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Abstract

We study the two—scale dilation equation

N
fla)=)_ fz-n).

By expanding the matrix product expansion technique introduced by Daubechies and
Lagarias, we give a necessary and sufficient condition for the existence of continuous
scaling functions and establish an exact formulae for their Holder exponents. We also
introduce the mean spectral radius of a set of matrices. Applying the mean spectral
radius we prove a sufficient condition for the existence of L' solutions to the dilation
equation. We conjecture that such a condition is also necessary. Finally, we establish a
surprising formulae for the exact fractal dimension of the graph of a continuous scaling
function by using the mean spectral radius.

1 Introduction and Notation

In this paper, we study the two-scale dilation equation

N

fl@) =) caf(2z —n) (1)

n=0
where the coefficients ¢, are real. We always assume ¢y # 0 and ¢y # 0.

Two-scale dilation equations arise in many applications. They play crucial roles in sub-
division schemes, which are algorithms for curve and surface generation ([21], [22], [4], [14],
[15] etc.), and in the construction of compactly supported orthonormal wavelet functions
(18)-

Due to those important applications the two scale—dilation equation (1) has been stud-
ied extensively in recent years. Daubechies ([8]) applied Fourier analysis to estimate the
smoothness of compactly supported orthonormal wavelets. In a later paper Daubechies
and Lagarias ([11]) improved the estimates in [8] using a different approach. They noticed
that better estimates can be obtained from the matrix product expansion (2) by applying

their results ([9]) on infinite products of matrices. The same idea was also exploited by



Caravetta, Dahmen, and Micchelli ([4]) to study the convergence of subdivision schemes.

It is mainly this matrix product expansion approach we shall adopt in this paper.

Throughout this paper, we use Py, P; to denote the two N by N matrices

Cp 0 0 0 0 C1 Cp 0 - 0 0

Cy C1 Cy --- 0 0 c3 Cy Cp -+ 0 0
PR=. . . . . : , b= o

0 0 0 rr+ CN CN_-1 0 0 0 - 0 CN

or Py = (c2i—j—1) and P; = (c—j). For any f(z) with supp(f) C [0, N], we denote

vi(z) =[f(z), fle +1),...,f(x + N — 1)]t.

By a solution to the dilation equation (1) we always refer to a nontrivial compactly sup-
ported solution. When a solution f(x) is integrable, it is necessary that f(x) is compactly
supported with supp(f) C [0, N] ([10]). Sometimes it is convenient to call a solution f(z) to
(1) a scaling function and vs(z) a scaling vector when f(z) € L*(R) because it is a scaling
function of a multiresolution analysis and vice versa. (See [8] for more on multiresolution
analysis.)

For any z € [0, 1], let x = 0.d1dads - - - be a dyadic ezpansion of = (so d; € {0,1}). Define

S 2z xE[O,%],
Tl 22-1 ze (3,1

Then 7 becomes the left shift operator on dyadic expansions of z € [0,1], ie., 72 =
0.dodsdy - - -. We have

Proposition 1.1 Let f(x) be a solution to (1). Then for alln > 1 and z € [0, 1],
Vi) = Py Pa, -+ - Py, v (1" (2)) (2)

where © = 0.dydads - - -, d; € {0,1}.

Since dyadic expansions routinely occur in this paper, it is convenient to introduce some
notation. For any z € [0,1], if z is dyadic, i.e. x = k/2™ for some k,m € Z, then x has two

dyadic expansions except for £ =0 and z = 1,

x = 0.dy---dpl000--- (upper expansion)
= 0.d;---dy,0111--- (lower expansion).
for some d; € {0,1}. When z is non—dyadic, the dyadic expansion of = is unique. In this

case the upper and lower dyadic expansion of x is simply the same unique dyadic expansion

of z. We use d;(x) to denote the i—th digit in the upper dyadic expansion of x.



Definition 1.2 For any z,y € [0,1], x # y we denote by o(z,y) the largest integer k with
the following property: there exists a dyadic expansion of x and a dyadic expansion of y such
that the first k digits of the two expansions coincide. We denote by d;(z,y), 1 <i < o(z,y),

the i—th common digit in the two expansions.

Lemma 1.3 If o(z,y) > m then |z —y| < 2°™. Conversely, if |z —y| <27 and either x
or y is dyadic, then o(x,y) > m.

Proof: The first statement is obvious. To prove the second statement, assume that = €
(0,1) is dyadic. (In the cases of z = 0 or z = 1, the lemma can be checked easily.) So z has

two dyadic expansions
r = 0.d1 ---dk1000--- = 0.d1 ---dk()lll---.

Let y = ejeses - - - be a dyadic expansion of y. If £ > m then it is obvious that e; = d; for
1 < i< m. Suppose k < m. Let a = 2™z and b = 2™y. We have a € Z and b = b' +r
where b/ € Z and 0 < r < 1. Since |[a — b] <2™|z —y| <1, we have ) =aor ) =a—1. If
b' = a then the upper expansions of z and y will have the same first m digits. If ¥’ =a — 1

then the lower expansion of z and the upper expansion of y have the same first m digits. l

Definition 1.4 Let ¥ C My(R) (My(R) is the set of all N by N real matrices). % is
called RCP (right convergent products) if lim,_,, A1 --- A, exists for every sequence

{A;} in 2. X is called product bounded if the semigroup generated by ¥ is bounded.

