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Abstract. A refinable spline in Rd is a compactly supported refinable function whose
support can be decomposed into simplices such that the function is a polynomial on each
simplex. The best known refinable splines in Rd are the box splines. Refinable splines play
a key role in many applications, such as numerical computation, approximation theory and
computer aided geometric design. Such functions have been classified in one dimension
in [6, 14]. In higher dimensions Sun [17] characterized those splines when the dilation
matrices are of the form A = mI where m ∈ Z and I is the identity matrix. For more
general dilation matrices the problem becomes more complex. In this paper we give a
complete classification of refinable splines in Rd for arbitrary dilation matrices A ∈ Md(Z).

1. Introduction

A compactly supported function f(x) in Rd with supp (f) = Ω is called a spline if there

exists a partition Ω =
⋃N

j=1 Rj of Ω into simplices {Rj} in Rd such that f is a polynomial

on each Rj . Notice that we do not assume that a spline is continuous. In this paper

we study the structure of splines in Rd that are also refinable. Refinable functions and

splines are among the most important functions, used extensively in applications such as

numerical solutions to differential and integral equations, digital signal processing, image

compression, and many others. Refinable splines such as the B-splines in R or the box

splines in Rd play a key role in approximation theory and in computer aided geometric

design. We aim to characterize compactly supported refinable splines in Rd. Let f(x) be

a compactly supported function on Rd and A ∈ Md(Z) be an expanding matrix, i.e. all

eigenvalues of A have |λj | > 1. We say f(x) is refinable if it satisfies a refinement equation

(1.1) f(x) =
n∑

j=0

cjf(Ax− dj),
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where all cj ∈ R and dj ∈ Rd. The matrix A is called the dilation matrix or simply the

dilation for the refinable function f , and {dj} the translations or translates of f . It is well

known that if a given refinement equation has a compactly supported distribution solution

then it is unique up to a constant multiple. Throughout this paper we shall simply say f is

A-refinable with translations {dj}. It should be noted that a refinable function has neither

a unique dilation factor, nor a unique set of translations. A simple but important fact one

observes is that if f(x) satisfies (1.1) then g(x) = f(x− (A− I)−1b) satisfies the refinement

equation

(1.2) g(x) =
n∑

j=0

cjg(Ax− dj + b),

which has the same dilation but a new translation set {dj − b}. In practical applications

the translations {dj} are required to be in Zd. In this case we shall say that the refinement

equation is integral and the corresponding refinable function an integral refinable function.

In this paper we shall focus mostly on integral refinable splines. Occasionally for simplicity

we shall relax the condition to allow the translates {dj} to be in Qd. Such a refinement

equation is said to be rational. Clearly, classification of rational refinable splines leads to

classification of integral refinable splines and vice versa by a simple rescaling. We should

point out that in most of the literature the additional condition that
∑n

j=1 cj = |det(A)| is

imposed on the refinement equation (1.1). These are the refinement equations that are most

useful in applications such as the construction of orthonormal wavelets and wavelet frames

as well as subdivision algorithms. It is well known that the condition
∑n

j=1 cj = |det(A)|
is equivalent to f̂(0) 6= 0, see Daubechies and Lagarias [8].

Refinable functions form the foundation for the theory of compactly supported wavelets

and the theory of subdivision schemes. There is a vast literature on both subjects. We refer

the readers to Daubechies [7] and Cavaretta, Dahmen and Micchelli [2] as well as other

sources for more details. Other areas refinable functions play important roles are fractal

geometry and self-affine tilings, cf. Falconer [10] and Lagarias and Wang [13]. In the case of

refinable splines we have an almost complete classification in one dimension, see [14, 5] and

the references therein. In particular Dai, Feng and Wang [5] classified refinable splines with

non-integer dilations. In higher dimension Sun [17] classified all integral refinable splines

where the dilation matrices have the form A = mI. Refinable splines with general dilations

in higher dimensions have not been classified, even in the integral case. It is often the case
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in the study of refinable functions and compactly supported wavelets that problems become

much more complex when the dilation matrices are not of the form A = mI. The objective

of this paper is to classify integral (rational) refinable splines in Rd for all dilation matrices

A ∈ Md(Z).

