Two-Scale Dilation Equations and the Mean Spectral Radius

Yang Wang School of Mathematics Georgia Institute of Technology Atlanta, GA 20332

Abstract

We study the two-scale dilation equation

$$f(x) = \sum_{n=0}^{N} f(2x - n).$$

By expanding the matrix product expansion technique introduced by Daubechies and Lagarias, we give a necessary and sufficient condition for the existence of continuous scaling functions and establish an exact formulae for their Hölder exponents. We also introduce the mean spectral radius of a set of matrices. Applying the mean spectral radius we prove a sufficient condition for the existence of L^1 solutions to the dilation equation. We conjecture that such a condition is also necessary. Finally, we establish a surprising formulae for the exact fractal dimension of the graph of a continuous scaling function by using the mean spectral radius.

1 Introduction and Notation

In this paper, we study the two-scale dilation equation

$$f(x) = \sum_{n=0}^{N} c_n f(2x - n)$$
 (1)

where the coefficients c_n are real. We always assume $c_0 \neq 0$ and $c_N \neq 0$.

Two-scale dilation equations arise in many applications. They play crucial roles in *sub-division schemes*, which are algorithms for curve and surface generation ([21], [22], [4], [14], [15] etc.), and in the construction of compactly supported orthonormal wavelet functions ([8]).

Due to those important applications the two scale-dilation equation (1) has been studied extensively in recent years. Daubechies ([8]) applied Fourier analysis to estimate the smoothness of compactly supported orthonormal wavelets. In a later paper Daubechies and Lagarias ([11]) improved the estimates in [8] using a different approach. They noticed that better estimates can be obtained from the matrix product expansion (2) by applying their results ([9]) on infinite products of matrices. The same idea was also exploited by

Caravetta, Dahmen, and Micchelli ([4]) to study the convergence of subdivision schemes. It is mainly this matrix product expansion approach we shall adopt in this paper.

Throughout this paper, we use P_0, P_1 to denote the two N by N matrices

$$P_0 = \begin{bmatrix} c_0 & 0 & 0 & \cdots & 0 & 0 \\ c_2 & c_1 & c_0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & c_N & c_{N-1} \end{bmatrix}, \quad P_1 = \begin{bmatrix} c_1 & c_0 & 0 & \cdots & 0 & 0 \\ c_3 & c_2 & c_1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & c_N \end{bmatrix},$$

or $P_0 = (c_{2i-j-1})$ and $P_1 = (c_{2i-j})$. For any f(x) with $supp(f) \subseteq [0, N]$, we denote

$$\mathbf{v}_f(x) = [f(x), f(x+1), \dots, f(x+N-1)]^t.$$

By a solution to the dilation equation (1) we always refer to a **nontrivial compactly supported** solution. When a solution f(x) is integrable, it is necessary that f(x) is compactly supported with supp $(f) \subseteq [0, N]$ ([10]). Sometimes it is convenient to call a solution f(x) to (1) a scaling function and $\mathbf{v}_f(x)$ a scaling vector when $f(x) \in L^2(\mathbf{R})$ because it is a scaling function of a multiresolution analysis and vice versa. (See [8] for more on multiresolution analysis.)

For any $x \in [0,1]$, let $x = 0.d_1d_2d_3\cdots$ be a dyadic expansion of x (so $d_i \in \{0,1\}$). Define

$$\tau x = \begin{cases} 2x & x \in [0, \frac{1}{2}], \\ 2x - 1 & x \in (\frac{1}{2}, 1]. \end{cases}$$

Then τ becomes the left shift operator on dyadic expansions of $x \in [0, 1]$, i.e., $\tau x = 0.d_2d_3d_4\cdots$. We have

Proposition 1.1 Let f(x) be a solution to (1). Then for all $n \ge 1$ and $x \in [0, 1]$,

$$\mathbf{v}_f(x) = P_{d_1} P_{d_2} \cdots P_{d_n} \mathbf{v}_f(\tau^n(x)) \tag{2}$$

where $x = 0.d_1d_2d_3\cdots, d_i \in \{0, 1\}.$

Since dyadic expansions routinely occur in this paper, it is convenient to introduce some notation. For any $x \in [0, 1]$, if x is dyadic, i.e. $x = k/2^m$ for some $k, m \in \mathbf{Z}$, then x has two dyadic expansions except for x = 0 and x = 1,

$$x = 0.d_1 \cdots d_m 1000 \cdots$$
 (upper expansion)
= $0.d_1 \cdots d_m 0111 \cdots$ (lower expansion).

for some $d_i \in \{0, 1\}$. When x is non-dyadic, the dyadic expansion of x is unique. In this case the upper and lower dyadic expansion of x is simply the same unique dyadic expansion of x. We use $d_i(x)$ to denote the i-th digit in the upper dyadic expansion of x.

Definition 1.2 For any $x, y \in [0, 1]$, $x \neq y$ we denote by $\sigma(x, y)$ the largest integer k with the following property: there exists a dyadic expansion of x and a dyadic expansion of y such that the first k digits of the two expansions coincide. We denote by $d_i(x, y)$, $1 \leq i \leq \sigma(x, y)$, the i-th common digit in the two expansions.

Lemma 1.3 If $\sigma(x,y) \ge m$ then $|x-y| \le 2^{-m}$. Conversely, if $|x-y| \le 2^{-m}$ and either x or y is dyadic, then $\sigma(x,y) \ge m$.

Proof: The first statement is obvious. To prove the second statement, assume that $x \in (0,1)$ is dyadic. (In the cases of x = 0 or x = 1, the lemma can be checked easily.) So x has two dyadic expansions

$$x = 0.d_1 \cdots d_k 1000 \cdots = 0.d_1 \cdots d_k 0111 \cdots$$

Let $y = e_1 e_2 e_3 \cdots$ be a dyadic expansion of y. If k > m then it is obvious that $e_i = d_i$ for $1 \le i \le m$. Suppose $k \le m$. Let $a = 2^m x$ and $b = 2^m y$. We have $a \in \mathbf{Z}$ and b = b' + r where $b' \in \mathbf{Z}$ and $0 \le r < 1$. Since $|a - b| \le 2^m |x - y| \le 1$, we have b' = a or b' = a - 1. If b' = a then the upper expansions of x and y will have the same first m digits. If b' = a - 1 then the lower expansion of x and the upper expansion of y have the same first m digits.

Definition 1.4 Let $\Sigma \subset \mathbf{M}_N(\mathbf{R})$ ($\mathbf{M}_N(\mathbf{R})$ is the set of all N by N real matrices). Σ is called **RCP** (right convergent products) if $\lim_{n\to\infty} A_1 \cdots A_n$ exists for every sequence $\{A_i\}$ in Σ . Σ is called **product bounded** if the semigroup generated by Σ is bounded.

For a single matrix $A \in \mathbf{M}_N(\mathbf{R})$ the spectral radius of A is well-known, namely $\rho(A) = \{|\lambda|: \lambda \text{ is an eigenvalue of } A\}$. It is easy to show that for any matrix norm $\|.\|$ on $\mathbf{M}_N(\mathbf{R})$

$$\rho(A) = \lim_{n \to \infty} \|A^n\|^{\frac{1}{n}}.$$
 (3)

We extend the definition of spectral radius to a set of matrices.

Definition 1.5 Let Σ be a bounded subset of $\mathbf{M}_N(\mathbf{R})$. The generalized spectral radius of Σ is

$$\rho(\Sigma) = \limsup_{n \to \infty} \left(\sup_{A_1, \dots, A_n \in \Sigma} \rho(A_1 \cdots A_n) \right)^{\frac{1}{n}}.$$
 (4)

The following results appeared in [2], [9].

Proposition 1.6 Let $\Sigma \subset \mathbf{M}_N(\mathbf{R})$ be bounded.

1. Let $\|.\|$ be any matrix norm on $\mathbf{M}_N(\mathbf{R})$. Then

$$\rho(\Sigma) = \limsup_{n \to \infty} \sup_{A_1, \dots, A_n \in \Sigma} \|A_1 \cdots A_n\|^{\frac{1}{n}}.$$
 (5)

- 2. For any $r > \rho(\Sigma)$, there exists a matrix norm $\|.\|$ on $\mathbf{M}_N(\mathbf{R})$ such that $\|A\| < r$ for every $A \in \Sigma$.
- 3. If Σ is RCP, then Σ is product bounded.
- 4. Σ is product bounded if and only if there exists a norm $\|.\|$ on $\mathbf{M}_N(\mathbf{R})$ such that $\|A\| \leq 1$ for every $A \in \Sigma$.

Note that (5) is the generalization of (4). The right hand side of (5) is called the *joint* spectral radius of Σ . Frequently it is more convenient to use (5) as the definition of $\rho(\Sigma)$.

Definition 1.7 Suppose $\Sigma = \{A_1, \ldots, A_p\} \subset \mathbf{M}_N(\mathbf{R})$ where $A_i \neq A_j$ for $i \neq j$. Let $\|.\|$ be a matrix norm defined on $\mathbf{M}_N(\mathbf{R})$. The mean spectral radius is

$$\bar{\rho}(\Sigma) = \limsup_{n \to \infty} \frac{1}{p} \left(\sum_{i_1, \dots, i_n} \|A_{i_1} \cdots A_{i_n}\| \right)^{\frac{1}{n}}$$
(6)

where the summation is taken over all elements $(i_1, \dots, i_n) \in \{1, \dots, p\}^n$.