For a single matrix A € My (R) the spectral radius of A is well-known, namely p(A) =

{|Al: X is an eigenvalue of A}. It is easy to show that for any matrix norm ||.|| on My (R)
1
— i |5
p(A4) = lim A%, 3)

We extend the definition of spectral radius to a set of matrices.

Definition 1.5 Let ¥ be a bounded subset of M y(R). The generalized spectral radius
of % is

p(¥) =lim Sup( sup  p(Ar--- An))
n—00 “Ajp,., A€

(4)
The following results appeared in [2], [9].

Proposition 1.6 Let ¥ C My (R) be bounded.

1. Let ||.| be any matriz norm on My (R). Then

. 1
p(X) =limsup sup A;--- Ay, (5)
n—00 Aj,.., A €Y



2. For any r > p(X), there exists a matriz norm ||.|| on My (R) such that ||A|| < r for
every A € 3.

3. If X3 is RCP, then % is product bounded.

4. X is product bounded if and only if there exists a norm |.|| on My(R) such that
A <1 for every A € X.

Note that (5) is the generalization of (4). The right hand side of (5) is called the joint

spectral radius of 3. Frequently it is more convenient to use (5) as the definition of p(X).

Definition 1.7 Suppose ¥ = {A, ..., Ay} C My (R) where A; # A; for i # j. Let ||.|| be

a matriz norm defined on My (R). The mean spectral radius is

1 1
p(X) = limsup — A - Al )" 6
p¥) Hmpp(ilgn 14, - 4, ) (6)
where the summation is taken over all elements (i1, -+, in) € {1, ..., p}".

It is standard to show that the difinition of p(X) is independent of the choice of the

norm ||.||. We also have the following:

Proposition 1.8 Suppose ¥ = {Ay, ..., Ay} C My (R) where A; # A; for i # j. Then

1.
_ .1 o
p(®) = lim (Z 144, -+ A, ) (7)
where the summation is taken over all elements (i1, ---, ip) € {1, ..., p}". In other

words, the limsup in (6) can be replaced by limit.

2. Let ||.|| be any matriz norm defined on My (R). Then
12
pE) < =D lIAill
Pis

Proof: 1. Let

an =log( D [ Ai -+ A ll).

ily"'ain

Then

a'm-i-n = log( Z “All e Aim+n ||)

iy imetn

< log( > Ay A i Al
iy imetn

= log( 3 Ay A ) (D0 114, 45 ])
il;"';im jly"'yjn

= Uy + ap.



Hence lim,, ,« a,,/n exists and (7) holds as required.

2. It follows easily from

p
Sl A <Y A 4l = ()
i=1

i1, 50n 11, 0n

The rest of the paper is divided into three sections. In Section 2 we give a necessary
and sufficient condition for the existence of continuous scaling functions. We also prove
a formulae for the exact Holder exponent of a continuous scaling function based on the
generalized spectral radius of two matrices. Some of our results in this section have also
been obtained independently by Colella and Heil ([7]). In Section 3, we focus on integrable
solutions. We prove that a bounded solution exists if { Py, P, } is product bounded, improving
an earlier result in [27]. We also establish a strong link between the mean spectral radius
and the existence of an integrable scaling function. Finally, in Section 4 we give an exact
formulae for the box dimension (fractal dimension) of the graph of a continuous scaling

function using the mean spectral radius.

2 Existence and Regularity of Continuous Solutions

Consider the the general dilation equation (1)

N

flz) = chf(Qx—n).

n=0
Under the assumption

Y e =Y coms1=1 (8)
n n

the two matrices Py, P; are column stochastic. Since [1,1,...,1] is a common left 1-

eigenvector of both Py, P;, we have

1 0 .
BN[* Al]7 2_071

simultaneously. Daubechies and Lagarias ([11]) proved that a continuous scaling function
exists if p(Ap, A1) < 1. This condition is not, however, necessary and cannot be applied to
the general dilation equation where condition (8) is not satisfied. Wang ([27]) proved the

following result for the general case:

Proposition 2.1 Suppose the dilation equation (1) has a continuous solution. Then

1. Jeo| <1, |en] < 1.



2. W = span{vy(z)|z € [0,1]} C RN is the minimal invariant subspace of {Py, P}

containing vy(0) and vy(1). Moreover,

1 0 .
le* Ai]7 1=0,1

simultaneously with p(Ag, A1) < 1.

P;

Daubechies and Lagarias ([10]) examined the following cascade algorithm for generating

scaling functions of (1):

N

Sms1 = Z enfm(2z —n),  fo(z) = X[O,l)(x)'

n=0
Wang ([27]) proved that under the condition (8) W = R is a necessary and sufficient

condition for the cascade algorithm to converge uniformly to a continuous solution of (1).

