can be much
more intricate in the sense that the geometric properties within the fractal can vary from locality to locality.
The density within a fractal may vary with locality, so at each locality we may see a different dimension, the
so-called local dimension. Using the cell phone towers as the example again. A 10 miles by 10 miles grid square
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in a major metropolitan area like New York City may contain 60 towers while a 40 miles by 40 miles grid square
may contain more than 1,000 towers. By contrast, any given 40 miles by 40 miles grid square in rural areas
of Montana may only contain five or less towers. Clearly if we view the location plot of cell phone towers as a
fractal, the density of towers in New York City is far higher than that of in rural areas of Montana. Translated
into mathematical language, the local dimension in the New York City is greater than the local dimension of any
rural area of Montana. Clearly a single measurement such as the box-counting dimension does not capture these
local intricacies. To overcome this limitation more sophisticated techniques are needed. “Multifractal analysis”
is a broad term used to describe these more sophisticated techniques. Intuitively, we may view a fractal as an
intricate weave of many “subfractals,” each of which has a homogeneous local dimension. These subfractals form
the so-called multifractal. With the cell phone tower example, fractal representing the location of towers will be
decomposed into various subfractals according to local dimensions. Big metropolitan areas such as New York
City and Los Angeles have high local dimensions, and these areas will be grouped together to from a subfractal.
The rural areas of Montana, Wyoming and their neighbors have similarly low local dimensions, and they will
be grouped together into another subfractal. Of course, there will be other local dimensions in between, which
lead to other subfractals. This allows us to decompose the original fractal into subfractals, each of which contain
portions that are rather homogeneous in terms of tower density. Multifractal analysis refers to the analysis of
these subfractals that constitute the multifractal. It is one of the most powerful techniques in fractal analysis.

A standard part of multifractal analysis involves finding the dimensions as well as the distributions of the
subfractals. These analyses yield very useful informations about the fractal that the box-counting dimension
alone cannot. In the cell phone tower example, the analyses of the subfractals can tell us roughly how many
towers are in the high density areas and where they are distributed, for example. Applied to drip paintings such as
those by Pollock it is possible to gain some intrinsic knowledge that other techniques cannot. This comprehensive
multifractal analysis, if carried out correctly, will require higher quality digital scans of the paintings both in
terms of resolution and color accuracy. We plan to carry out such an analysis for Pollock drip paintings in our
next project once we overcome some of the limitations. At this time, however, there are other techniques in
multifractal analysis that are less constrained by the quality of the digital scans. One of them is the so-called
Le-dimension of the fractal, where ¢ is any nonnegative real number.

We shall not discuss the mathematical theory of L?-dimension in detail here. Those who are interested in
it can find discussions in the paper® and the references therein. Instead we explain how to compute the L9-
dimension for a binary image. As with the box-counting dimension, we subdivide the image into square grid of
side length k. The key difference is that while for the box-counting dimension we are only interested in whether
a grid square contains any black pixels, for the L?-dimension we take into considerations how many black pixels
are in a grid square. The grid squares containing more black pixels will count more than those that containing
fewer. More precisely, for each grid square we first count the number of all black pixels. These pixel counts
are then raised to the g-th power and they are summed up. We use Cy; to denote this sum. In mathematical
language label the grid squares of size k as S1,S52,...,5n. Let b; be the number of black pixels in the square
S;. The value Cy 1 is defined as

m
Cor = bl
j=1

Like the box-counting dimension plot, we start with a small k£ and gradually increase k until it is suitably large.
As we increase k the points (log Cy i, —log k) are plotted. For a fractal set we expect to see these points to lie
on a straight line. The slope of the best fitting straight line, divided by the number 1 — ¢, is defined to be the
L9-dimension of the fractal. In practice, we actually plot the points (log Cy x, (¢—1) log k). The slope of the best
fitting line will give us the L9-dimension. This eliminates the need for division by 1 — q.

Observe that if ¢ = 0 then Cy ) is the same as Nj, in the box-counting dimension, so Dy is exactly the box-
counting dimension. Thus the box-counting dimension is a special case of the L4-dimension with ¢ = 0. Another
special case is ¢ = 1. Note that in this case the number (|, ;, is exactly the number of black pixels, regardless of
the size k of the square grid. Furthermore, ¢—1 = 0. Thus the L!-dimension plot (log Cy, 1, (¢ — 1) log k) consists
of a single point, which is meaningless. To overcome this problem we modify the formula slightly. Instead of

letting using Cy , = Z;nzl b}, which is simply the total number of black pixels in the image, we consider Ej

6810-13 V. 2 (p.4 of 12) / Color: No / Format: Letter / Date: 1/10/2008 10:10:13 PM

SPIE USE: DB Check, Prod Check, Notes:



Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

defined by
B =) bjlog(b)).
j=1

Plot the points (log E, —logk). The slope of the best fitting straight line of the plotted points is called the
entropy dimension. It is used in place of the L!-dimension. Our experiments seem to show that entropy dimension
plots constitute an intriguing alternative to box-counting dimension plots.