It is standard to show that the difinition of $\bar{\rho}(\Sigma)$ is independent of the choice of the norm $\|.\|$. We also have the following:

Proposition 1.8 Suppose $\Sigma = \{A_1, \ldots, A_p\} \subset \mathbf{M}_N(\mathbf{R})$ where $A_i \neq A_j$ for $i \neq j$. Then

1.

$$\bar{\rho}(\Sigma) = \lim_{n \to \infty} \frac{1}{p} \left(\sum_{i_1, \dots, i_n} \|A_{i_1} \dots A_{i_n}\| \right)^{\frac{1}{n}}$$

$$(7)$$

where the summation is taken over all elements $(i_1, \dots, i_n) \in \{1, \dots, p\}^n$. In other words, the $\limsup in (6)$ can be replaced by \liminf .

2. Let $\|.\|$ be any matrix norm defined on $\mathbf{M}_N(\mathbf{R})$. Then

$$\bar{\rho}(\Sigma) \le \frac{1}{p} \sum_{i=1}^p ||A_i||.$$

Proof: 1. Let

$$a_n = \log \left(\sum_{i_1, \dots, i_n} \|A_{i_1} \cdots A_{i_n}\| \right).$$

Then

$$a_{m+n} = \log \left(\sum_{i_1, \dots, i_{m+n}} \| A_{i_1} \dots A_{i_{m+n}} \| \right)$$

$$\leq \log \left(\sum_{i_1, \dots, i_{m+n}} \| A_{i_1} \dots A_{i_m} \| \cdot \| A_{i_{n+1}} \dots A_{i_{m+n}} \| \right)$$

$$= \log \left(\sum_{i_1, \dots, i_m} \| A_{i_1} \dots A_{i_m} \| \right) \left(\sum_{j_1, \dots, j_n} \| A_{j_1} \dots A_{j_n} \| \right)$$

$$= a_m + a_n.$$

Hence $\lim_{n\to\infty} a_n/n$ exists and (7) holds as required.

2. It follows easily from

$$\sum_{i_1,\dots,i_n} \|A_{i_1} \cdots A_{i_n}\| \le \sum_{i_1,\dots,i_n} \|A_{i_1}\| \cdots \|A_{i_n}\| = \left(\sum_{i=1}^p \|A_i\|\right)^n.$$

The rest of the paper is divided into three sections. In Section 2 we give a necessary and sufficient condition for the existence of continuous scaling functions. We also prove a formulae for the exact Hölder exponent of a continuous scaling function based on the generalized spectral radius of two matrices. Some of our results in this section have also been obtained independently by Colella and Heil ([7]). In Section 3, we focus on integrable solutions. We prove that a bounded solution exists if $\{P_0, P_1\}$ is product bounded, improving an earlier result in [27]. We also establish a strong link between the mean spectral radius and the existence of an integrable scaling function. Finally, in Section 4 we give an exact formulae for the box dimension (fractal dimension) of the graph of a continuous scaling function using the mean spectral radius.

2 Existence and Regularity of Continuous Solutions

Consider the the general dilation equation (1)

$$f(x) = \sum_{n=0}^{N} c_n f(2x - n).$$

Under the assumption

$$\sum_{n} c_{2n} = \sum_{n} c_{2n+1} = 1 \tag{8}$$

the two matrices P_0 , P_1 are column stochastic. Since [1, 1, ..., 1] is a common left 1-eigenvector of both P_0 , P_1 , we have

$$P_i \sim \left[egin{array}{cc} 1 & 0 \ * & A_i \end{array}
ight], \quad i=0,1$$

simultaneously. Daubechies and Lagarias ([11]) proved that a continuous scaling function exists if $\rho(A_0, A_1) < 1$. This condition is not, however, necessary and cannot be applied to the general dilation equation where condition (8) is not satisfied. Wang ([27]) proved the following result for the general case:

Proposition 2.1 Suppose the dilation equation (1) has a continuous solution. Then

1.
$$|c_0| < 1$$
, $|c_N| < 1$.

2. $W = \text{span}\{\mathbf{v}_f(x) | x \in [0,1]\} \subseteq \mathbf{R}^N$ is the minimal invariant subspace of $\{P_0, P_1\}$ containing $\mathbf{v}_f(0)$ and $\mathbf{v}_f(1)$. Moreover,

$$P_i \mid_{\mathcal{W}} \sim \begin{bmatrix} 1 & 0 \\ * & A_i \end{bmatrix}, \quad i = 0, 1$$

simultaneously with $\rho(A_0, A_1) < 1$.

Daubechies and Lagarias ([10]) examined the following cascade algorithm for generating scaling functions of (1):

$$f_{m+1} = \sum_{n=0}^{N} c_n f_m(2x - n), \quad f_0(x) = \chi_{[0,1)}(x).$$

Wang ([27]) proved that under the condition (8) $W = \mathbf{R}^N$ is a necessary and sufficient condition for the cascade algorithm to converge uniformly to a continuous solution of (1). In general, equation (1) may have a continuous solution with $W \neq \mathbf{R}^N$.

Example: The dilation eqation

$$f(x) = \frac{1}{2}f(2x) + f(2x - 3) + \frac{1}{2}f(2x - 6)$$
(9)

has a continuous solution

$$f(x) = \begin{cases} x, & x \in [0, 3] \\ 6 - x, & x \in [3, 6] \\ 0, & x \notin [0, 6]. \end{cases}$$

Clearly dim $\mathcal{W}=2$ so $\mathcal{W}\neq\mathbf{R}^6$. Notice that (9) is obtained by "stretching" the equation

$$f(x) = \frac{1}{2}f(2x) + f(2x - 1) + \frac{1}{2}f(2x - 2)$$

by a factor of 3.

Let W be an invariant subspace of $\{P_0, P_1\}$, dim W = k, such that

$$P_i \Big|_{\mathcal{W}} \sim \begin{bmatrix} 1 & 0 \\ * & A_i \end{bmatrix}, \quad i = 0, 1 \tag{10}$$

simultaneously with $\rho(A_0, A_1) < 1$. Then there exists a $Q \in \mathbf{M}_N(\mathbf{R})$ such that

$$QP_iQ^{-1} = \begin{bmatrix} \tilde{P}_i & * \\ 0 & B_i \end{bmatrix}, \quad i = 0, 1$$
 (11)

where $QW = \{ [\mathbf{u}^t, 0]^t : \mathbf{u} \in \mathbf{R}^k \}$ and

$$\tilde{P}_i = \begin{bmatrix} 1 & 0 \\ * & A_i \end{bmatrix}, \quad i = 0, 1. \tag{12}$$

Lemma 2.2 Let W be an invariant subspace of $\{P_0, P_1\}$ such that (10) is satisfied. Fix $\mathbf{v} \in W$ and for any $x \in [0, 1]$ define

$$\mathbf{v}(x) = \left(\prod_{i=1}^{\infty} P_{d_i(x)}\right)\mathbf{v}$$

where $\prod_i A_{d_i}$ denotes to the right product $A_{d_1} A_{d_2} A_{d_3} \cdots$.

1. Let Q, \tilde{P}_1 , \tilde{P}_1 be as in (11) and (12). Then $Q\mathbf{v}(x) = [\mathbf{b}^t(x), 0]^t$ where $\mathbf{b}(x) \in \mathbf{R}^k$, $k = \dim \mathcal{W}$. Moreover, $\mathbf{b}(x)$ is bounded and

$$\mathbf{b}(x) = \tilde{P}_{d_1(x)} \cdots \tilde{P}_{d_m(x)} \mathbf{b}(\tau^m x) \tag{13}$$

for all $m \geq 0$.

2. For any $x, y \in [0, 1]$,

$$\mathbf{b}(x) - \mathbf{b}(y) = \begin{bmatrix} 0 \\ \mathbf{c}_1(x, y) \end{bmatrix}, \quad \mathbf{c}_1(x, y) \in \mathbf{R}^{k-1}.$$
 (14)

If $\sigma(x,y) \geq m$ then

$$\mathbf{c}_{1}(x,y) = A_{d_{1}} \cdots A_{d_{m}} \mathbf{c}_{1}(\tau^{m} x, \tau^{m} y) \tag{15}$$

where $d_i = d_i(x, y)$.

3. Let $\|.\|$ be any matrix norm on $\mathbf{M}_{k-1}(\mathbf{R})$ and $r > \rho(A_0, A_1)$. Suppose $x, y \in [0, 1]$ and $\sigma(x, y) \geq m$. Then

$$|\mathbf{v}(x) - \mathbf{v}(y)| \le C_2 ||A_{d_1} \cdots A_{d_m}|| \le C_3 r^m$$
 (16)

where $d_i = d_i(x, y)$ and C_2 , C_3 are independent of x, y, m.

