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ABSTRACT

We study the two—scaled dilation equation

n

F@) =3 ef(2a — k)
k=0
where the coefficients ¢, are real and ), cop = ), cary1 = 1. By expressing the dilation equation
in matrix product form we prove a necessary and sufficient condition for the cascade algorithm
(introduced by Daubechies and Lagarias) to converge uniformly to a continuous solution. We also

establish several basic relations between the convergence of infinite products of matrices and the

existence and regularity of solutions to the two—scale dilation equations.

INTRODUCTION

Two—scale dilation equations arise in many diverse applications. The general equation is

N

fl®)=> " crf(2z — k) (1)

k=0

where

Z cp = chzl.

k even k odd

Often equation (1) has compactly supported solutions supp(f) C [0, N], and we usually seek the

normalized one
/f(:c)d:c =1.
If e, = (]Z)/2N_1 then f is the normalized B—spline of degree N — 1, given by

N

$o) = a0 () k- 2 @)



Given points vi,...,vy € IR™ we can use this function f to generate a CV =2 curve

N
V(z)=) flz+k-1)vi, z€[0,1]. (3)
k=1
The curve V(z) is the B-spline with control points vq,...,vy. More generally if ¢, > 0 for

k =0,...,N then the normalized solution f > 0 satisfies

N
k=1

and so the curve V(z) lies inside the convex hull of the v;’s.

There is a simple geometric subdivision method ([6], [12], [13]) for constructing this curve V(z).

Given the initial polyhedron with vertices vy,..., vy, produce the two subpolyhedra with vertices
N N

V;ZZCQj_k_lvj', VZZECQj_ij. (k:]_,...,N) (4)
=1 =1

Here we are using the convention that ¢, = 0 for £ < 0 or £ > N. Repeatedly sub—divide each of
these two polyhedra into two smaller ones, using the same schemes (4), in a binary tree fashion.
The miniscule polyhedra eventually obtained all link together to form the curve V. In particular
we can recover f(z)in this way by selecting vj to be the vector with a one in position k& and zeros
elsewhere.

We can also use solutions of (1) to construct compactly supported wavelets. Precisely, if the

¢i’s are chosen so as to satisfy
Z cLe o 2, m = 0,
k k—|—2m - 0, m # 0,
then we can generate compactly supported wavelets
P(z) = (~1)fer_rf(22 - k). (5)

Moreover additional moment-type conditions on the ¢;’s will guarantee smoothness of ¢ ([7], [14]).
This paper aims to study the two-scale dilation equations (1). It addresses the structure of

solutions, the existence of discontinuous but bounded solutions, convergence of approximants

fn = Eckfn—1(2m - k):
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and presents some examples. It shares a common approach with [9], [10] in that infinite products
of matrices are used to construct solutions of (1). As we were revising this paper as suggested by
the referees, many exciting new studies on two-scale dilation equations have been done by various

authors. We have included some of those studies in the reference ([15], [16], [17], [18]).

BASIC RESULTS

In [4], [10] the notion of a left convergent product (LCP) set of matrices was developed. The
set—up goes as follows. Let M = M,,, denote the algebra of all real m X m matrices, and let || - ||
be a norm on IR™. This norm induces a corresponding operator norm || - || on M. Let ¥ C M be
a non—empty bounded set of matrices, and denote by S(X) the semi-group generated by . Then
S(Z)=U,_, 2", where £" = {[[_, M;: M; € £, 1 <i < n}. Let £(X) denote the subspace of

common right 1-eigenvectors of X,
EE)={xeR": Mx=x,VMeZX}

We say that 3 is LCP if every infinite product from % left converges; i.e., if lim, . M, - - My

exists for any sequence (M,,)2, in ¥. In this case denote by £° the set of all such limits. Define
1B = sup{||M||: M € £}, H(%) = limsup ||Z"||"/".

p(X) is called the joint spectral radius of . Observe that p(X) does not depend on the particular
choice for the norm on M. If ¥ = {M, : w € J} we also use the notation S(M, : w € J),
EM, weld),p(M, :wel).