The best known refinable splines in Rd are the box splines. Let E = {v1,v2, . . . ,vn} be

a set of vectors in Zd that span Rd. Here the vectors vj do not have to be distinct so we

count multiplicity in E. The box spline BE(x) with respect to E is given by

B̂E(ξ) =
n∏

j=1

1− e−2πi〈vj ,ξ〉

2πi〈vj , ξ〉
.

It is known that BE(x) is compactly supported and that it is refinable for any integer

dilation matrix A = mI, where |m| ≥ 2. A way to generate more refinable splines is

to consider combinations of translates of a box spline. Let L(z) =
∑

α∈Zd qαzα where

only finitely many qα 6= 0. Here we adopt the standard notation zα = zα1
1 · · · zαd

d and

zk = zk
1 · · · zk

d for α ∈ Zd and k ∈ Z. L(z) is a Laurent polynomial. Under suitable

conditions g(x) =
∑

α∈Zd qαBE(x−α) is a refinable spline. Another way to construct more

refinable splines is to differentiate a refinable spline. Let D = (∂/∂x1, . . . , ∂/∂xd). For any

homogeneous polynomial P (z) of d variables the function P (D)BE is also a refinable spline

for any dilation matrix A = mI, provided that the derivatives exist. Sun [17] proved the

following result:

Theorem 1.1 (Sun [17]). Let A = mId with m ∈ Z,m > 1 and E = {v1, . . . ,vn} (counting

multiplicity) be vectors in Zd that span Rd. Assume that L(z) =
∑

α∈Zd qαzα is a Lau-

rent polynomial such that Q(z) = L(z)
∏n

j=1(z
vj − 1) satisfies Q(z)|Q(zm). Then for any

homogeneous polynomial P (z) and v = 1
m−1α0 with α0 ∈ Zd the function

(1.3) f(x) = P (D)
( ∑

α∈Zd

qαBE(x−α− v)
)

is an A-refinable spline with translates in Zd, provided that the derivatives are well defined.

Conversely, any compactly supported A-refinable spline f(x) with integer translates must be

of the above form.

It should be pointed out that if we require that the refinable spline has f̂(0) 6= 0 then the

polynomial P (z) is a constant, for otherwise it is clear that f̂(0) =
∫

f = 0.
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With a more general dilation matrix A it is possible that there exists no A-refinable

splines. Key to this observation is a result of Strichartz and Wang [16] on the convex hull

of a self-affine set. Note that the support of a refinable function is a self-affine set with

contraction A−1. For a spline it is a union of polytopes. In particular its convex hull is a

polytope in Rd. The results in [16] in fact classify all self-affine sets whose convex hulls are

polytopes. Using their results we obtain

Theorem 1.2. An expanding matrix A ∈ Md(Z) is the dilation matrix of a refinable spline

f(x) in Rd with integer (or rational) translates if and only if A is diagonalizable in Md(C)

and there exists an N > 0 such that the eigenvalues of AN are integers, or equivalently there

exist N > 0 and P ∈ Md(Z) such that P−1ANP = diag (m1, . . . ,md) where all mj ∈ Z.

Theorem 1.2 allows us to study the structure of refinable splines in Rd for all admissible

dilation matrices. We shall state our main results on the structure of refinable splines with

integer (and rational) translates in Section 2. Sections 3 and 4 contain the proof of the

main theorems.

The authors would like to thank Huo-jun Ran and Ming-jun Lai for very helpful discus-

sions. They also thank the referees for correcting many typos in the manuscript.

2. Statement of Main Results

For any A ∈ Md(Z) it is known that we can find a unimodular P ∈ Md(Z) (i.e. det(A) =

±1) such that P−1AP is block upper triangular with diagonal blocks A1, . . . , Am such

that each Aj ∈ Mrj (Z) and its characteristic polynomial is irreducible. Unfortunately,

eigenvalues alone cannot decide integral similarity, see Newman [15]. Nevertheless, when

we assume two integer matrices are diagonalizable (in Md(C)) then they are rationally

similar if and only if they have the same eigenvalues.