While the box-counting dimension plots are a quick and easy way to study paintings such as those by Pollock,
the L?-dimension plots will add a sophisticated new tool to fractal techniques in arts, as we shall demonstrate
later with our analysis of known drip paintings by Pollock and those found in the Matter Estate. Strictly speaking
computing the L9-dimensions cannot be classified as a true multifractal technique. The L%-dimension for each
q, if standing alone, plays a very similar role as the box-counting dimension, i.e. it only measures certain global
property of the fractal. The key is to examine the behavior of the Li-dimension plots for a broad spectrum of
values ¢. As the value ¢ becomes larger the L?-dimension will be dominated increasingly by the higher density
portion of the fractal. The cell phone towers example illustrates this point. For ¢ = 0 in the box-counting
dimension case, all it matters is whether a grid square contains a tower. So a 10 miles by 10 miles grid square
over Manhattan containing 60 towers has a count of 1, the same as a grid square in the rural areas of Montana
containing one tower. However, for ¢ = 0.5 the Manhattan square will have a count of 605 ~ 7.746 while the
Montana square has a count of 1. For ¢ = 3 the corresponding counts are 603 = 216, 000 and 13 = 1, respectively.
It is easy to see that the bigger ¢ is, the more dominant the L?-dimension is by areas covered in high density with
cell phone towers. It is hoped that this transition as one varies the value of ¢ will help to uncover informations
about the fractal that are not available through analysis of the box-counting dimension alone.

This approach was first adopted by Mureika et al.”"® to study paintings by Pollock and the group Les
Automatistes. In their work the L?-dimensions of some paintings were compared, although no digital signature
was found. Our approach differs significantly from theirs in our emphasis: While theirs focused on finding the
dimensions, ours focus on the geometric properties of L4-dimension plots, particularly the entropy dimension
plots. We believe these geometric properties offer a more robust way to uncover digital signatures, since the value
of the dimensions D, can not be calculated precisely as a result of imperfections in the scanning and processing,
as well as human subjectiveness in the mathematical model. Our view seems to be supported in part by the
work of Taylor et al.,> in which by looking at the properties of the box-counting dimension plots a set of digital
signatures for Pollock’s drip paintings was obtained.

3. MULTIFRACTAL ANALYSIS OF POLLOCK’S DRIP PAINTINGS

Courtesy of the New York Museum of Modern Art we have obtained high resolution digital images of several
Pollock drip paintings. They are Number 1, 1948 (1948), White Light (1954), Gothic (1944), Full Fathom Five
(1947), Echo Number 25 (1951) and Number 1 (1950). These digital photos were captured using a 16 MP Phase
One medium format digital camera.

Our multifractal analysis of Pollock paintings involves the study of L9-dimension plots. We first crop out
the unwanted areas in these images. Since each Pollock painting uses a small number of different paints, like
Taylor et al we first decompose each image into several color layers. Each color layer is itself a black and white
binary image but contains only the pixels of a particular color. These color layers are extracted automatically
by looking at clusterings in the RGB color space. Figure 4 shows the extraction of a white layer from “Number
1, 1948.” Note that in the extraction, the white becomes black and all pixels not extracted as white as turned
into white.

The L?-dimension plots are then made for a broad range of g, starting from box-counting dimension ¢ = 0 to
a rather large value of g. We have paid particular attention to the entropy dimension plots. In each L?-dimension
plot we let the size of squares be 5 (1.1)" where n goes from 0 to around 50, depending on the size of the size
of the digital image. "

'In principle, all color layer extractions could be accomplished in any standard image processing package. All of our
image manipulation and subsequent calculations were accomplished using software written by J. Elton. We are happy to
provide the analysis code upon request.
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Figure 3. “Number 1, 1948,” J. Pollock

Figure 4. White layer extraction from “Number 1, 1948,” J. Pollock

With the exception of the entropy dimension plots, the L9-dimension plots all show essentially a straight
line within the scale range we have chosen for the broad range of ¢’s tested. The L?-dimensions, using the least
square best fit straight lines, range rather widely. There does not seem to have a particular signature from the
values of the L9-dimensions, at least none we could see.