The following results appear in [4], [10].

Lemma I. (a) For any 6§ > p(X) there exists an operator norm v = vs on M such that v(X) < 6.

(b) Suppose M., = lim,, .o, M,,---M; exists, and that M is a limit point of (M, ). Then each
column vector v of M., satisfies Mv = v.

(c) If ¥ is LCP then S(X) is bounded.

(d) ¥ is LCP with ¥*° = 0 if and only if p(¥) < 1.



From parts (a) and (d) together we infer that if £° = 0 then the matrices in ¥ must all be
strict contractions relative to some operator norm. Let {P, : w € J} be row stochastic m x m

matrices. (The entries are allowed to be negative.) Since these matrices all have the common

(right) eigenvectors e = (1,...,1)" we can reduce them under similarity to the form
1 b
PwN(O Aw) , we€d, (6)
where A, is (m — 1) x (m — 1). In this way, for any wy,...,w, € J,
1 bl (wi,...,wy,)
Py Py~ (0 e

where b(wy,...,w,) € R %

Let Q = J* be code space. If p(A, 1w € J) <1, then {P, :w € J} is LCP (see [10]) and

vi(w)
Pw) = Tim Py, Py = [ -oeeees (7)
! vi(w)
where
vi(w) = (1] b'(w)C7, (8)

and C = (e | C') is the change-of-basis matrix used to effect the similarity transformation in (6).

For example if we take

1 1 0 0
1 0 1 0
C = . ,
1 0 0 1
1 0 0 0

then
m—1
viw) = (bt(ﬂ) 1= bi(ﬂ)) :
=1
Consider next the special case of just two row-stochastic matrices Py, P;. The code space

here, 2 = {0,1}*°, can be mapped onto the interval [0,1] through dyadic expansion, whereby

o0 w?’L

n=19n € [0,1]. For non—dyadic z this expansion

w = (wy,ws,...) € Q) corresponds to z = >

is unique, and has infinitely many zeros and ones. For dyadic z (aside from z = 0,z = 1)
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there are two expansions: the terminating expansion with only finitely many ones, and the non—
terminating expansion with only finitely many zeros. In what follows we adopt the convention
that the terminating ezpansion is used whenever z is dyadic. (This point will be further discussed
below.) In this way each z € [0, 1] has a unique dyadic code w = (w;,ws,...) which we denote by
D(z).

If {Py, P} is LCP then we can use P : @ — M,, from (8) to induce a map P. = Po D :
[0,1) - M,,. In order for P, to be well-defined at dyadic points if we were to use both dyadic

expansions, there must hold the consistency condition

Let 7:[0,1) — [0,1) be the dyadic shift operator Tz = 2z (mod 1). Note that 7 is ergodic with
respect to the Lebesgue measure A on [0,1). (See e.g., Breiman [5, Sec. 6.4 — Prob. 7].) For any

€ [0,1) there holds

P.(z)= P.(rz)P,, (9)
where wy is the first bit in the dyadic code D(z).

Lemma II. Suppose {Py, P} is LCP. Then
(a) P, is continuous at all non—dyadic points z € (0,1).

(b) If the consistency condition (C) holds, then P, is continuous everywhere in (0,1).

Proof. (a) Let r = dim £(Py, P;). Using a similarity transformation we can assume that

I, B, B
Pw_(o Aw), w=0,1.

Then £(Ap,A41) = 0. Since {Py, 1} is LCP, so is {4y, A1}. Moreover by Lemma I(b),
lim, .o Ay, -+ Ay, =0 whenever 0 and 1 appear infinitely often in w = (wy,wz,...).
Consider now P,(z) — P.(y), where z € (0,1) is non—dyadic. Let ko(n) and k;(n) denote

respectively the positions of the first zero and first one in the dyadic code D(z), beyond position
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n If |z —y| < 9~ max{ko(n),k1(n)} then z and y must have identical dyadic codes up to position n.