Proof: It is straightforward to check that

$$Q\mathbf{v}(x) = Q\left(\prod_{i=1}^{\infty} P_{d_i(x)}\right)Q^{-1}Q\mathbf{v} = \begin{bmatrix} \prod_{i=1}^{\infty} \tilde{P}_{d_i(x)}\tilde{\mathbf{v}} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{b}(x) \\ 0 \end{bmatrix}$$

where $Q\mathbf{v} = [\tilde{\mathbf{v}}^t, 0]^t$. Since $\{\tilde{P}_1, \tilde{P}_1\}$ is RCP, $\mathbf{b}(x)$ must exist and according to Proposition 1.6 it is bounded. Clearly, $\mathbf{b}(x) = \tilde{P}_{d_1(x)} \cdots \tilde{P}_{d_m(x)} \mathbf{b}(\tau^m x)$ for all $m \geq 0$.

We observe that for any $z \in [0, 1]$,

$$\prod_{i=1}^{\infty} \tilde{P}_{d_i(z)} = \begin{bmatrix} 1 & 0 \\ \mathbf{c}(z) & 0 \end{bmatrix}$$

where $\mathbf{c}(z) \in \mathbf{R}^{k-1}$ is bounded. Hence for any $z, w \in [0, 1]$,

$$\mathbf{b}(z) - \mathbf{b}(w) = \begin{bmatrix} 1 & 0 \\ \mathbf{c}(z) & 0 \end{bmatrix} \tilde{\mathbf{v}} - \begin{bmatrix} 1 & 0 \\ \mathbf{c}(w) & 0 \end{bmatrix} \tilde{\mathbf{v}} = \begin{bmatrix} 0 \\ \mathbf{c}_{1}(z, w) \end{bmatrix}$$

where $\mathbf{c_1}(z, w)$ is bounded. If $x, y \in [0, 1]$ and $\sigma(x, y) \geq m$, then

$$\mathbf{b}(x) - \mathbf{b}(y) = \begin{bmatrix} 1 & 0 \\ * & \prod_{i=1}^{m} A_{d_i} \end{bmatrix} (\mathbf{b}(\tau^m x) - \mathbf{b}(\tau^m y)) = \begin{bmatrix} 0 \\ \prod_{i=1}^{m} A_{d_i} \mathbf{c_1}(\tau^m x, \tau^m y) \end{bmatrix}.$$

where $d_i = d_i(x, y)$. So (15) holds. Finally, since $\mathbf{c_1}$ is bounded,

$$|\mathbf{b}(x) - \mathbf{b}(y)| \le C_1 |\prod_{i=1}^m A_{d_i} \mathbf{c_1}(\tau^m x, \tau^m y)| \le C_2 |\prod_{i=1}^m A_{d_i}||.$$

Hence $|\mathbf{v}(x) - \mathbf{v}(y)| \leq C_2 ||A_{d_1} \cdots A_{d_m}||$, and $|\mathbf{v}(x) - \mathbf{v}(y)| \leq C_3 r^m$ follows easily from Proposition 1.6.

We shall prove the converse of Proposition 2.1. For any $\mathbf{u} = [u_1, \dots, u_{N-1}]^t \in \mathbf{R}^{N-1}$, we denote by $\mathcal{W}(\mathbf{u})$ the minimal invariant subspace of $\{P_0, P_1\}$ containing the vectors

$$\mathbf{v_0} = \begin{bmatrix} 0 \\ u_1 \\ \vdots \\ u_{N-1} \end{bmatrix}, \quad \mathbf{v_1} = \begin{bmatrix} u_1 \\ \vdots \\ u_{N-1} \\ 0 \end{bmatrix}. \tag{17}$$

Notice that if **u** is an 1-eigenvector of the $(N-1) \times (N-1)$ matrix $(c_{2i-j})_{1 \le i,j \le N-1}$, then $\mathbf{v_0}$ abd $\mathbf{v_1}$ are 1-eigenvectors of P_0 and P_1 respectively.

Theorem 2.3 Suppose there exists a 1-eigenvector $\mathbf{u} \in \mathbf{R}^{N-1}$ of $M = (c_{2i-j})_{1 \leq i,j \leq N-1}$ such that

$$P_i \mid_{\mathcal{W}(\mathbf{u})} \sim \begin{bmatrix} 1 & 0 \\ * & A_i \end{bmatrix}, \quad i = 0, 1$$

simultaneously with $\rho(A_0, A_1) < 1$. Then the dilation equation (1) has a continuous solution f(x). Moreover,

$$\mathcal{W}(\mathbf{u}) = \operatorname{span} \{ \mathbf{v}_f(x) \mid x \in [0, 1] \}.$$

Proof: Let

$$\mathbf{v}(x) = \left(\prod_{i=1}^{\infty} P_{d_i(x)}\right)\mathbf{w}$$

where $\mathbf{w} \in \mathcal{W}$. We first show that by choosing a suitable \mathbf{w} we shall have $\mathbf{v}(x) \neq 0$.

Let Q, \tilde{P}_1 , \tilde{P}_1 be as in (11) and (12) for $\mathcal{W} = \mathcal{W}(\mathbf{u})$. Then it follows from Lemma 2.2 that there exists a $\tilde{\mathbf{w}} \in \mathbf{R}^k$ such that

$$Q\mathbf{w} = \begin{bmatrix} \tilde{\mathbf{w}} \\ 0 \end{bmatrix}, \quad Q\Big(\prod_{i=1}^{\infty} P_{d_i}\Big)\mathbf{w} = \begin{bmatrix} (\prod_{i=1}^{\infty} \tilde{P}_{d_i})\tilde{\mathbf{w}} \\ 0 \end{bmatrix}.$$

Let $\mathbf{e} = [1, 0, \dots, 0]^t \in \mathbf{R}^k$. Then \mathbf{e}^t is a common left 1-eigenvector of both \tilde{P}_1 , \tilde{P}_1 . We choose \mathbf{w} so that $\mathbf{e}^t \tilde{\mathbf{w}} \neq 0$. This is clearly possible because $\tilde{\mathbf{w}}$ can be any vector in \mathbf{R}^k .

Thus for any binary sequence $\{d_i\}$,

$$[\mathbf{e}^t, 0]Q\Big(\prod_{i=1}^{\infty} P_{d_i}\Big)\mathbf{w} = \mathbf{e}^t\Big(\prod_{i=1}^{\infty} \tilde{P}_{d_i}\Big)\tilde{\mathbf{w}} = \mathbf{e}^t\tilde{\mathbf{w}} \neq 0; \tag{18}$$

hence $(\prod_{i=1}^{\infty} P_{d_i}) \mathbf{w} \neq 0$.

Next we prove $\mathbf{v}(x)$ is continuous on [0,1]. Let $1 > r > \rho(A_0, A_1)$. Then for $x, y \in [0,1]$ such that $\sigma(x,y) \geq m$ we have

$$|\mathbf{v}(x) - \mathbf{v}(y)| \le C_3 r^m.$$

This immediately implies that $\mathbf{v}(x)$ is continuous at nondyadic points, where the dyadic expansions are unique. It remains to be shown that $\mathbf{v}(x)$ is also continuous at dyadic points.

The difficulty at dyadic points comes from the non-uniqueness of dyadic expansions at those points, namely,

$$0.d_1 \cdots d_m 1000 \cdots = 0.d_1 \cdots d_m 0111 \cdots$$

To show that $\mathbf{v}(x)$ is also continuous at dyadic points we need to show

$$P_0 P_1^{\infty} \mathbf{w} = P_1 P_0^{\infty} \mathbf{w}. \tag{19}$$

Let $\mathbf{v_0}$ and $\mathbf{v_1}$ be as in (17). $\mathbf{v_0}$ and $\mathbf{v_1}$ are 1-eigenvectors of P_0 , P_1 respectively. Because 1 is a simple eigenvalue for both $\{P_0|_{\mathcal{W}(\mathbf{u})}, P_1|_{\mathcal{W}(\mathbf{u})}\}$, we must have

$$P_0^{\infty} \mathbf{w} = \lambda \mathbf{v_0}, \quad P_1^{\infty} \mathbf{w} = \mu \mathbf{v_1}.$$
 (20)

We want to show that $\lambda = \mu \neq 0$. Notice that $P_1 \mathbf{v_0} = P_0 \mathbf{v_1} = \mathbf{v}^*$. So

$$P_1 P_0^{\infty} \mathbf{w} = \lambda \mathbf{v}^*, \quad P_0 P_1^{\infty} \mathbf{w} = \mu \mathbf{v}^*.$$

From (18) we have

$$\mathbf{e}^{t}\tilde{\mathbf{w}} = [\mathbf{e}^{t}, \mathbf{0}]QP_{1}P_{0}^{\infty}\mathbf{w} = \lambda\mathbf{e}^{t}Q\mathbf{v}^{*},$$

$$\mathbf{e}^{t}\tilde{\mathbf{w}} = [\mathbf{e}^{t}, \mathbf{0}]QP_{0}P_{1}^{\infty}\mathbf{w} = \mu\mathbf{e}^{t}Q\mathbf{v}^{*};$$

hence $\lambda = \mu \neq 0$ and so (19) holds.

The continuity of $\mathbf{v}(x)$ at dyadic points follows easily from (19). Let $x \in [0, 1]$ be any dyadic point. Then (19) implies that by substituting the lower expansion of x for the upper expansion of x the vector $\mathbf{v}(x)$ remains the same. Since for any m > 0 and $y \in [0, 1]$ such that $|x - y| \le 2^{-m}$ we have $\sigma(x, y) \ge m$, it follows from (19) that $|\mathbf{v}(y) - \mathbf{v}(x)| < C_3 r^m$.