In general, equation (1) may have a continuous solution with W # R,

Example: The dilation eqation

Fla) = 3 f(20) + f(20 —3) + 5122 —6) (9
has a continuous solution
z, x€]|0,3]
f(z)=4¢ 6—z, z€(3,6]
0, z¢&][0,6]

Clearly dim W = 2 so W # RS. Notice that (9) is obtained by “stretching” the equation

fl#) = 372) + f(20 1)+ L (20 —2)
by a factor of 3.

Let W be an invariant subspace of { P, P;}, dim W = k, such that

1 0 )
le* Ai]’ i=0,1 (10)

simultaneously with p(Ap, A1) < 1. Then there exists a @ € My (R) such that

P,

o1 | B
e —[0 B] i=0,1 (1)
where QW = {[u’,0]' : u € R*} and
~ 1 0 .
Pi:l* Ai]’ i=0,1. (12)



Lemma 2.2 Let W be an invariant subspace of {Py, P} such that (10) is satisfied. Fix
v € W and for any x € [0, 1] define

v(z) = (1:3[1 Pdi(x))v

where [[; Agq, denotes to the right product Agq, Ag,Ag, -

1. Let Q, Py, P, be as in (11) and (12). Then Qv(z) = [b'(z),0]" where b(zx) € R¥,
k = dimW. Moreover, b(z) is bounded and

b(z) = Py, (z) -+ Py (o)p (7™ ) (13)
for all m > 0.
2. For any x,y € [0, 1],
b(z) —b(y) = [ cl(.?c,y) ] , ciw,y) eRFT (14)
If o(z,y) > m then
ci(z,y) = Ag - Ag, c1(7"z, ™y) (15)

where d; = d;(x,y).

3. Let ||.|| be any matriz norm on Mg_1(R) and r > p(Ao, A1). Suppose x,y € [0,1] and
o(x,y) > m. Then

v(z) —v(y)| < Cel|Aq, -+ Ag,, || < C5r™ (16)
where d; = di(z,y) and Cy, Cs are independent of x, y, m.

Proof: It is straightforward to check that

i - ) Py )V b(x
() = (I Pu )@ le:lHngdm ]:l ( >]

where Qv = [¥¢,0]*. Since { P}, P} is RCP, b(z) must exist and according to Proposition 1.6
it is bounded. Clearly, b(z) = Pdl(x) e Pdm(x)b(me) for all m > 0.

We observe that for any z € [0, 1],

Z:]‘_Ilﬁdl(Z) = [ c(lz) 8 ]

where ¢(z) € R¥~! is bounded. Hence for any z,w € [0, 1],



where ¢1(z,w) is bounded. If z,y € [0,1] and o(z,y) > m, then

1 0

b(z) ~ b(y) = [ ey ] (b(r"a) = b(r"y) = |

znil Adicl (mev Tmy)
where d; = d;(z,y). So (15) holds. Finally, since ¢1 is bounded,
Ib(z) —b(y)| < C1| [] Agic1 ("2, 7™y)| < Coll [] Aa, |-
i=1 i=1

Hence |v(z) — v(y)| < Csl|Aq, -+ A, ||, and |v(z) — v(y)] < Csr™ follows easily from
Proposition 1.6. [ |

We shall prove the converse of Proposition 2.1. For any u = [uq,...,uy_1]' € RN

we denote by WW(u) the minimal invariant subspace of {Fy, P;} containing the vectors

0 U1
Ul .
vo = . , V1= ' : (17)
: UN -1
UN-1 0

Notice that if u is an 1-eigenvector of the (N — 1) x (N — 1) matrix (c2i—j)1<ij<n—1, then

vo abd vy are l-eigenvectors of Py and P) respectively.

Theorem 2.3 Suppose there exists a 1-eigenvector u € RN™1 of M = (€2i—j)1<ij<N—-1

such that
1 0

W(u)N[* Az]7 1=0,1
simultaneously with p(Ag, A1) < 1. Then the dilation equation (1) has a continuous solution
f(x). Moreover,

W(u) = span{v;(z) \ z € 0,1]}.

Proof: Let -
viw) = ([T Pao)w
i=1

where w € W. We first show that by choosing a suitable w we shall have v(z) # 0.

Let Q, Py, P; be as in (11) and (12) for W = W(u). Then it follows from Lemma 2.2
that there exists a W € R* such that

Ow — [ w ] | Q(lﬁlpdi)wz [ (H?iloﬁdi)"fv ] |

Let e = [1,0,...,0]' € R*. Then e’ is a common left 1-eigenvector of both Py, Pi. We

choose w so that e'W # 0. This is clearly possible because W can be any vector in RF.



Thus for any binary sequence {d;},

[et,O]Q(ﬁ Pdi)w:et(ﬁ Isdi)v’if:etw}'v;é(); (18)
=1 1=1

hence (J[;2; Py,)w # 0.

Next we prove v(z) is continuous on [0,1]. Let 1 > r > p(Ag, A1). Then for z,y € [0, 1]

such that o(z,y) > m we have
v(z) = v(y)| < Cyr™.