In this case

P.(z) - P.(y) = [P(7"2) — P(T"Y)| P, -

n

(0 B\ (I B (0 B'A, A, \’
“\o0 4 ) \0 A, - A, ) \0 A4, ---A,

1

-P,

1

where A’, B’ are bounded independently of y, by virtue of Lemma I(c). Since z is non-dyadic
A, ---A, — 0asn— oo, and we get that P.(y) —» P.(z) as y — z.
(b) Under condition (C) it follows that AG°A; = AT Ay = 0, the last equality following again
by Lemma I(b). Thus we can let z € (0,1) be dyadic in the argument above for part (a). m|
Notice that we do not claim continuity at z = 0 or z = 1 in Lemma II(b). Since 0 and 1 have
unique dyadic codes, in order for our proof to work for these values of z we would need to know
that A5° = A7 = 0, which is not necessarily the case.

From now on, we shall always use Py and P; to denote the row stochastic matrices
N N
Py = (czjmi-1)ij=1r P = (e2j-i)ij=1 (10)

where ¢, = 0 for k < 0 or £k > N. These matrices take the form

t
{0 wy (M 0
Rty W

where M is the (N —1) X (N —1) row stochastic matrix M = (c2j_i)£\7;_:11. In particular the spectra
look like
o(Po) = o(M)U{eo},

. (12)
o(P1) =o(M)U{cn}

Since 1 € o(M) there is a left 1-eigenvector u € RN ™!, u‘M = u'. Then

v(0)=(0]u"), v(1)=(u"|0) (13)

are respective left 1-eigenvectors for Fy and P;.

Let T : L1(IR) — L1 (IR) be the two-scale operator

Tf(z) = B0 e f(2z — k). (14)
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Observe that

Tf(€) = Q(&/2)(¢/2) (15)

where f denotes the Fourier transform of f, and @ is the trigonometric polynomial Q(¢) =

1%cre™ . Observe further that if o, denotes the shift operator o, f(z) = f(z — h) then
Toy = op,,T. (16)
For f € L1(IR) define Sf € Ly1([0,1)) by
Si@)= Y. fath) (17)

k=—0c0

Observe that this summation operator S : L1(IR) — L1([0,1)) is a linear operator, ||S|| = 1, and

/OIsz/_Zf. (18)

Moreover, on account of (14), for any f € Li(IR) there holds

that

STf=Sfor. (19)

For any function f € L;(IR) with supp(f) C [0, N] denote by Vf € L;([0,1); IR") the vector—
valued map

Vi(z) = [f(z), f(z +1),.... f(z + N - 1)]".
Correspondingly for any vector—valued map v € L;([0, 1); IRN) denote by F'v € L1(IR) the function

_Jo(e-k+1), E-1<z<k, (k=1,...,N)
Fv(m)—{o, z<0orz>N ; (20)

with supp(Fv) C [0, N]. Observe that for any f(z) if f(z) =0 for z < 0,z > N, then
VT f(z) = PV f(re) (21)

where wy is the first bit in the dyadic code D(z) of z. Here is where the convention about choosing

the terminating expansion for D(z) enters in. If we were to use instead the non-terminating
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expansion, then P.,7 and V f would be defined on (0,1], and (21) would hold provided f(z) =0
for z < 0,z > N. That is, with the terminating expansion convention (21) requires that f(N) =0,
and with the non-terminating expansion convention it would require that f(0) = 0. Of course if
f(0) = f(N) = 0 then (21) holds for either convention.

We are concerned primarily with solutions f € Li(IR) of the two-scale equation (1), which

can also be written as

Tf=f. (22)

It follows from (15) that the Fourier transform of such a solution necessarily satisfies

&) = o] @te/2m) (23)

where o is a constant. Convergence of the infinite product on the right follows from an argument
like the one in [8, Thm. 2.1]. Thus, up to normalization there can be at most one solution
f € Li(IR) to (1). Moreover if f is non—trivial then [ f # 0. Otherwise & in (23) would have to
be zero. So we can always normalize f by requiring [ f = 1.