For any $x \in [0, N)$ define

$$f(x) = ([x] + 1)$$
-th component of $\mathbf{v}(\{x\})$.

(Recall that [x] is the largest integer no greater than x and $\{x\} = x - [x]$.), and let f(N) = 0. f(x) is a solution of (1), and it is continuous at all non-integer points $x \in [0, N]$. But from (20) we see that $\mathbf{v}_f(1) = \mu \mathbf{v}_1 = [\mu \mathbf{u}, 0]^t$, which is $\mathbf{v}_f(0) = [0, \mu \mathbf{u}]^t$ ($\lambda = \mu$) shifting up by one position. Hence, f(x) must also be continuous at integer points.

Corollary 2.4 The dilation equation (1) has a C^m solution if and only if there exists an $1/2^m$ -eigenvector $\mathbf{u} \in \mathbf{R}^{N-1}$ of $M = (c_{2i-j})_{1 \le i,j \le N-1}$ such that

$$P_i \mid_{\mathcal{W}(\mathbf{u})} \sim \begin{bmatrix} \frac{1}{2^m} & 0 \\ * & A_i \end{bmatrix}, \quad i = 0, 1$$

simultaneously with $\rho(A_0, A_1) < 1/2^m$.

Proof: The dilation equation (1) has a C^m solution if and only if

$$g(x) = \sum_{n=0}^{N} 2^{m} c_{n} g(2x - n)$$

has a continuous solution ([9]). The corresponding matrices for the above dilation equation are $2^m P_0$, $2^m P_1$.

The following theorem determines the exact Hölder exponent of a continuous scaling function.

Theorem 2.5 Suppose the dilation equation (1) has a continuous solution f(x). Let W, $\{A_0, A_1\}$ be as in Proposition 2.1. Denote $\rho = \rho(A_0, A_1)$ and $\alpha = -\log_2 \rho$. Then

- 1. f(x) is $C^{\alpha-\varepsilon}$ but not $C^{\alpha+\varepsilon}$ for any $0 < \varepsilon \le \alpha$;
- 2. f(x) is C^{α} if and only if $\{A_0/\rho, A_1/\rho\}$ is product bounded.

Before proving Theorem 2.5, we shall need some preparations.

Lemma 2.6 Let $\|.\|$ be any matrix norm defined on $\mathbf{M}_n(\mathbf{R})$ and $S = \{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ be a basis for \mathbf{R}^n . Then there exists a constant $c = c(\|.\|, S, n) > 0$ such that for any $A \in \mathbf{M}_n(\mathbf{R})$,

$$|A\mathbf{u}_k| > c||A||$$

for some k = k(A).

Proof: Since all norms on $\mathbf{M}_n(\mathbf{R})$ are equivalent, without loss of generality we may assume that $||A|| = \sup_{|\mathbf{x}|=1} |A\mathbf{x}|$. (|.| is the standard Euclidean norm on \mathbf{R}^n .) Choose b > 0 sufficiently large so that

$$\left\{\mathbf{x} \mid |x| \le 1\right\} \subseteq \left\{\sum_{i=1}^{n} a_i \mathbf{u}_i \mid |a_i| \le b\right\}.$$

For any $A \in \mathbf{M}_n(\mathbf{R})$ there exists an $\mathbf{x}_0 \in \mathbf{R}^n$ such that $|\mathbf{x}_0| = 1$ and $|A\mathbf{x}_0| = ||A||$. Let $\mathbf{x}_0 = \sum_{i=1}^n a_i \mathbf{u}_i$. So

$$\sum_{i=1}^{n} |a_i| |A\mathbf{u}_i| \ge |A\mathbf{x}_0| = ||A||.$$

Hence $|a_k||\mathbf{u}_k| \geq ||A||/n$ for some k = k(A). So $|A\mathbf{u}_k| \geq c||A||$ where c = 1/bn.

Lemma 2.7 Under the assumptions of Theorem 2.5, let $0 < r \le 1$ and let $\beta = -\log_2 r$. Then the scaling function $f(x) \in C^{\beta}(\mathbf{R})$ if and only if $\{A_0/r, A_1/r\}$ is product bounded.

Proof: Suppose $\{A_0/r, A_1/r\}$ is product bounded. Then there exists a matrix norm $\|.\|$ on $\mathbf{M}_{N-1}(\mathbf{R})$ such that $\|A_0\| \leq r$, $\|A_1\| \leq r$. (See Proposition 1.6.)

Since f(x) is a continuous scaling function of (1), $\{P_0|_{\mathcal{W}}, P_1|_{\mathcal{W}}\}$ is RCP and

$$\mathbf{v}_f(x) = \Big(\prod_{i=1}^{\infty} P_{d_i(x)}\Big)\mathbf{v_0}$$

where $\mathbf{v_0} = \mathbf{v}_f(0) \in \mathcal{W}$. For any $x, y \in [0, 1]$ such that $2^{-m-1} \le |x-y| < 2^{-m}$, if $\sigma(x, y) \ge m$ then from Lemma 2.2,

$$|\mathbf{v}_f(x) - \mathbf{v}_f(y)| \le C_3 ||A_{d_1(x)} \cdots A_{d_m(x)}|| \le C_3 r^m.$$

Hence

$$|\mathbf{v}_f(x) - \mathbf{v}_f(y)| \le \frac{C_3 r^m}{2^{-m-1}} = 2C_3 \left(\frac{1}{2}\right)^{m\beta} \le 2C_3 |x - y|^{\beta}.$$

If $\sigma(x,y) < m$ then we choose a dyadic $z \in [0,1]$ such that $|x-z| < 2^{-m}$ and $|y-z| < 2^{-m}$. From Lemma 1.3, $\sigma(x,z) \ge m$ and $\sigma(y,z) \ge m$. So

$$|x-z| \le 2^{-m} \le 2|x-y|, \quad |y-z| \le 2^{-m} \le 2|x-y|.$$

Hence

$$|\mathbf{v}_f(x) - \mathbf{v}_f(y)| \leq |\mathbf{v}_f(x) - \mathbf{v}_f(z)| + |\mathbf{v}_f(z) - \mathbf{v}_f(y)|$$

$$\leq 2C_3|x - z|^{\beta} + 2C_3|y - z|^{\beta}$$

$$\leq C_4|x - y|^{\beta},$$

where $C_4 = 2^{\beta+2}C_3$.

Conversely, let Q, \tilde{P}_0 , \tilde{P}_1 be as in (11) and (12). Then from Lemma 2.2, $Q\mathbf{v}_f(x) = [\mathbf{b}^t(x), 0]^t$ where $\mathbf{b}(x) \in \mathbf{R}^k$ and $k = \dim W$. Moreover,

$$\mathbf{b}(x) - \mathbf{b}(y) = \begin{bmatrix} 0 \\ \mathbf{c_1}(x, y) \end{bmatrix}, \quad \mathbf{c_1}(x, y) \in \mathbf{R}^{k-1}.$$

Since

$$\dim \text{span}\{\mathbf{v}_f(x) - \mathbf{v}_f(0) \mid x \in [0, 1]\} \ge k - 1,$$

we have

$$span\{\mathbf{c}_1(x,0) \mid x \in [0,1]\} = \mathbf{R}^{k-1}.$$

So for some $z_1, \ldots, z_{k-1} \in [0, 1], \{ \mathbf{c_1}(z_1, 0), \ldots, \mathbf{c_1}(z_{k-1}, 0) \}$ is a basis of \mathbf{R}^{k-1} .

Suppose $\{A_0/r, A_1/r\}$ is not product bounded. Then for any fixed matrix norm $\|.\|$ on $\mathbf{M}_{k-1}(\mathbf{R})$ and any $\lambda > 0$ there exist an m and $d_1, \ldots, d_m \in \{0, 1\}$ such that

$$\|\prod_{i=1}^{m} A_{d_i}\| \ge \lambda r^m. \tag{21}$$

It follows from Lemma 2.6 that exists a c > 0 (independent of λ , m and d_i) and $1 \le l \le k-1$ such that

$$\left|\left(\prod_{i=1}^m A_{d_i}\right) \mathbf{c_1}(z_l, 0)\right| \ge c\lambda r^m$$

Let $x_{\lambda} = 0.d_1 \cdots d_m 0 0 \cdots$ and $y_{\lambda} = x_{\lambda} + z_l/2^{m+1}$. Then $\sigma(x_{\lambda}, y_{\lambda}) \geq m$. So

$$|\mathbf{c_1}(y_{\lambda}, x_{\lambda})| = \left| \left(\prod_{i=1}^m A_{d_i} \right) \mathbf{c_1}(\tau^m y, \tau^m x) \right| = \left| \left(\prod_{i=1}^m A_{d_i} \right) \mathbf{c_1}(z_l, 0) \right| \ge c \lambda r^m.$$

Hence $|\mathbf{b}(x_{\lambda}) - \mathbf{b}(y_{\lambda})| \ge c\lambda r^m$ and so $|\mathbf{v}_f(x_{\lambda}) - \mathbf{v}_f(y_{\lambda})| \ge c'c\lambda r^m$ for some constant c' > 0. But $|y_{\lambda} - x_{\lambda}| \le 2^{-m}$, so

$$|\mathbf{v}_f(y_{\lambda}) - \mathbf{v}_f(x_{\lambda})| \ge c\lambda 2^{-m\left(\log_2\frac{1}{r}\right)} \ge c\lambda |y_{\lambda} - x_{\lambda}|^{\beta}$$
.