This immediately implies that v(z) is continuous at nondyadic points, where the dyadic
expansions are unique. It remains to be shown that v(z) is also continuous at dyadic points.
The difficulty at dyadic points comes from the non-uniqueness of dyadic expansions at

those points, namely,
0.dy---dpl000--- =0.d;---d,0111---.
To show that v(x) is also continuous at dyadic points we need to show
PyP°w = P, Py°w. (19)

Let vg and vy be as in (17). vg and vy are l-eigenvectors of Py, P; respectively. Because

1 is a simple eigenvalue for both {Fo|yy(w), P1lw(u)}, we must have
Py*w = Avg, P°w = puvy. (20)
We want to show that A = u # 0. Notice that Pyvg = Pyvy = v*. So
P\ Pyw = Av*,  PyPrw = pv’.
From (18) we have

e'w = [, 0]QP . P°w = le'Qv*,
elw = [e!,0]QP,Pw = pelQv*;

hence A = p # 0 and so (19) holds.

The continuity of v(z) at dyadic points follows easily from (19). Let z € [0, 1] be any
dyadic point. Then (19) implies that by substituting the lower expansion of x for the upper
expansion of z the vector v(z) remains the same. Since for any m > 0 and y € [0,1] such

that |z — y| < 2™ we have o(z,y) > m, it follows from (19) that |v(y) — v(z)| < Csr™.



For any = € [0, N) define
f(z) = ([z] + 1)-th component of v({z}).

(Recall that [z] is the largest integer no greater than z and {z} = z—[z].), and let f(N) = 0.
f(z) is a solution of (1), and it is continuous at all non-integer points z € [0, N|. But from
(20) we see that v;(1) = pvy = [pu, 0], which is v;(0) = [0, pu]’ (A = p) shifting up by

one position. Hence, f(z) must also be continuous at integer points. [ |

Corollary 2.4 The dilation equation (1) has a C™ solution if and only if there exists an

1/2™-eigenvector u € RN~ of M = (c2i—j)1<ij<N—1 such that

1
gz 0

W(u)N[ * Az], 1=0,1

simultaneously with p(Ag, A1) < 1/2™.

P

Proof: The dilation equation (1) has a C™ solution if and only if

N
g(x) =Y 2"cpg(2z — n)

n=0
has a continuous solution ([9]). The corresponding matrices for the above dilation equation

are 2M Py, 2™ P;. [ |

The following theorem determines the exact Holder exponent of a continuous scaling

function.

Theorem 2.5 Suppose the dilation equation (1) has a continuous solution f(x). Let W,
{Ap, A1} be as in Proposition 2.1. Denote p = p(Ag, A1) and a = —logy p. Then

1. f(z) is C* ¢ but not C*T¢ for any 0 < e < «;

2. f(z) is C* if and only if {Ao/p, A1/p} is product bounded.

Before proving Theorem 2.5, we shall need some preparations.

Lemma 2.6 Let ||.|| be any matriz norm defined on M, (R) and § = {uy, ..., u,} be a
basis for R™. Then there exists a constant ¢ = ¢(||.||,S,n) > 0 such that for any A € M, (R),

[Aug| > || A]

for some k = k(A).

10



Proof: Since all norms on M,,(R) are equivalent, without loss of generality we may assume
that ||A| = supx=; [Ax|. (|.| is the standard Euclidean norm on R".) Choose b > 0
sufficiently large so that

(x| 1o <1} € {Sam,
=1

For any A € M, (R) there exists an xo € R" such that |xo| = 1 and |Axo| = ||A]|. Let

lai] < b}.

n

> laillAw] > |Axo| = || A].

i=1
Hence |ag||ug| > ||A]|/n for some k = k(A). So |Aug| > c||A|| where ¢ = 1/bn. |

Lemma 2.7 Under the assumptions of Theorem 2.5, let 0 < r < 1 and let § = —logyr.
Then the scaling function f(z) € CP(R) if and only if {Ag/r, A1 /r} is product bounded.

Proof: Suppose {Ay/r, A1/r} is product bounded. Then there exists a matrix norm ||.||
on My_1(R) such that ||Ag|| < r, ||A1]|| < r. (See Proposition 1.6.)

Since f(x) is a continuous scaling function of (1), {FPo|w, Pi|w} is RCP and

vi(z) = (f[lpdi(z))vo

where vo = v¢(0) € W. For any z,y € [0, 1] such that 27! < |z—y| < 27 ifo(z,y) >m

then from Lemma 2.2,
[vi(z) = viy)] < Csl|Agy(2) - Ady ()| < Cr™.

Hence
Cg’l“m

1\™8
[vi(@) = Vi)l < 5oy = 205 (§> < 203z — y|°.

If o(z,y) < m then we choose a dyadic z € [0, 1] such that |z —z| <27 and |y — z| < 27™.

From Lemma 1.3, o(z,2) > m and o(y,z) > m. So

|l — 2] <27 <20z —yl, |y—2z <27 <20z -yl

Hence
[vi(z) = vyl < [ve(z) = ve(2)] +[ve(z) = vi(y)]
< 203]x — 2|P +2C3)y — 2|°
S C4|x_y|/87

where Cy = 26+2(C;.