It follows from (17) that if f € Ly(IR) satisfies (1), then Sf must be constant a.e. This is
simply because Sf is 7—invariant and 7 is ergodic. Furthermore, according to (18) this constant

must be [ f;ie.,

sz/f a.e. (24)

We specifically study compactly supported solutions to (1). Observe that if supp(f) C [a,d]

b+ N
then supp(Tf) C [g’—I—T] In order for (1) to hold, then, it is clear that we must have

supp(f) C [0, N]. If f(N) = 0 then it follows from (21) that
Vi) =P, Vf(re). (25)

Conversely if f(z) =0 for z < 0,z > N and if (25) holds, then T'f = f.
The following result relates specifically to the coefficients c¢g, cx .
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Lemma III. (a) Suppose the two—scale dilation equation (1) has a non—trivial solution f sup-
ported on [0, N] with f(0+) = 0, where f(0+) = lim, o f(z). Then |co| < 1. Similarly if
f(N=) =0 then |en| < 1.

(b) Suppose {Py, P1} is LCP. Then |co|,|cn| < 1.

Proof. (a) It follows from the two—scale equation that for z € (0,1/2), f(z) = ¢o f(2z). Thus

f(2z) = %f(:c): %f(g) — ...

1
Suppose |co| > 1. If f(0+) = 0 then —f (2 ? 1) — 0, and so f = 0 on (0,1). Using the two—scale
o n

equations again and again this extends to (1,2),(2,3),.... This would lead to f = 0 a.e., and so it
must be that |co| < 1. A similar argument works for cx.

(b) This follows at once from (12) since ¢y € o(Pp),cn € o(Py). a

Theorem IV. Suppose {Py, P\} is LCP. Then there exists a bounded measurable solution f to

(1), supported in [0, N], [ f = 1. It is determined by
V'f(z) = (1,0,...,0)P(z), =z €[0,1).

Moreover £( Py, Py) is one—dimensional.

Proof. When {P,, P, } is LCP it is easy to construct solutions of (22). Indeed it follows straightway
from (9) that for any vector u € R™

v(z) = P!(z)u

satisfies (25). If we then define f = F'v according to (20), we find that T'f = f. It follows from
Lemma I(c) that f is bounded. Measurability follows from Lemma II(a), since f is continuous a.e.

Since u is arbitrary the uniqueness of solutions f € L{(IR) to (1) then implies that any two
rows of P,.(z) must be linearly dependent, for a.e. z € [0,1). Thus P.(z) must be rank one for a.e.

z. This in turn implies that dim £(Py, Py) = 1. a



It is proved in [9] that if p(Ao, A1) < 1 with Ag, A; then f is continuous. It is possible that
{Py, P1} is LCP but p(Ap, A1) = 1. The following is an example where the solutions of (1) are

discontinuous at every dyadic point z.

COZ]_, 01:1/2, 02:0, 0321/2

With this choice of coefficients, { Py, P, } is LCP. Indeed, using the change—of-basis matrix

100
C=[110
1 01
we find that
i (10 oo (1 1/2
no-(3 2). eme- (3 1)
with
C(1/2 1)2 (-1/2 0
AO_(l 0)’ Al_( 0 1/2)‘
Using the £.,—norm we see that ||Ag|| = 1, ||41]| = 1/2. Thus for any sequence w = (wy,ws,...)

with infinitely many ones
. 1 biw
A Po B = (0 (()_))
where

blw)=1[1/2 0] Y Au,_, - Au,.

niwy =1

Moreover since Py exists, the w’s with finitely many ones are covered, too — giving LCP-ness.
So in particular according to Theorem IV there exists a non—trivial bounded measurable solution
f to the dilation equation.