The entropy dimension plots are much more intriguing. They are all essentially on a straight line until the
size of the square reaches a certain threshold, after which the points start to oscillate. These oscillations seem
to follow a very similar pattern. Our study suggests that this pattern of oscillation may be a digital signature of
Pollock. Figure 5 shows a representative collection of plots from “Number 1, 1948.”

In May 2005 it was announced that Alex Matter, son of friends of Jackson Pollock, has discovered a cache
of over 30 paintings given by Pollock to his family. The authenticity of these paintings have not been settled.
Taylor, using his fractal technique, has declared these paintings to be fakes, but his claim has not been universally
accepted.

To see whether our multifractal techniques can shed some light in this dispute, we used two of these paintings
published in the New York Times to compare with the known Pollocks we have analyzed. In addition, we also
analyzed a drip painting by Pollock’s wife Lee Krasner, the image of which we have obtained along with those
of Pollock’s from MoMA. There were some initial concerns about the paintings from the Matter Estate because
we scanned them from the NYT. However, since the oscillations in the entropy dimension plots appear at a
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relatively large scale, we feel sufficiently comfortable with these plots.

As one can see in Figure 6, the oscillations in the entropy dimension plots for both the Krasner and the
paintings from the Matter Estate differ substantially from that in Pollock paintings. Our analysis seems to
support Taylor’s analysis, that these paintings are fakes.

Figure 5. “Box-counting” plots from a white layer of “Number 1, 1948,” J. Pollock. Values for g range (left to right and
top to bottom) among 0,0.5,0.7,1.3,2.0,3.0,10.0 and the entropy plot. The generally linear form of the plots indicates
a well-defined limit and hence fractal dimension for each value of ¢ although it is possible to find a “breakpoint” in the
line as suggested in.® Note that the entropy plot displays interesting initial “jitter” until settling down to linear behavior.
The general form of these plots was found over a range of layers and paintings.
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Figure 6. “Box-counting” plots from the black layer of a widely circulated image of one of the ”Matter-Pollocks” (see eg.,
The New York Times...). Values for ¢ range (left to right and top to bottom) among 0,0.5,0.7,1.3,2.0, 3.0,10.0 and the
entropy plot. The generally linear form of the plots indicates a well-defined limit and hence fractal dimension for each
value of ¢ although it is possible to find a “breakpoint” in the line as suggested in.> Note that the entropy plot displays
a much more widely varying initial “jitter” until settling down to linear behavior. It is in particular, this entropy plot
where we see a dramatic distinction between a secure Pollock and this drip painting found by Alex Matter.
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4. SLOPE STATISTICS

In? there is an indication that the box counts that form the initial data for the calculation of fractal dimensions
may in fact indicate two distinct regimes of fractal dimension, perhaps reflecting a two-step process of composition
of background and detail. In this section we explore this idea, taking the box count statistics given in Section 3
for the white layer of One 1948 (1948) by Pollock and the black layer from a scanned photograph of an image of
one of the Matter Pollock drip paintings obtained from a New York Times newspaper article.

Given the box count data in Figures 5 and 6 there are potentially many ways in which one might look for
a natural fit by two slopes. Rather than prejudice ourselves to look for such a phenomena we looked at the
variation in slope of the log-log plot of the box count/box size data using a sliding window of some fixed number
of data points. That is, as the window is moved along, at each point a best (least-squares fit) line is computed
and the slope is calculated. We tried windows of 5, 7, and 11 data points. As the number of points increases,
the effect is one of a greater amount of smoothing, thus making it less likely that a significant change in slope
would be computed/detected. Figure 7 presents some examples of the results of this experiment for the Pollock
and Matter layer extraction for varying gq.

In fact it turns out that varying the window length (at least among the values 5, 7, and 11) does not have
much effect in terms of where the “break” is lcoated or in the slope calculations of the fit lines. Nonetheless,
with this methodology it does not appear that for ¢ > 0 there is an obvious regime change for the slope, in either
the Pollock layer or Matter-Pollock layer. For ¢ = 0, there does not appear to be a sharp discontinuity in the
slope, but there does appear to be a place where the rise in slope is most rapid, near box size 23 for the Matter
Pollock image, and near box size 37 for the Pollock image. We tried fitting separate least-squares line segments
to points to the left of a break point and points to the right, for various break points. When we did this, we got
the best overall fit when the breakpoint was at 23 for the Matter-Pollock image, and the slopes were 1.80 and
1.94 for the two "regimes”. For the layer from Pollock’s “Number 1, 1948,” the optimal breakpoint was at box
size 37, and the slopes for the two assumed “regimes” were 1.24 and 1.81. The rise was not really sharp enough
to justify calling this a regime change, and so we are a little unjustified in fitting two line segments this way; but
there does seem to be an observable S-shape to the slope curve for ¢ = 0.