11



Conversely, let @, Py, P, be as in (11) and (12). Then from Lemma 2.2, Qvyi(z) =
[b!(x),0]" where b(z) € R* and k = dim W. Moreover,

b(z) — b(y) = [ 01(0 ] , ci(z,y) € RFL

z,Y)
Since
dimspan{vy(z) —v(0) | z € [0,1]} > k — 1,
we have
span{cy(z,0) | z € [0,1]} = RF~1,
So for some z1,..., zx_1 € [0,1], {c1(21,0),..., c1(2x_1,0)} is a basis of R¥~!,

Suppose {Ag/r, A1/r} is not product bounded. Then for any fixed matrix norm ||.|| on

Mj,_1(R) and any X > 0 there exist an m and dy, ..., d,, € {0,1} such that
m
T Adg,ll = xr™. (21)
i—1

It follows from Lemma 2.6 that exists a ¢ > 0 (independent of A\, m and d;) and 1 <1 < k—1
such that

‘(ﬁ Adi)cl('zlvo)‘ > car™
i=1

Let 2y = 0.dy -+ dp00--- and yy = x) + 2,/2™ . Then o(xy,yy) > m. So
m m
lex(yna)l = |(TT A Jer (" 7™ 2)| = |(T] Aa ) e (z1,0)| = exr™.
i=1 i=1

Hence |b(zy) —b(ya)| > cAr™ and so |[vy(zy) — vi(ya)| > eAr™ for some constant ¢ > 0.

But |yy —z)| <27™, so
vi(n) — v(aa)] > ex2 ™8 1) > exjy, — 2, )P
Since A > 0 is arbitrarily chosen, it follows that f(z) € C’(R). B

Proof of Theorem 2.5: For any r > 0, we have

Ay A (Ao, A1)
G 3) =" =0

Let ¢ > 0 and r = 27(®=9) = p2°. Since r > p(Ag, A1), {Ao/r, A1 /r} is product bounded.
Hence f(z) € C~1°82"(R) = C* *(R). Similarly, let r = 2(®+) = 2%, Then {A¢/r, A, /r}
is not product bounded. Hence f(z) ¢ C~82"(R) = C*(R). The second part of

Theorem 2.5 is a direct consequence of Lemma, 2.7. [ |

12



3 Dilation Equations with Integrable Solutions

It is shown in [27] that the dilation equation (1) has an L' solution if { Py, P} is RCP. We

prove the following stronger result.

Theorem 3.1 Assume that Y., ¢, = 2. If {Py, Pi} is product bounded, then the dilation

equation (1) has a bounded solution.

Proof: We first prove that (1) has an L? solution. Let fy(z) = X[0,1)(%) and

N

fulz) = Z ckfn-1(2z — k).

k=0
Notice that supp(fy,) C [0, N] and for any z € [0, 1],
V1. (%) = Py ) Pay) *** Pt () Vo (7). (22)
Hence there exists a C' > 0 such that |f,(z)| < C for all z and n.

Consider the Fourier transform of f,,(x)

e = [ e ) do
N
_ / e S o foi (22 — k) da
R k=0

:P(

AR
where P(&) = 52 cpe” %€, Thus
k=0
n

£ul©) = (1 PG0)) ol o)

k=1
Since fo(&) = (1 — e %) /i€, it follows that as n—s + oo, fo(£/2"T1)—1 uniformly on any

compact subset of R. Hence

n—-+o0o

i F(©) = [T P0) = 906
k=1

uniformly on any compact subset of R. (The uniform convergence of [[3°; P(£/2%) on

compact sets is established in [8].) Let S C R be any compact subset of R. Then

[1#©rds = tim [ 1f.(6)F de
S S

n—-+0o0o

lim sup /R | Ful©)]? de

n—-+o0o

IN

= limsup/ | fr(2)|? dz
R

n—-+0o0o

C?N.

IN

13



Hence ¢(¢) € L?(R). Let f(z) be the inverse Fourier transform of ¢(¢). Then f(z) € L?(R),
and from Paley-Wiener Theorem f(z) is compactly supported ([8]). Since the Fourier
transform of f(x) — Y0 o cxf(2z — k) is 0. It follows that f(z) must be a solution of (1).

We prove f(z) must be bounded. Since {Fy, P} is product bounded, there exists a
norm ||.|| on RY such that ||Px|| < ||x|| for i = 0,1 and all x € RY. For any b > 0 let

Sy={x € 0,1]] vy @) > b}.

Since v(z) = Py, (5)vs(72), it follows that = € S implies 7z € Sp. Hence Sy is invariant
under 7. But 7 is ergodic, so u(Sy) = 0 or u(S,) = 1 where u is Lebesgue measure on R.

So u(Sp) = 0 for a sufficiently large b > 0. Therefore f(z) must be bounded. |

Remark: We have actually proved a stronger results than p(S,) = 0 for some b > 0. We
have shown that |[v;(z)|| = by a.e. where by = inf{b|(S) = 0}. This implies that v(x)

must lie on the sphere ||z|| = by.