The consistency condition (C) is violated, since

1/2 1/2 0 2/3 1/6 1/6
PP =|2/3 1/6 1/6 | #|2/3 1/6 1/6 | = P™P,.
2/3 1/6 1/6 2/3 1/6 1/6

Observe that £(Fy) is two—dimensional here. See [12, Fig. 5.4] for a graph of f. To see that V f

is in fact discontinuous at every dyadic point, argue in two steps as follows.
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1° f is discontinuous at = 0 from the right.

To see this use the dilation equation
1 1
f(z) = f(2z) + 3 f(2z - 1)+ 3 f(2z - 3)

and the fact that supp(f) C [0, 3] to notice (take z € (0,1/2)) that for y € (0,1)

If im,. o+ f(€) existed then f would have to be constant on (0,1), say f = A on (0,1). Then it
would follow (take z € (1/2,1)) that f = 7 A on (1,2), and then (take z € (1,3/2)) that f = 1

n (2,3). But then it would follow (take z € (3/2,2)) that A = 0.

20 V f is discontinuous at every dyadic z € [0,1).
To see this let z be the dyadic number z = .wy ---wy, and let 0 < € < 27%. Tt follows from (25)

that

Vi(z+e) = Pil . -P::ka(TkG).

Since lim, .o+ V f(7"€) does not exist and Py, P are invertible, we conclude that lim, ..+ V f(y)
does not exist either.
Since A = 0 in this example, we do get left—continuity of f in (0, 3]. (See the argument in the

proof of Lemma II.)

Theorem V. If S(Fy, P;) is bounded, then the two—scale dilation equation (1) has a non—trivial

L solution.

Proof. Consider the sequence of functions f,(z) = T'f.—1, fo(z) = X[0,1)(z)- It follows from (15)

that

n

£(&) = fo(&/2m) H (€/2%)

where Q(¢) = %Eckeikg. Notice that supp(f,) C [0, N] and for any z € [0, 1],

Vf.(z)= P, - P, Vf(r'z)
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where (wy,ws, ) = D(z). Hence there exists a constant C' > 0 such that |f,(z)| < C for all z
and n.
We have fo(f) = (1 —e %)/i¢ and fn(f) — ¢(&) = [1r—, Q(&/2%) uniformly on any compact

subset of IR. (Such a convergence is proved in [7].) Let B C IR be any compact subset of IR. Then

[ 8@ de = im_[ 17,00 a¢

Slimsup/IR|fn(f)|2df

~timsup [ |7, (e)f do
n—co JR
<C’N
Hence ¢(¢) € L*(IR). Let f(z) be the inverse Fourier transform of ¢(¢). Then f(z) € L*(RR).
Since f(z) is compactly supported as a result of Paley-Wiener Theorem (see [7]), f(z) € L'(IR).
Finally, the Fourier transform of f(z) — Efj:o crf(2z — k) is 0. Hence, f(z) satisfies the dilation
equation (1). a
If each coefficient ¢ > 0 for k =0,..., N then {Py, Pi} is LCP and (A4, A1) < 1 with Ao, 41
as in (6). This follows from [3, Thm. I], [13, Thm. 2.1] since P, and P; each have a (strictly)

positive column. Indeed the first rows of Py and P; contain either ¢y_q1 or ¢y, and that column

underneath is all positive. In particular then we arrive at the following conclusion.

Proposition VI. Assume N > 2. Suppose ¢, > 0 for k = 0,...,N. Then p(Ag, A1) < 1—¢

where € = miny, cg.

Proof: Let £ C IR" be the subspace spanned by e = (1,1,...,1)". We need to show that Py, P;
are both strictly contractive on the quotient space IRN/E, relative to some operator norm. Define
a norm v on R /& by
v(x) = max z; — miin ;.
For any non-negative row stochastic matrix P = (p;;) and any ¢,
(Px); <pjjz;+(1— pij)mgxcck
= maxey — p”(mgxmk —z;) < max ey — (mlnp”)(m:,x:ck —z;)
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Similarly
(Px); > mgn T — (mjnpij)(mgn Ty — ;).
In particular
v(P)<1l-—c¢

where € = max; min; p;; = miny, c;. Applying this to Py, P; we get

v(Py), v(P) <1-—e m|

CASCADE ALGORITHM

In [7] Daubechies introduced the cascade algorithm for finding solutions to (1). One iterates

fn = Tfn—l-

She gives conditions on the trigonometric polynomial Q(§) = %Eckeikg which ensure convergence

of the cascade algorithm (for fo = x[—1/2,1/2)) to a solution of (1). The matrix approach raises
several questions concerning the convergence of the algorithm. The results below partially analyze

the situation.