Since $\lambda > 0$ is arbitrarily chosen, it follows that $f(x) \notin C^{\beta}(\mathbf{R})$.

Proof of Theorem 2.5: For any r > 0, we have

$$\rho\left(\frac{A_0}{r}, \frac{A_1}{r}\right) = \frac{\rho(A_0, A_1)}{r} = \frac{\rho}{r}.$$

Let $\varepsilon > 0$ and $r = 2^{-(\alpha - \varepsilon)} = \rho 2^{\varepsilon}$. Since $r > \rho(A_0, A_1)$, $\{A_0/r, A_1/r\}$ is product bounded. Hence $f(x) \in C^{-\log_2 r}(\mathbf{R}) = C^{\alpha - \varepsilon}(\mathbf{R})$. Similarly, let $r = 2^{-(\alpha + \varepsilon)} = \rho 2^{\varepsilon}$. Then $\{A_0/r, A_1/r\}$ is not product bounded. Hence $f(x) \notin C^{-\log_2 r}(\mathbf{R}) = C^{\alpha - \varepsilon}(\mathbf{R})$. The second part of Theorem 2.5 is a direct consequence of Lemma 2.7.

3 Dilation Equations with Integrable Solutions

It is shown in [27] that the dilation equation (1) has an L^1 solution if $\{P_0, P_1\}$ is RCP. We prove the following stronger result.

Theorem 3.1 Assume that $\sum_{n} c_n = 2$. If $\{P_0, P_1\}$ is product bounded, then the dilation equation (1) has a bounded solution.

Proof: We first prove that (1) has an L^2 solution. Let $f_0(x) = \chi_{[0,1)}(x)$ and

$$f_n(x) = \sum_{k=0}^{N} c_k f_{n-1}(2x - k).$$

Notice that $supp(f_n) \subseteq [0, N]$ and for any $x \in [0, 1]$,

$$\mathbf{v}_{f_n}(x) = P_{d_1(x)} P_{d_2(x)} \cdots P_{d_n(x)} \mathbf{v}_{f_0}(\tau^n x). \tag{22}$$

Hence there exists a C > 0 such that $|f_n(x)| < C$ for all x and n.

Consider the Fourier transform of $f_n(x)$

$$\hat{f}_n(\xi) = \int_{\mathbf{R}} e^{-ix\xi} f_n(x) dx
= \int_{\mathbf{R}} e^{-ix\xi} \sum_{k=0}^{N} c_k f_{n-1}(2x - k) dx
= P(\frac{\xi}{2}) \hat{f}_{n-1}(\frac{\xi}{2})$$

where $P(\xi) = \frac{1}{2} \sum_{k=0}^{N} c_k e^{-ik\xi}$. Thus

$$\hat{f}_n(\xi) = \left(\prod_{k=1}^n P(\frac{\xi}{2^k})\right) \hat{f}_0(\frac{\xi}{2^{k+1}}).$$

Since $\hat{f}_0(\xi) = (1 - e^{-i\xi})/i\xi$, it follows that as $n \to +\infty$, $\hat{f}_0(\xi/2^{n+1}) \to 1$ uniformly on any compact subset of **R**. Hence

$$\lim_{n \to +\infty} \hat{f}_n(\xi) = \prod_{k=1}^{\infty} P(\frac{\xi}{2^k}) = \phi(\xi)$$

uniformly on any compact subset of \mathbf{R} . (The uniform convergence of $\prod_{k=1}^{\infty} P(\xi/2^k)$ on compact sets is established in [8].) Let $S \subset \mathbf{R}$ be any compact subset of \mathbf{R} . Then

$$\int_{S} |\phi(\xi)|^{2} d\xi = \lim_{n \to +\infty} \int_{S} |\hat{f}_{n}(\xi)|^{2} d\xi$$

$$\leq \lim_{n \to +\infty} \sup_{\mathbf{R}} |\hat{f}_{n}(\xi)|^{2} d\xi$$

$$= \lim_{n \to +\infty} \sup_{n \to +\infty} \int_{\mathbf{R}} |f_{n}(x)|^{2} dx$$

$$\leq C^{2} N.$$

Hence $\phi(\xi) \in L^2(\mathbf{R})$. Let f(x) be the inverse Fourier transform of $\phi(\xi)$. Then $f(x) \in L^2(\mathbf{R})$, and from Paley-Wiener Theorem f(x) is compactly supported ([8]). Since the Fourier transform of $f(x) - \sum_{k=0}^{N} c_k f(2x-k)$ is 0. It follows that f(x) must be a solution of (1).

We prove f(x) must be bounded. Since $\{P_0, P_1\}$ is product bounded, there exists a norm $\|.\|$ on \mathbf{R}^N such that $\|P_i\mathbf{x}\| \leq \|\mathbf{x}\|$ for i = 0, 1 and all $\mathbf{x} \in \mathbf{R}^N$. For any $b \geq 0$ let

$$S_b = \{x \in [0,1] \mid ||\mathbf{v}_f(x)|| \ge b\}.$$

Since $\mathbf{v}_f(x) = P_{d_1(x)}\mathbf{v}_f(\tau x)$, it follows that $x \in S_b$ implies $\tau x \in S_b$. Hence S_b is invariant under τ . But τ is ergodic, so $\mu(S_b) = 0$ or $\mu(S_b) = 1$ where μ is Lebesgue measure on \mathbf{R} . So $\mu(S_b) = 0$ for a sufficiently large b > 0. Therefore f(x) must be bounded.

Remark: We have actually proved a stronger results than $\mu(S_b) = 0$ for some b > 0. We have shown that $\|\mathbf{v}_f(x)\| = b_0$ a.e. where $b_0 = \inf\{b|\mu(S_b) = 0\}$. This implies that $\mathbf{v}_f(x)$ must lie on the sphere $\|x\| = b_0$.

Corollary 3.2 Assume that $\sum_{n} c_{2n} = \sum_{n} c_{2n+1} = 1$. If $c_n \geq 0$, then the dilation equation (1) has a bounded solution.

Proof: Because both P_0 and P_1 are column stochastic, all products of them are also column stochastic and non-negative. So $\{P_0, P_1\}$ must be product bounded.

Theorem 3.3 Assume that $\sum_{n} c_n = 2$. Suppose there exists an invariant subspace $\mathcal{W} \subseteq \mathbf{R}^N$ of $\{P_0, P_1\}$ such that

- (i) $\{P_0|_{\mathcal{W}}, P_1|_{\mathcal{W}}\}$ is product bounded;
- (ii) there exists a $\mathbf{v} = [v_1, v_2, \dots v_N]^t \in \mathcal{W}$ such that $\sum_{i=1}^N v_i \neq 0$.

Then the dilation equation (1) has an L^2 solution.

Proof: Define

$$f_0(x) = \begin{cases} v_k & x \in [k-1, k), \\ 0 & x \notin [0, N). \end{cases}$$

Then $\mathbf{v}_{f_0}(x) = \mathbf{v}$ for $x \in [0, 1)$. Let

$$f_n(x) = \sum_{k=0}^{N} c_k f_{n-1}(2x - k), \quad n > 0.$$

As in Theorem 3.1, we have $\operatorname{supp}(f_n) \subseteq [0, N]$ and for any $x \in [0, 1)$,

$$\mathbf{v}_{f_n}(x) = P_{d_1(x)} P_{d_2(x)} \cdots P_{d_n(x)} \mathbf{v}.$$

Notice that $f_0(x) = \sum_{i=1}^N v_i \chi_{[i-1,i)}(x)$ and $\hat{f}_0(\xi) = \sum_{i=1}^N v_i \neq 0$. Therefore the same argument used in the proof of Theorem 3.1 will show that the inverse Fourier transform of $\lim_{n\to\infty} \hat{f}_n(\xi)$ is an L^2 solution to (1).

We are unable to show that under the assumption of Theorem 3.3 there exists a bounded solution of (1), although such is likely the case. The main difficulty is to show that $\mathbf{v}_f(x) \in \mathcal{W}$ for almost all x.

Theorem 3.4 Assume that all proper invariant subspaces of $\{P_0, P_1\}$ are contained in the subspace

$$\mathbf{V}_0 = \left\{ [x_1, x_2, \dots, x_N]^t \mid \sum_{i=1}^N x_i = 0 \right\}.$$
 (23)

Then $\rho(P_0, P_1) \leq 2$ is a necessary condition for the dilation equation (1) to have an L^1 solution.

Notice that if $\sum_{n} c_{2n} = \sum_{n} c_{2n+1} = 1$, then \mathbf{V}_0 is an invariant subspace of $\{P_0, P_1\}$.