Corollary 3.2 Assume that ., con, = Y., cont1 = 1. If ¢, > 0, then the dilation equa-

tion (1) has a bounded solution.

Proof: Because both Py and P; are column stochastic, all products of them are also column

stochastic and non-negative. So {Fp, P, } must be product bounded. |

Theorem 3.3 Assume that ), ¢, = 2. Suppose there exists an invariant subspace W C
RY of {Py, P\} such that

(i) {Polw,Pilw} is product bounded;
(ii) there exists a v = [v1,vy,...vN]' € W such that YN | v; # 0.

Then the dilation equation (1) has an L* solution.

Proof: Define

v z €k —1,k),
fol@) :{ 0 ¢ [0, N).

Then vy (z) = v for z € [0,1). Let

N
fa(@) = crfo1(2z — k), n>0.
k=0

As in Theorem 3.1, we have supp(f,) C [0, N] and for any = € [0, 1),

Vi (%) = Py ) Paye) * Pap(a) V-

14



Notice that fo(z) = 2N, viX[i—1,)(7) and fo(€) = =N, v; # 0. Therefore the same ar-
gument used in the proof of Theorem 3.1 will show that the inverse Fourier transform of

limy, o0 fn(€) is an L? solution to (1). |

We are unable to show that under the assumption of Theorem 3.3 there exists a bounded
solution of (1), although such is likely the case. The main difficulty is to show that v¢(z) €

W for almost all z.

Theorem 3.4 Assume that all proper invariant subspaces of {Py, P1} are contained in the

subspace
N
VOZ{[ZEl,.’EQ,...,.’EN]t‘Z.’Ei:O}. (23)
i=1

Then p(Py, Py) < 2 is a necessary condition for the dilation equation (1) to have an L*

solution.
Notice that if }°, con = >, c2n+1 = 1, then Vj is an invariant subspace of {Fy, P }.

Lemma 3.5 Let A € M, (R) and ||.|| be a norm on R™. Suppose |A\| > 6 > 0 for all
eigenvalues A of A. Then there exists a constant ¢ = c(]|.||, A,6) > 0 such that

[ A" x| = 6™ []). (24)

Proof: We only need to show that for all m > 0,

A x|

lafl=1 6™

c>0. (25)

Let B = A/6. Then B is ezpansive, namely all eigenvalues of B have modulus strictly
greater than 1. Thus there exists an mg = mq(]|.||, 4,0) > 0 such that B™(U) D U where
U = {x € R"|||x]| < 1} for all m > my. So for any x with ||x|| = 1, [|B™x|| > 1 for all

m > myg. Let

= i IIB™x]|.
[|z||=1,m<mg

Then inf,—; [|B"x[| > ¢ for all m. (25) follows immediately. |

Lemma 3.6 Suppose all proper invariant subspaces of {Py, P1} are contained V¢ and (1)
has an L' solution. Let dy,...dx € {0,1} and p(Py, -+ Py) > 0 > 0. Then there exists a
constant ¢ > 0 such that

,u({x € [0,1] ‘ |(Py, - -+ Pa,))""vy(x)| > ™ for all m > 0}) > 0.

15



Proof: Since [ f(z)dz # 0 ([10]), we see that there exists a J C [0, 1] and p(J) > 0 such
that vy(x) € Vo for all 2 € J. Let S C [0, 1] such that ;(S) = 1. Then S* C S is invariant
under 7 and p(S*) = 1 where

S\U ([0,1]\ S).

This implies span {vy(z)|z € S*} is an invariant subspace of {I%, P1}. But v(z) € V for
z € JNS* # ¢. Sospan{vy(z)|z € S*} = RY and hence

span {Vf(a:) ‘xES} =RY. (26)
Denote Q = Py, --- Py, . Let {\,..., As} be the spectrum of ). Then
CN=w\,, @ - dW,,

where

Wy, = {x echV ‘ (Q — X\il)™x = 0 for some m}

Let W! =RNn (B, >0 W) and wW?2=RNn (D)r; /<o Wa;). Then
N=wlew?

Define the following norm ||.|| on RY: for any x = y +z where y € W' and z € W?2,
Ix[[ = ly| + [z].

Then from Lemma 3.5 there exists a ¢; > 0 such that

1Q"x|l =1Q™y + Q"z|| = [Q"y[ + |Q"z| = |Q™y| = c16™y].
For n > 0 let
Sp = {x €[0,1] ‘ vi(z) =y1+Yy2 ¥i € W, such that |y;| > %}

It follows from (26) that w(U,, Sn) > 0. Hence there exists an ng > 0 such that p(Sy,) >
0 > 0. For any z € Sy,

c
1Q"vs @I = 1Q"y1 + Q"y:ll = e16™[ya] > -6™.
Let ¢ = ¢1/ng. We have

n({z e 0,1] ‘ |(Pay -+ Py, )™ ()] > c0™ for all m > 0}) > 0.