Theorem VII. Let fy be bounded measurable, supp(fy) C [0,N]. Suppose {Py, P} is LCP.

Then T" fo — f in Li(IR) if and only if Sfo = [ fo a.e.

Proof. The necessity follows from the fact that 7 is measure-preserving. If 7" f; — f in L;(IR),
then it follows form (19) and (24) that Sfo o 7" — [ f — 0 in measure, and so we must have
Sfo = [ f a.e. because T is measure preserving. To prove sufficiency assume that Sfy = 1 a.e.,

where we have normalized [ f; = 1 without any loss of generality. It follows from (21) that

Vif.(z)=Vifo(r"z)P,, -+ P,

1

where wy,...,w, are the first n bits in the dyadic code D(z) of z. Thus

lim V'f,(z) = lim V'fo(r"z)P.(z) = V' f(z) ae.

n— o0
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where we have used Theorem IV(a) in this last step, together with the facts that (i) the rows of
P.(z) are identical a.e.; (ii) the components of V' fy(7"z) all sum to Sfy = 1 a.e. This shows
that f, — f a.e. By Lemma I(c) we know that the f,’s are uniformly bounded. Thus f, — fin

Theorem VIII. If the cascade algorithm f, = T"fo, fo = X[o,1) converges uniformly to a con-

tinuous function f, then p(Ao, A1) < 1.

Proof. As in the proof of Theorem VII

Furthermore by (16)
T"onfo = opnsanfn
and thus, since f is continuous, T"0j fo — f uniformly, too. By choosing h =1,..., N — 1 we find

that

(0,...,0,1,0,...,0) P, --- P, = Vi, fru(z) - V' f(z).

position r+1

Thus

On account of our terminating expansion convention about D(z) this proves that all infinite prod-
ucts of Py, P; converge — except for those with finitely many zeros. On the other hand — look
carefully at (11). Since we know that Pj® = P.(0) exists and is rank one, it follows that M also
exists and is rank one. Since f is continuous it follows from Lemma III(a) that |ex| < 1. From
this we get that
P = ( n—1 kM:? n—k—1 (7)1 )
k=0 N Wi M N

also converges. Moreover since we know that 1 is a simple eigenvalue for P, it follows from (12)
that it must also be simple for P;. So P;* exists and is rank one. From this it follows that
A, A, — 0for all codes w = (wy,ws,...) € Q. By Lemma I(d), then, p(A4o, 41) < 1. a
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It can happen that the two-scale equation (1) has a (non—trivial) continuous solution, without
{Po, P, } being LCP, and without the cascade algorithm converging at all (say, with fo = X[0,1))-
To see this let the coeflicients ¢, ..., cn satisfy ¥, ¢, = ¥, c2,41 = 1 and consider the expanded

operator

T'g(z) = Z crg(2z — Lk)

k

where £ is an odd number. This operator is of the form (14), with coeflicients ¢, ..., ¢}y given by

N _{ng, if m = ¢k,

m otherwise.

The coefficients ¢!, satisfy X,,¢co,, = X 2,01 = 1, since £ is odd. It is easy to relate fixed points of
T and T'. Observe that if f(z) = g(4z) then T f(z) = T'g(¢z). Thus if f is a fixed point for T then
g(z) = f(z/4) is a fixed point for T'. In particular, we can get g to be continuous, by choosing the

coefficients c¢j so as to get f continuous. However, the cascade algorithm

9 =T'9n-1, 90 = Xjo,1)

cannot converge to g in Ly (IR). To see this, set

Jn=Tfn-1, Jo=Xpa1/0)-

Since fo(z) = go(£z) it follows inductively that f,(z) = g,(¢z),V n. If it were true that g, — g in
Li(IR) then f, — fin L1(IR), too. But Sfy is not constant a.e., and so this contradicts Theorem
VIIL.