Lemma 3.5 Let $A \in \mathbf{M}_n(\mathbf{R})$ and $\|.\|$ be a norm on \mathbf{R}^n . Suppose $|\lambda| > \theta > 0$ for all eigenvalues λ of A. Then there exists a constant $c = c(\|.\|, A, \theta) > 0$ such that

$$||A^m \mathbf{x}|| \ge c\theta^m ||x||. \tag{24}$$

Proof: We only need to show that for all $m \geq 0$,

$$\inf_{\|\mathbf{x}\|=1} \frac{\|A^m \mathbf{x}\|}{\theta^m} \ge c > 0. \tag{25}$$

Let $B = A/\theta$. Then B is expansive, namely all eigenvalues of B have modulus strictly greater than 1. Thus there exists an $m_0 = m_0(\|.\|, A, \theta) \ge 0$ such that $B^m(U) \supset U$ where $U = \{\mathbf{x} \in \mathbf{R}^n | \|\mathbf{x}\| \le 1\}$ for all $m \ge m_0$. So for any \mathbf{x} with $\|\mathbf{x}\| = 1$, $\|B^m\mathbf{x}\| \ge 1$ for all $m \ge m_0$. Let

$$c = \inf_{\|x\| = 1, m < m_0} \|B^m \mathbf{x}\|.$$

Then $\inf_{\|x\|=1} \|B^m \mathbf{x}\| \ge c$ for all m. (25) follows immediately.

Lemma 3.6 Suppose all proper invariant subspaces of $\{P_0, P_1\}$ are contained \mathbf{V}_0 and (1) has an L^1 solution. Let $d_1, \ldots d_k \in \{0, 1\}$ and $\rho(P_{d_1} \cdots P_{d_k}) > \theta > 0$. Then there exists a constant c > 0 such that

$$\mu(\{x \in [0,1] \mid |(P_{d_1} \cdots P_{d_k})^m \mathbf{v}_f(x)| \ge c\theta^m \text{ for all } m > 0\}) > 0.$$

Proof: Since $\int_{\mathbf{R}} f(x) dx \neq 0$ ([10]), we see that there exists a $J \subseteq [0, 1]$ and $\mu(J) > 0$ such that $\mathbf{v}_f(x) \notin \mathbf{V}_0$ for all $x \in J$. Let $S \subseteq [0, 1]$ such that $\mu(S) = 1$. Then $S^* \subseteq S$ is invariant under τ and $\mu(S^*) = 1$ where

$$S^* = S \setminus \bigcup_{m=0}^{\infty} \tau^m([0,1] \setminus S).$$

This implies span $\{\mathbf{v}_f(x)|x\in S^*\}$ is an invariant subspace of $\{P_0,P_1\}$. But $\mathbf{v}_f(x)\not\in\mathbf{V}_0$ for $x\in J\cap S^*\neq\phi$. So span $\{\mathbf{v}_f(x)|x\in S^*\}=\mathbf{R}^N$ and hence

$$\operatorname{span}\left\{\mathbf{v}_f(x) \mid x \in S\right\} = \mathbf{R}^N. \tag{26}$$

Denote $Q = P_{d_1} \cdots P_{d_k}$. Let $\{\lambda_1, \dots, \lambda_s\}$ be the spectrum of Q. Then

$$\mathbf{C}^N = W_{\lambda_1} \oplus \cdots \oplus W_{\lambda_s}$$

where

$$W_{\lambda_i} = \left\{ \mathbf{x} \in \mathbf{C}^N \mid (Q - \lambda_i I)^m \mathbf{x} = \mathbf{0} \text{ for some } m \right\}.$$

Let $W^1 = \mathbf{R}^N \cap (\bigoplus_{|\lambda_i| \geq \theta} W_{\lambda_i})$ and $W^2 = \mathbf{R}^N \cap (\bigoplus_{|\lambda_i| < \theta} W_{\lambda_i})$. Then

$$\mathbf{R}^N = W^1 \oplus W^2$$

Define the following norm $\|.\|$ on \mathbf{R}^N : for any $\mathbf{x} = \mathbf{y} + \mathbf{z}$ where $\mathbf{y} \in W^1$ and $\mathbf{z} \in W^2$,

$$\|\mathbf{x}\| = |\mathbf{y}| + |\mathbf{z}|.$$

Then from Lemma 3.5 there exists a $c_1 > 0$ such that

$$||Q^m \mathbf{x}|| = ||Q^m \mathbf{y} + Q^m \mathbf{z}|| = |Q^m \mathbf{y}| + |Q^m \mathbf{z}| \ge |Q^m \mathbf{y}| \ge c_1 \theta^m |\mathbf{y}|.$$

For n > 0 let

$$S_n = \left\{ x \in [0, 1] \mid \mathbf{v}_f(x) = \mathbf{y}_1 + \mathbf{y}_2, \ \mathbf{y}_i \in W^i, \ \text{such that } |\mathbf{y}_1| \ge \frac{1}{n} \right\}.$$

It follows from (26) that $\mu(\bigcup_n S_n) > 0$. Hence there exists an $n_0 > 0$ such that $\mu(S_{n_0}) \ge \delta > 0$. For any $x \in S_{n_0}$,

$$||Q^m \mathbf{v}_f(x)|| = ||Q^m \mathbf{y}_1 + Q^m \mathbf{y}_2|| \ge c_1 \theta^m ||\mathbf{y}_1|| \ge \frac{c_1}{n_0} \theta^m.$$

Let $c = c_1/n_0$. We have

$$\mu(\{x \in [0,1] \mid |(P_{d_1} \cdots P_{d_k})^m \mathbf{v}_f(x)| \ge c\theta^m \text{ for all } m > 0\}) > 0.$$

Proof of Theorem 3.4: Assume that $\rho(P_0, P_1) > b > 2$. Then there exist $d_1, \dots d_k \in \{0, 1\}$ such that $\rho(P_{d_1} \cdots P_{d_k}) \geq b^k$. Choose c > 0 so that $\mu(S) > 0$ where

$$S = \left\{ x \in [0, 1] \mid |(P_{d_1} \cdots P_{d_k})^m \mathbf{v}_f(x)| \ge cb^{km} \text{ for all } m > 0 \right\}.$$

Let T_m be the subset of [0,1] that contains all x's such that $\tau^{km}x \in S$ and the first km digits in the dyadic expansion of x are

$$\underbrace{d_1\cdots d_k d_1\cdots d_k\cdots d_1\cdots d_k}_{km}$$
.

Clearly $\mu(T_m) = \mu(S)/2^{km}$

$$\int_{T_m} |\mathbf{v}_f(x)| dx = \frac{1}{2^{km}} \int_{S} |(P_{d_1} \cdots P_{d_k})^m \mathbf{v}_f(y)| dy$$

$$\geq \frac{1}{2^{km}} \cdot c \cdot b^{mk} \mu(S)$$

$$= c\mu(S) \left(\frac{b}{2}\right)^{mk}.$$

But $(b/2)^{km} \longrightarrow \infty$ as $m \longrightarrow \infty$. This contradicts the assumption that $f(x) \in L^1(\mathbf{R})$.

In what follows we examine the relationship between $\bar{\rho}(A_0, A_1)$ and L^1 solution of the dilation equation (1). Recall that given $\Sigma = \{A_1, \ldots, A_p\} \subset \mathbf{M}_N(\mathbf{R}), \; \bar{\rho}(\Sigma)$ is the mean spectral radius defined in (6).

Lemma 3.7 Suppose $A_0, A_1 \in \mathbf{M}_N(\mathbf{R})$ and $\bar{\rho}(A_0, A_1) < 1$. Let $\|.\|$ be a fixed matrix norm. For any $x \in [0, 1]$ define

$$g(x) = ||A_{d_1(x)}|| + ||A_{d_1(x)}A_{d_2(x)}|| + \dots = \sum_{n=1}^{\infty} ||A_{d_1(x)}\dots A_{d_n(x)}||$$

Then $g(x) < \infty$ for almost all $x \in [0, 1]$. Furthermore, $g(x) \in L^1([0, 1])$.

Proof: Since $\bar{\rho}(A_0, A_1) < 1$, there exist constants c > 0 and λ , $\bar{\rho}(A_0, A_1) < \lambda < 1$, such that for all m,

$$\frac{1}{2^m} \sum_{d_1, \dots, d_m} \|A_{d_1} \cdots A_{d_m}\| \le c\lambda^m$$

where the summation $\sum_{d_1,...,d_m}$ is taken over all $(d_1,...,d_m) \in \{0,1\}^m$. Let

$$g_m(x) = \sum_{n=1}^m ||A_{d_1} \cdots A_{d_n}||.$$

For any fixed $x \in [0, 1]$, $\{g_m(x)\}$ is an increasing sequence and

$$\int_0^1 |g_m(x)| \, dx = \sum_{n=1}^m \int_0^1 \|A_{d_1(x)} \cdots A_{d_n(x)}\| \, dx$$

$$= \sum_{n=1}^{m} \sum_{d_1,\dots,d_n} \left(\frac{1}{2^n} \| A_{d_1} \cdots A_{d_n} \| \right)$$

$$\leq \sum_{n=1}^{m} c \cdot \lambda^n$$

$$\leq \frac{c}{1-\lambda}.$$

Thus it follows from the Monotone Convergence Theorem that

$$\int_0^1 |g(x)| \, dx \le \lim \int_0^1 g_m(x) \, dx \le \frac{c}{1 - \lambda}.$$

Hence $g(x) \in L^1([0,1])$ and $g(x) < \infty$ almost everywhere.