16



Proof of Theorem 3.4: Assume that p(Fy, P;) > b > 2. Then there exist dy,...d; €
{0,1} such that p(Py, --- Py, ) > bF. Choose ¢ > 0 so that u(S) > 0 where

§={z€l0,1] | [(Py -+ Py)"vs(@)] > ™ for all m > 0},

Let T}, be the subset of [0,1] that contains all z’s such that 7™z € S and the first km
digits in the dyadic expansion of x are

dy-dpdy - dg---dy---d.

a'e

km

Clearly u(Ty,) = p(S)/2F™.

[ tvs@lde = g [ 1P Pay sy
> e u(S)
= als) (D)™
But (b/2)¥™ —00 as m—o0. This contradicts the assumption that f(z) € L'(R). |

In what follows we examine the relationship between p(Ag, A1) and L' solution of the
dilation equation (1). Recall that given ¥ = {41,..., A,} C My (R), p(X) is the mean

spectral radius defined in (6).

Lemma 3.7 Suppose Ay, A1 € My (R) and p(Ag, A1) < 1. Let ||.|| be a fized matriz norm.
For any = € [0, 1] define

9(x) = [[Agy @) | + 1 Ady (2) Ads ()| + - Z 1 Ady (@) Adyy ()
Then g(z) < oo for almost all z € [0,1]. Furthermore, g(x) € L*([0,1]).
Proof: Since p(Ap, A1) < 1, there exist constants ¢ > 0 and A, p(Ag, A1) < A < 1, such

that for all m,
1

om > A - Ag,ll < eX™
A1
where the summation 37, ; is taken over all (dy,...,dp) € {0,1}"™. Let

= | Ag, - Ag,|l-
n=1

For any fixed = € [0, 1], {gm(x)} is an increasing sequence and

1 m 1
/0|9m($)|d$ = Z/O 1 Ad, () " - Ady ()| d
n=1

17



=§:Z( 14g, -+ Ag, 1)
n= ldl,,

< Zc-)\”
i

< .
- 1=

Thus it follows from the Monotone Convergence Theorem that

1 1 c
[ 9@l dw <tim [ guo)do <
0 0 1-X

Hence g(x) € L'(]0,1]) and g(x) < oo almost everywhere.

Theorem 3.8 Suppose Y., con+m = 1 and p(Ap, A1) < 1 where

1 0 .
PZNlci Ai]7 i=0,1.

simultaneously. Then the dilation equation (1) has an L' solution.
Proof: Let fo(x) = x[o,1)(z) and
N

fa(@) =D crfo1(2z — k), n>0.

k=0

We have supp (f,) C [0, N] and for any = € [0,1], Let @ € My (R) such that

QPiQ‘lzl 1 H i=0,1.
)

C;

Then

v, (@) = Py)Pae) Pau@) Vi (T"2)

_ 1 0
= @ 1[1)”(:5) Bo() ]Q""

where vo = vy, (x) = [1,0,...,0]". It is easy to verify that By(z) = Ag, (z)Ady(a) -

and
by () = €4y () T Adi(2)Clo(2) T+ Ady (1) Ada ()~ Adpy () Cal ()

Let |b;| <e¢, i =0,1. Then

n—1
z)| <eo D | Ag - Ag, -
m=1

18
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Hence it follows from Lemma 3.7 that b, (z)—b(z) € L'(R) and B, (z)—0 as n—oo for
almost all z € [0, 1]. Let

Vf(m) = Qil l b(l.’E) 8 ] QVO-
Then
nli_}rgovjcn () =vs(z) ae.
and vy(z) € L'([0,1]). Therefore f(z) must be L. |

Theorem 3.9 Assume that ., ¢, =2. Let W C RN be an invariant subspace of {Py, P1}
such that

(i)
1 0 .
R|le* Ai], 1=0,1
simultaneously with p(Ag, A1) < 1;
(i) there exists a v = [v1,vy,...vN]' € W such that YN, v; # 0.
Then the dilation equation (1) has an L' solution.
Proof: Define

) ook, zelk—-1k)
fO(x)_{ ij x¢[O,N)

Then vy (x) = v for z € [0,1). Let

N

fal@) =" cpfa1(2e — k), n>0.

k=0

As in Theorem 3.3, we have supp(f,) C [0, N] and for any z € [0, 1],

Vi, (%) = Py ) Pase) P () V-

So vy, (z) € W. Notice that

[ = [ @ = g 0

So the same argument for proving Theorem 3.8 proves f,(z)—f(z) a.e. for some f(z) €
L'(R) and f(z) is a solution of (1). |

Conjecture':  Assume that 3", conim = 1 and let Vi be as in (23). Suppose all proper
invariant subspaces of {Py, P1} are contained in Vy. Then a necessary and sufficient con-

dition for the dilation equation (1) to have an L' solution is p(Ag, A1) < 1.

!This conjecture has recently been settled by Lau and Wang ([20]).
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Example: Counsider the following dilation equation
f(z) =af(2x)+ f(2x — 1)+ (1 —a) f(2z — 2). (27)

p(Ap, A1) = max{|a|, |1 — a|} and p(Ag, A1) = (Ja|] + |1 — a|)/2. Hence equation (27) has a
continuous solution if and only if 0 < @ < 1. For —1/2 < a < 3/2, (27) has an L' solution.