In [7, Prop. 3.3] Daubechies gave conditions on the trigonometric polynomial Q(¢) which

suffice to ensure uniform convergence of the cascade algorithm when fy is the “tent function”

1+z, -1<z<0,

pe={1T0 o155 (26)

Precisely, she proved that fn — f in L1(IR), and she needed to use this tent function f; so that

fo would be integrable. We can modify Theorem VI to handle functions fo other than X[ 1)-
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Lemma IX. Let f; be a bounded measurable function, supp(fo) C [0, N], and suppose the cascade

algorithm f, = T f,_1 converges uniformly to a continuous function f. Then for any y € [0,1)
Vif(z) = lim V'fo(y)P., - P.,

where wy, . ..,w, are the first n bits in the dyadic code D(z) of .

Proof. Let z,, be the number with dyadic expansion z,, = .w; - --w, D(y). Then by (21)
Vifu(zn) = V'fo(y)Po, - P,
Since z,, — = and since f, — f uniformly with f continuous
nh_}n;o Vf.(z,) =V f(z). a

Theorem X. Let F be a family of bounded measurable functions fy, supp(fo) C [0, N]. Suppose
the cascade algorithm f, = T f, 1 converges uniformly to a non-trivial continuous function for

every fo € F. If

span{V fo(y) :y € [0,1), fo € F} = RY,

then p(Ap, A1) < 1 where Ay, Ay are as in (6).

Proof. It follows from Lemma IX that

lim Pwn .. 'Pw1 — | e

n— o0

for all codes w = (wy,ws,...) with infinitely many zeros, where f is a continuous solution of (1),
supp(f) C [0, N], [ f = 1. Thus we can apply the argument used in the proof of Theorem VIII. O
Suppose the two-scale equation (1) has a continuous solution f, supp(f) C [0, N] and let W
be the subspace
W =span{Vf(z):z €[0,1)}.

16



It follows from (25) that W is invariant under P¢, P{. If W = IR" then by taking fo = f we can
conclude from Theorem X that §(Ag, A1) < 1. In particular this holds whenever P{, P} have no
common proper invariant subspace. This was also established in [6, §2].

In general, since W is invariant, we can reduce Py, P; to the form

P, 0 _
PWN(BW Cw), w=20,1

where P! = P'|)y. By working in W we can apply Theorem X to conclude that

- 1 b}
Pw ~ (0 Aw ) , w = 0, 1
where §(Ay, A1) < 1. By considering the Holder modulus of continuity for the solution f of (1), it

can be shown as in [9, Remark 3 following Thm. 2.3] that p(4y, 4;) > 1/2.

17



APPENDIX: Augmented Matrices

In Theorem VII the convergence (in the L'(IR) and uniform topologies) of the iterates 7" f,
was established for functions fy supported in [0, N] and satisfying S fo = const. If fy is supported
in some other interval of length N, then the shift o), fy will be supported in [0, N| for some h.
Since, by (16),

T"fo = U—h/2nTn0hf0

and since the group of shift operators {o}, : A € IR} is strongly continuous (in the L'(IR) and
uniform topologies), the convergence still holds.

What if fp is supported in an interval of length more than N? One thing we can do is
enlarge N, by adding zero coeflicients c¢yy1,cn+2,... This does not impact the operator 7', but it
does raise the question of whether or not the hypotheses on Py, P; in Theorem VII remain valid
for the augmented matrices Py, P;. We will show below that in fact the LCP property and the
p(Ag, A1) < 1 property carry over to Py, Py. To establish this it suffices to analyze what happens

when N is increased by one.