Theorem 3.8 Suppose $\sum_n c_{2n+m} = 1$ and $\bar{\rho}(A_0, A_1) < 1$ where

$$P_i \sim \left[egin{array}{cc} 1 & 0 \\ \mathbf{c}_i & A_i \end{array}
ight], \quad i = 0, 1.$$

simultaneously. Then the dilation equation (1) has an L^1 solution.

Proof: Let $f_0(x) = \chi_{[0,1)}(x)$ and

$$f_n(x) = \sum_{k=0}^{N} c_k f_{n-1}(2x - k), \quad n > 0.$$

We have supp $(f_n) \subseteq [0, N]$ and for any $x \in [0, 1]$, Let $Q \in \mathbf{M}_N(\mathbf{R})$ such that

$$QP_iQ^{-1} = \begin{bmatrix} 1 & 0 \\ \mathbf{c}_i & A_i \end{bmatrix}, \quad i = 0, 1.$$

Then

$$\mathbf{v}_{f_n}(x) = P_{d_1(x)} P_{d_2(x)} \cdots P_{d_n(x)} \mathbf{v}_{f_0}(\tau^n x)$$
$$= Q^{-1} \begin{bmatrix} 1 & 0 \\ \mathbf{b}_n(x) & B_n(x) \end{bmatrix} Q \mathbf{v}_0$$

where $\mathbf{v}_0 = \mathbf{v}_{f_0}(x) = [1, 0, ..., 0]^t$. It is easy to verify that $B_n(x) = A_{d_1(x)} A_{d_2(x)} \cdots A_{d_n(x)}$ and

$$\mathbf{b}_n(x) = \mathbf{c}_{d_1(x)} + A_{d_1(x)}\mathbf{c}_{d_2(x)} + \dots + A_{d_1(x)}A_{d_2(x)} + \dots + A_{d_{n-1}(x)}c_{d_n(x)}.$$

Let $|\mathbf{b}_i| \leq c$, i = 0, 1. Then

$$|\mathbf{b}_n(x)| \le c \cdot \sum_{m=1}^{n-1} ||A_{d_1} \cdots A_{d_m}||.$$

Hence it follows from Lemma 3.7 that $\mathbf{b}_n(x) \to \mathbf{b}(x) \in L^1(\mathbf{R})$ and $B_n(x) \to 0$ as $n \to \infty$ for almost all $x \in [0, 1]$. Let

$$\mathbf{v}_f(x) = Q^{-1} \begin{bmatrix} 1 & 0 \\ \mathbf{b}(x) & 0 \end{bmatrix} Q \mathbf{v}_0.$$

Then

$$\lim_{n \to \infty} \mathbf{v}_{f_n}(x) = \mathbf{v}_f(x) \quad a.e.$$

and $\mathbf{v}_f(x) \in L^1([0,1])$. Therefore f(x) must be L^1 .

Theorem 3.9 Assume that $\sum_n c_n = 2$. Let $W \subseteq \mathbf{R}^N$ be an invariant subspace of $\{P_0, P_1\}$ such that

(i)

$$P_i|_{\mathcal{W}} \sim \begin{bmatrix} 1 & 0 \\ * & A_i \end{bmatrix}, \quad i = 0, 1$$

simultaneously with $\bar{\rho}(A_0, A_1) < 1$;

(ii) there exists a $\mathbf{v} = [v_1, v_2, \dots v_N]^t \in \mathcal{W}$ such that $\sum_{i=1}^N v_i \neq 0$.

Then the dilation equation (1) has an L^1 solution.

Proof: Define

$$f_0(x) = \begin{cases} v_k, & x \in [k-1,k) \\ 0, & x \notin [0,N) \end{cases}$$

Then $\mathbf{v}_{f_0}(x) = \mathbf{v}$ for $x \in [0, 1)$. Let

$$f_n(x) = \sum_{k=0}^{N} c_k f_{n-1}(2x - k), \quad n > 0.$$

As in Theorem 3.3, we have $\operatorname{supp}(f_n) \subseteq [0, N]$ and for any $x \in [0, 1]$,

$$\mathbf{v}_{f_n}(x) = P_{d_1(x)} P_{d_2(x)} \cdots P_{d_n(x)} \mathbf{v}.$$

So $\mathbf{v}_{f_n}(x) \in \mathcal{W}$. Notice that

$$\int_{\mathbf{R}} f_n(x) \, dx = \int_{\mathbf{R}} f_0(x) \, dx = \sum_{i=1}^N v_i \neq 0.$$

So the same argument for proving Theorem 3.8 proves $f_n(x) \to f(x)$ a.e. for some $f(x) \in L^1(\mathbf{R})$ and f(x) is a solution of (1).

Conjecture¹: Assume that $\sum_{n} c_{2n+m} = 1$ and let \mathbf{V}_0 be as in (23). Suppose all proper invariant subspaces of $\{P_0, P_1\}$ are contained in \mathbf{V}_0 . Then a necessary and sufficient condition for the dilation equation (1) to have an L^1 solution is $\bar{\rho}(A_0, A_1) < 1$.

¹This conjecture has recently been settled by Lau and Wang ([20]).

Example: Consider the following dilation equation

$$f(x) = af(2x) + f(2x - 1) + (1 - a)f(2x - 2).$$
(27)

 $\rho(A_0, A_1) = \max\{|a|, |1-a|\}$ and $\bar{\rho}(A_0, A_1) = (|a| + |1-a|)/2$. Hence equation (27) has a continuous solution if and only if 0 < a < 1. For -1/2 < a < 3/2, (27) has an L^1 solution.

4 Fractal Dimension of a Continuous Solution

The fractal properties of scaling functions were discussed in many papers (e.g. [1], [10], [3]). In [1], Berger linked a continuous solution of (1) to an iterated functions system (IFS), and in [10] an estimate of the box dimension of a continuous scaling function was given.

Recall that the box dimension (or fractal dimension) is defined as follows. For any compact set $E \subset \mathbf{R}^N$, the box dimension of E is

$$\dim_B(E) = \inf \Big\{ s > 0 : \limsup_{\varepsilon \to 0+} b_\varepsilon^s(E) < +\infty \Big\},\,$$

where

$$b_{\varepsilon}^{s}(E) = \inf \left\{ \sum_{i} \varepsilon^{s} \mid E \subseteq \cup B_{i}, \operatorname{diam} B_{i} = \varepsilon \right\}.$$

Let $\mathcal{N}(\varepsilon, E)$ be the minimal number of balls of radius ε required to cover E. Then we have (see [12])

$$\dim_B(E) = \limsup_{\varepsilon \to 0+} \frac{\log \mathcal{N}(\varepsilon, E)}{-\log \varepsilon}.$$

Note that the box dimension $\dim_B(E)$ of E differs from the Hausdorff dimension $\dim_H(E)$, which is typically much harder to compute and which is defined as

$$\dim_H(E) = \inf \{ s > 0 : \limsup_{\varepsilon \to 0+} h_{\varepsilon}^s(E) < +\infty \},$$

where

$$h_{\varepsilon}^{s}(E) = \inf \left\{ \sum_{i} (\operatorname{diam} B_{i})^{s} \mid E \subseteq \cup B_{i}, \operatorname{diam} B_{i} \leq \varepsilon \right\}.$$

The box dimension of the graph of a function has been studied before. A classical result by Falconer([18]) is that if f(x) is C^{α} where $0 \le \alpha \le 1$, then

$$\dim_B(\operatorname{graph} \operatorname{of} f) \leq 2 - \alpha.$$

Before we establish an exact formulae for the box dimesion of a continuous scaling function), we shall need the following result, proved by Deliu and Jawerth ([12]):

Theorem 4.1 Let $S_n = \{[j/2^n, (j+1)/2^n): 0 \le j < 2^n\}$. For any continuous function $f: [0,1] \to \mathbb{R}^N$ and an interval $I \subseteq [0,1]$ define

$$osc_I(\mathbf{f}) = \sup_{x,y \in I} |\mathbf{f}(x) - \mathbf{f}(y)|.$$

Then

$$\dim_B(\text{graph of }\mathbf{f}) = \limsup_{n \to +\infty} \frac{\log_2^+ \left(\sum_{I \in \mathcal{S}_n} \mathit{osc}_I(f)\right)}{n} + 1.$$

(Here $\log_2^+ x = \max(\log_2 x, 0)$ for x > 0, and $\log_2^+ 0 = 0$.)