4  Fractal Dimension of a Continuous Solution

The fractal properties of scaling functions were discussed in many papers (e.g. [1], [10], [3]).
In [1], Berger linked a continuous solution of (1) to an iterated functions system (IF'S), and
in [10] an estimate of the box dimension of a continuous scaling function was given.

Recall that the boz dimension (or fractal dimension) is defined as follows. For any
compact set £ C R, the box dimension of £ is

dimg(F) = inf{s > 0: limsupbl(F) < —i—oo},
e—0+

where

bi(E) = inf {Z £

Let N (g, E) be the minimal number of balls of radius ¢ required to cover E. Then we have
(see [12])

E C UB;, diamB; = 5} .

| E
dimp(FE) = lim sup%.
e—o+  —loge

Note that the box dimension dimg(FE) of E differs from the Hausdorff dimension dimy (E),

which is typically much harder to compute and which is defined as

dimy (F) = inf{s > 0: limsuphl(E) < —i—oo},
e—0+

where

)

hi(E) = inf {Z(diamBi)s E C UB;, diamB; < g} :

The box dimension of the graph of a function has been studied before. A classical result
by Falconer([18]) is that if f(z) is C® where 0 < o <1, then

dimp(graph of f) <2 — a.

Before we establish an exact formulae for the box dimesion of a continuous scaling function),

we shall need the following result, proved by Deliu and Jawerth ([12]):
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Theorem 4.1 Let S, = {[j/2",(j +1)/2™): 0 < j < 2"}. For any continuous function
f: [0,1]—=RY and an interval I C [0,1] define
oser(£) = sup [f(x) — £(y)].
zyel

Then

logy (2 oscr(f)
dimp(graph of f) = lim sup 2 ( 1esn )

n—-+0o0o n

+1

(Here logy * = max(log, x,0) for z >0, and log5 0 =0.)

Theorem 4.2 Suppose f(z) is a continuous solution ofthe two—scale dilation equation (1)
and W = span{v(z):x € [0,1]}. Let

simultaneously with p(Ag, A1) < 1. Then

dimp (graph of f) = max{1, 2 + log, (4o, A1) }.
Proof: By using Theorem 4.1 it is rather standard to prove that

dimp(graph of f) = dimp(graph of vy).

So we only need to prove

dimp(graph of vy) = max{l, 2 + log, ﬁ(AO,Al)}.
Let I =1[j/2",(j +1)/2") € S, and let j/2" have dyadic expansion

7/2" =0.dy---dp0---.

Then d;(x) = d;, 1 <i < n, forall z € I. Let k = dimW and let Q, c1(x,y) € R¥~! be as

in Lemma 2.2. It follows from Lemma 2.2 that

oscr(Qvy) = sup |Ag, -+ Ag,e1(m"z, 7"y)| = sup |Ag, - Ag,ca(z,y)]-
x’yel Izye[o’l]

But ¢y (z,y) is bounded and span{cy(z,y)|z,y € [0,1]} = R*¥"1. So let ||.|| be a matrix

norm on Mj_;(R) then there exist constants ¢z > ¢; > 0 such that

cil|Ag, -+ Ad, || < 0scr(vy) < eal|Ag, -+ - Ag, |-

c >, NAg - Ag | < D oscr(vy) <ea Y [ Ag, - Ag, |l (28)
d1,...ydn IeS, d1,e..,dn
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where the summation is taken over all (dy,...,d,) € {0,1}". It follows from Theorem 4.1

that

log} (e, 051(v/)
dimp(graph of vy) = limsup 2 ( con ! ) +1
n—-+o0o n
o ogf (a1 g, 1Aa - Ag, )
> limsup +1
n—-+o00 n
1
= limsuplogy ( D [ Aa -~ Aqll)" +1,
oo dy e,

and (similarly from the second half of (28))

=

dimp(graph of vy) < limsuplog;( > [lAg, "'Adn”) "4+ L
n—+00 d1yernrdn

So we have

1
dimp(graph of vy) = limsuplog;( > llAg, ---Adn||) " +1

n—+00 d1yeerdn

1 1
= limsuplogs 2( — Ay, --- A "1
im sup log; (2n d};dnﬂ 4 Aa,ll)

= log™" (Zﬁ(Ag, Al)) +1
= max{l, 2 + log, ﬁ(AO,Al)}.

Example: Counsider the dilation equation
fx)y=afz)+ f2z—1)+ (1 —a)f(2z —2)

where 1/2 < a < 1. p(Ap, A1) = max{a, 1 —a} = a and p(Ap, A1) = 1/2. The equation has
a continuous scaling function that is C* where o = — logy a. Using Falconer’s estimate we

only get
dimp(graph of f) <2+ logya

while in fact we have
dimg (graph of f) = dimp(graph of f) = 1.

(Note that dimy (E) < dimp(E)).
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