Theorem XI. Let ¢, =0 fork < 0 or k > N, as always. Define analogously two other (N + 1) x

(N + 1) row stochastic matrices
Py = (cajoic1)iity,  Pr=(eajmi)iity

(a) {P,, P} is LCP if and only if {Py, P} is LCP.
(b) p(Ao, A1) < 1 if and only if p(Ag, A;) < 1, where Ay, A, are as in (6) and Ay, A; are defined

analogously for Py, P;.

Proof: (a) Observe first that

—~ (P 0 —~ (P 0
Po (P 2), mo (B0 -

From this it is clear that if {Py, P1} is LCP, then so is {Py, P,}. Conversely, suppose { Py, P;} is

LCP. We proceed in four stages.

18



1° FO” and ?(1)0 both ezist.
Using (27) we get that P, exists, and that P, also exists if |ex| < 1. If |ex| > 1 then it must be
that ¢y = 1, since ¢y € o(Py) by (12) and P;® exists. For any matrix P all of whose eigenvalues
A satisfy |A| < 1 or A = 1, P*™ exists if and only if the powers {P"} are bounded. (Just consider

the Jordan canonical form.) So if P, did not exist then the powers {P, } would be unbounded —

—n (PP 0
P-(i )

where the vectors {b,} in the last row would have to be unbounded. But since Py can also be

o5 Co *
r- (4 1),

the last row of P, must in fact be bounded.

specifically

identified as

20 S(Py, Py) is bounded.
Let & = {P, Py :n=0,1,...}. Since
- (70 )
where the vectors {c,} are bounded, it can be seen that S(X) is bounded. Every matrix in
S(Py, P1) can be written 6?? with @ € S(X). Since the powers of P, are bounded, we get that
S(Py, P1) is bounded.
30 Every infinite product of A,,’s which contains Ay and A, infinitely often converges to zero.

Using (27) it follows that

(4 0 — (A 0
e (% 2, mo (4 0). o

By Step 2 above, S(4y, A4;) is bounded, and so it suffices to show that every limit point

— (0 0
- 1)

of (A, ---A, )%, is zero. Let’s say A = limy_., By---B; where B), is the block B, =

n

A

. e Since w,, = 1 infinitely often we can always assume WLOG that A; occurs

19



in each block, so that B}, has the form

— x 0
5o ()

According to Lemma I(b) B A = A where B is a limit point of (B},). Since B has the same form

as each B, we get

giving b = 0, as desired.
40 [Py, P} is LCP.

We already showed in Step 1 above that FO” and ?(1)0 both exist. Since S(Py, P;) is bounded, it

— (1 bt
(0 %)

of (P,, -+ P, )%, are the same, where (w,) is a sequence containing infinitely many zeros and

suffices to show that all limit points

ones. Suppose, then, that there are two limit points, say with vectors b’ and b”. As in Step 3

above, write

P, -.-P,

1
k

&

— — —
P zhmBk---Bl, n;c n;c—1+1,

1
k

=

|
I
~

P —1imB, .. -B,

W Py, "
k

We can assume WLOG that n} > n), Vk, so that

—/

—1 —1 — =
B.---By =Q;B,--- B,
where ak = ?wn,, .- P, has the form
k

w1
1
nk+

Then if @ is a limit point of (@) we get

Q
6% )=0 D6 %)

giving b’ = b”, as desired.
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(b) As in [4],if ¥ C M is a non—empty bounded set of matrices, define

p(Z) = sup{p(M): M € B}, p.(Z) = limsup[p(2")]"/",

n— o0

where p(M) denotes the spectral radius of M. The main result of [4] asserts that p.(X) = p(2).
Thus it suffices to prove Theorem XI(b) for p. instead of 5.

Using (28) we derive the relationship

p«(Ao, A1) = max(p.(Ao, A1), [en])- (29)

Since ¢n € 0(A;) it follows that |cny| < 1 whenever p.(A4o, 41) < 1. Thus it becomes clear from
(29) that p.(Ay, A1) < 1if and only if p.(Ap, 4;) < 1. O
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