Theorem 4.2 Suppose f(x) is a continuous solution of the two-scale dilation equation (1) and $W = \text{span}\{\mathbf{v}_f(x): x \in [0,1]\}$. Let

$$P_i \mid_{\mathcal{W}} \sim \begin{bmatrix} 1 & 0 \\ * & A_i \end{bmatrix}, i = 0, 1$$

simultaneously with $\rho(A_0, A_1) < 1$. Then

$$\dim_B(\operatorname{graph} \text{ of } f) = \max \{1, 2 + \log_2 \bar{\rho}(A_0, A_1)\}.$$

Proof: By using Theorem 4.1 it is rather standard to prove that

$$\dim_B(\operatorname{graph} \operatorname{of} f) = \dim_B(\operatorname{graph} \operatorname{of} \mathbf{v}_f).$$

So we only need to prove

$$\dim_B(\operatorname{graph of } \mathbf{v}_f) = \max \{1, 2 + \log_2 \bar{\rho}(A_0, A_1)\}.$$

Let $I = [j/2^n, (j+1)/2^n) \in \mathcal{S}_n$ and let $j/2^n$ have dyadic expansion

$$j/2^n = 0.d_1 \cdots d_n 0 \cdots.$$

Then $d_i(x) = d_i$, $1 \le i \le n$, for all $x \in I$. Let $k = \dim \mathcal{W}$ and let Q, $\mathbf{c_1}(x, y) \in \mathbf{R}^{k-1}$ be as in Lemma 2.2. It follows from Lemma 2.2 that

$$\operatorname{osc}_{I}(Q\mathbf{v}_{f}) = \sup_{x,y \in I} |A_{d_{1}} \cdots A_{d_{n}} \mathbf{c}_{1}(\tau^{n} x, \tau^{n} y)| = \sup_{x,y \in [0,1]} |A_{d_{1}} \cdots A_{d_{n}} \mathbf{c}_{1}(x,y)|.$$

But $\mathbf{c_1}(x,y)$ is bounded and $\mathrm{span}\{\mathbf{c_1}(x,y)\,|\,x,y\in[0,1]\}=\mathbf{R}^{k-1}$. So let $\|.\|$ be a matrix norm on $\mathbf{M}_{k-1}(\mathbf{R})$ then there exist constants $c_2>c_1>0$ such that

$$c_1 \| A_{d_1} \cdots A_{d_n} \| \le \operatorname{osc}_I(\mathbf{v}_f) \le c_2 \| A_{d_1} \cdots A_{d_n} \|.$$

$$c_1 \sum_{d_1, \dots, d_n} \| A_{d_1} \cdots A_{d_n} \| \le \sum_{I \in \mathcal{S}_n} \operatorname{osc}_I(\mathbf{v}_f) \le c_2 \sum_{d_1, \dots, d_n} \| A_{d_1} \cdots A_{d_n} \|$$
(28)

where the summation is taken over all $(d_1, \ldots, d_n) \in \{0, 1\}^n$. It follows from Theorem 4.1 that

$$\dim_{B}(\operatorname{graph of} \mathbf{v}_{f}) = \limsup_{n \to +\infty} \frac{\log_{2}^{+} \left(\sum_{I \in \mathcal{S}_{n}} \operatorname{osc}_{I}(\mathbf{v}_{f})\right)}{n} + 1$$

$$\geq \limsup_{n \to +\infty} \frac{\log_{2}^{+} \left(c_{1} \sum_{d_{1}, \dots, d_{n}} \|A_{d_{1}} \cdots A_{d_{n}}\|\right)}{n} + 1$$

$$= \limsup_{n \to +\infty} \log_{2}^{+} \left(\sum_{d_{1}, \dots, d_{n}} \|A_{d_{1}} \cdots A_{d_{n}}\|\right)^{\frac{1}{n}} + 1,$$

and (similarly from the second half of (28))

$$\dim_B(\operatorname{graph of } \mathbf{v}_f) \leq \limsup_{n \to +\infty} \log_2^+ \left(\sum_{d_1, \dots, d_n} \|A_{d_1} \cdots A_{d_n}\| \right)^{\frac{1}{n}} + 1.$$

So we have

$$\dim_{B}(\operatorname{graph of } \mathbf{v}_{f}) = \lim_{n \to +\infty} \sup_{n \to +\infty} \log_{2}^{+} \left(\sum_{d_{1}, \dots, d_{n}} \|A_{d_{1}} \cdots A_{d_{n}}\| \right)^{\frac{1}{n}} + 1$$

$$= \lim_{n \to +\infty} \sup_{n \to +\infty} \log_{2}^{+} 2 \left(\frac{1}{2^{n}} \sum_{d_{1}, \dots, d_{n}} \|A_{d_{1}} \cdots A_{d_{n}}\| \right)^{\frac{1}{n}} + 1$$

$$= \log^{+} \left(2\bar{\rho}(A_{0}, A_{1}) \right) + 1$$

$$= \max \left\{ 1, 2 + \log_{2} \bar{\rho}(A_{0}, A_{1}) \right\}.$$

Example: Consider the dilation equation

$$f(x) = af(2x) + f(2x - 1) + (1 - a)f(2x - 2)$$

where 1/2 < a < 1. $\rho(A_0, A_1) = \max\{a, 1-a\} = a$ and $\bar{\rho}(A_0, A_1) = 1/2$. The equation has a continuous scaling function that is C^{α} where $\alpha = -\log_2 a$. Using Falconer's estimate we only get

$$\dim_B(\operatorname{graph} \operatorname{of} f) \leq 2 + \log_2 a$$

while in fact we have

$$\dim_H(\operatorname{graph} \operatorname{of} f) = \dim_B(\operatorname{graph} \operatorname{of} f) = 1.$$

(Note that $\dim_H(E) \leq \dim_B(E)$).

References

- [1] Berger, M. A., Random affine iterated function systems: curve generation and wavelets, to appear.
- [2] Berger, M. A. and Wang, Y., Bounded semi-groups of matrices, Lin. Alg. Appl., 166 (1992), 21–27.
- [3] Berger, M. A. and Wang, Y., Multi-dimensional two-scale dilation equations, in Wavelets: A Tutorial in Theory and Application C. K. Chui, ed., 295-323, Academic Press, 1992.
- [4] Cavaretta, A. S., Dahmen, W. and Micchelli, C. A., *Stationary subdivision*, Mem. Amer. Math. Soc., to appear.
- [5] Chaikin, G. M., An algorithm for high speed curve generation, Comp. Graphics and Image Proc. 3 (1974), 346–349.
- [6] Colella, D. and Heil, C., The characterizations of continuous, four-coefficient scaling functions and wavelets, IEEE Trans. Info. Th. 38 (1992), 876-881.
- [7] Colella, D. and Heil, C., Characterizations of scaling functions, I. continuous solutions, SIAM J. Matrix Anal. Appl. (to appear).
- [8] Daubechies, I., Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909–996.
- [9] Daubechies, I. and Lagarias, J. C., Sets of matrices all infinite products of which converge, Lin. Alg. Appl. 162 (1992), 227–263.
- [10] Daubechies, I. and Lagarias, J. C., Two-scale difference equations I: existence and global regularity of solutions, SIAM J. Appl. Math. 22 (1991), 1388-1410.
- [11] Daubechies, I. and Lagarias, J. C., Two-scale difference equations II: infinite matrix products, local regularity and fractals, SIAM J. Appl. Math. 23 (1992), 1031–1079.
- [12] Deliu, A. and Jawerth, B., Geometrical dimension versus smoothness, pre-print.
- [13] Dyn, N., Subdivision schemes in CAGD, in Advances in Numerical Analysis II: wavelets, subdivision algorithms and radial functions, University Press, W. A. Light, ed., Oxford, 1991, 36-104.
- [14] Dyn, N., Gregory, J. A. and Levin, D., A 4-point interpolatory subdivision scheme for curve design, Comp. Aided Geom. Design 4 (1987), 257–268.

- [15] Dyn, N., Gregory, J. A. and Levin, D., A butterfly subdivision scheme for surface interpolation with tension control, ACM Trans. Graphics 9 (1990), 160–169.
- [16] Dyn, N. and Levin, D., Interpolating subdivision schemes for the generation of curves and surfaces, in International Series of Numerical Mathematics, Vol. 94, Birkhäuser, Basel, 1990.
- [17] Dyn, N., Levin, D. and Micchelli, C. A., Using parameters to increase smoothness of curves and surfaces generated by subdivision, Comp. Aided Geom. Design 7 (1990), 129–140.
- [18] Falconer, K., The Geometry of Fractal Sets, Cambridge Tracts in Mathematics 85, Cambridge University Press, Cambridge, 1985.
- [19] Lagarias, J. and Wang, Y., The finiteness conjecture for the generalized spectral radius of a set of matrices, Lin. Alg. Appl., to appear.
- [20] Lau, K. S. and Wang J. R., Characterization of L^p solutions for the two-scale dilation equations, preprint.
- [21] Micchelli, C. A. and Prautzsch, H., *Uniform refinement of curves*, Lin. Alg. Appl. 114/115 (1989), 841–870.
- [22] Micchelli, C. A. and Prautzsch, H., Refinement and subdivision for spaces of integer translates of a compactly supported function, in Numerical Analysis, Griffiths, D. A. and Watson, G. A., eds., Academic Press, 1987, 192–222.
- [23] de Rham, G., Sur une courbe plane, J. Math. Pure Appl. 39 (1956), 25–42.
- [24] Rioul, O., Simple, optimal regularity estimates for wavelets, preprint.
- [25] Strang, G., Wavelets and dilation equations: a brief introduction, SIAM Review 31 (1989), 614–627.
- [26] Villemoes, V., Wavelet analysis of two scale difference equations, preprint.
- [27] Wang, Y., Two-scale dilation equations and the cascade algorithm, Random and Computational Dynamics, to appear.