5. ROBUSTNESS

Calculations of box dimension as described above can be done for any binary image. If the image is not fractal-
like then the points may not lie on a straight line. Even more, digital images, unlike pure mathematical fractal
constructs like “Sierpinski’s gasket” (cf. Figure 1) do not permit the luxury of infinite scalability that would
allow box-counting to be performed at an arbitrarily fine resolution. In the real world case of finite digital
imagery what we have is at best an approximation of a true fractal, and the box-counting dimension from the
plotted points can easily be affected by our computational model, image scanning and processing errors, as well
as human bias. Nevertheless, box-counting dimension plots often yield important subtle clues about artists and
their paintings. In fact, some of these clues are distinct enough to form digital signatures of an artist. This is
precisely the findings of Taylor et al® on Pollock and his drip paintings.

To take a small step toward making a science of the use of digital techniques for stylistic identification in the
visual arts, i.e., an expansion of stylometry to include the visual arts, it is therefore important to begin to study
the effects, or the lack thereof, of the choices made along the way in the computational process. To this end,
using we considered the step of layer extraction. For this, a given color layer is extracted by by first selecting a
pixel whose corresponding RGB value is meant to be representative of the color layer to be extracted and then
choosing a “tolerance” for the pixel value. The tolerance is simply the range of colors that are too be included
in that layer. For example, if a pixel with RGB values (20,55,109) were selected with a tolerance of 10, then the
extracted layer would consist of all pixels whose RGB coordinates fell within the cube (in RGB space) whose R
value was between 10 and 30, G value was between 10 and 30, and B value was between 99 and 119. While it
might seem natural to select a tolerance of 0, the fact is that many factors may cause the same paint used in
different parts of the work to be captured digitally at slightly different values.

Using our digital capture of “Number 1, 1948,” currently in the collection of the New York Museum of Modern
Art (see Figure 3), we performed layer extractions of a black layer, using the same base pixel with three tolerance
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Figure 7. Here we show some exemplary results from the process of trying to fit the box-counting data by a two-piece
piecewise linear curve. Data from the white layer of “Number 1, 1948,” J. Pollock is used for the top graph as well as
the two lower graphs on the left, while the data from the black layer of the “Matter-Pollock” discussed herein is used for
the other graphs. Results from using windows of seven boxes for the Pollock and five boxes for the Matter-Pollock are
shown.The bottom plot in each curve is the running calculation of the slope and the top curve is actually two curves in
each case, one the linear interpolation of the (log) box counting data and the other the piecewise linear fit. The two top
graphs are for ¢ = 0. This has the most pronounced change in slope. The graphs on the third row are ¢ = .7 for Pollock
and ¢ = 1.3 for Matter-Pollock. The pairs of plots in each graph are virtually indistinguishable with negligible change in
slope. The last plot is of entropy for both images.
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values 10, 15,20, and 25 and then extracted a white layer using a base pixel and tolerances 15,23, and 30. The
white layer shown in Figure 4 shows a white layer from “Number 1, 1948” extracted using a representative white
pixel and tolerance of 15. Figure 8 shows the white layer extracted with a tolerance of 15 and for comparison,
the white layer using the same base pixel but with a tolerance of 30.

Figure 8. White layers extracted from “Number 1, 1948,” J. Pollock using the same base pixel but with differing tolerances:
15 (top) and 30 (bottom).

In all cases we found that for each value of ¢, the variation in the corresponding calculation of the fractal
g-dimension was less than 0.1, but was not constant. This in turn suggests that any statistical consideration of
Pollock’s work that depends on fractal dimension should allow for a degree of variability within one tenth or so.

6. CONCLUSION

The method of “box-counting” and more generally, fractal geometry has begun to play an important role in
the authentication of the work of Jackson Pollock. In this paper we suggest a related calculation, the so-
called “entropy dimension” that is an extension of multifractal methods, that may also be a useful statistic for
authentication. We further take a small step toward building a body of robustness studies for the use of this
particular digital technique by showing that in a small, but representative test set of Pollock works, that the
calculation of box-counting dimension and more generally, the L? dimension (related to the computation of a
multifractal signature) is partially dependent on the process of color layer extraction, but only up to about a
value of one tenth or so, which has implications for the degree of accuracy that one can expect in using box-
counting for authentication. If digital techniques are going to be more widely accepted in authentication and
visual stylometry in general, related robustness and stability studies must be performed.
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