Now as a result, assume that A ∈ Md(Z) is expanding and satisfies the conditions in

Theorem 1.2. We can then always find a Q ∈ Md(Z) (not necessarily unimodular) such

that

(2.1) Q−1AQ =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am


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where Ai ∈ Mri(Z) and AN
i = λiIri , λi ∈ Z. Furthermore we may assume that |λ1| <

|λ2| < · · · < |λm|. For simplicity we shall refer to this block diagonal form Q−1AQ =

diag (A1, . . . , Am) as a standard block diagonal form.

Theorem 2.1. Let f(x) be a compactly supported refinable function in Rd with dilation

matrix A = diag (A1, . . . , Am) in the standard block diagonal form.

(A) f(x) is an A-refinable spline with integer (resp. rational) translates and f̂(0) 6= 0

if and only if for each 1 ≤ i ≤ m there exists a refinable splines gi(xi) with dilation

Ai and integer (resp. rational) translates, ĝi(0) 6= 0, such that f(x) =
∏m

i=1 gi(xi).

(B) f(x) is an A-refinable spline with integer (resp. rational) translates and f̂(0) = 0 if

and only if there exists a non-constant real polynomial P (ξ) with the property that

P (AT ξ) = CP (ξ) for some C ∈ R for all ξ ∈ Rd, such that f(x) = P (D)f∗(x) for

some f∗(x) =
∏m

i=1 gi(xi), where each gi(xi) is an Ai-refinable spline with integer

(resp. rational) translates, and the derivatives are well-defined.

(C) f(x) is an A-refinable spline with rational translates if and only if there exists a

K ∈ N such that g(x) := f(K−1x) is an A-refinable spline with integer translates.

Remark 2.1. We clarify what we mean by the well-definedness of f(x) = P (D)f∗(x) in

(B). The simplest way to define it is that P (ξ)f̂∗(ξ) ∈ L2(Rd).

Remark 2.2. Note that if A = diag (λ1, . . . , λd) where all λi ∈ Z and |λ1| < |λ2| <

· · · < |λm| then an A-refinable function f(x) with f̂(0) 6= 0 is a spline with integer (resp.

rational) translates if and only if f(x) =
∏d

i=1 g(xi) where each gi is a refinable spline in R
with integer (resp. rational) translates with ĝi(0) 6= 0. The structure of such splines have

been completely characterized in [6]. Thus we shall refer readers to this paper as well as

[14] and [5] for details about the structure of these splines.

Remark 2.3. In (B) the refinable spline f∗ may not satisfy f̂∗(0) 6= 0. In theory for d > 1

it might be possible to obtain a refinable spline f(x) such that f̂(0) = 0 and yet f is not a

derivative of another spline. We have not been able to construct such an example.

Proposition 2.2. Let f(x) be a compactly supported refinable function in Rd with dilation

matrix A and let Q−1AQ = B where Q ∈ Md(Z). Then
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(A) f(x) is an A-refinable spline with rational translates if and only if g(x) := f(Qx) is

a B-refinable spline with rational translates.

(B) f(x) is an A-refinable spline with integer translates if and only if g(x) := f(Qx) is

a B-refinable spline with translates in Q−1Zd.

Theorem 1.2 and Proposition 2.2 allow us to focus on dilation matrices that are block

diagonal in the standard block diagonal form. By doing so we can apply Theorem 2.1 and

the next theorm to classify all refinable splines with integer and rational translates.

To complete our classification of refinable splines we now consider the case where the

dilation matrix A ∈ Mr(Z) has AK = mI for some K, m ∈ Z, as stated in Theorem 1.1. A

set E ⊂ Rr is a basic A-cycle if E = {a, Aa, . . . , Ap−1a} for some a ∈ Rr with the property

that no two vectors in E are parallel and Apa = λa for some λ ∈ R. We say E is A-cyclic

if E is a finite union of basic A-cycles (counting multiplicity). All A-refinable splines with

integer translates are characterized by the next Theorem:

Theorem 2.3. Let f(x) be a compactly supported refinable function in Rr with dilation

matrix A ∈ Mr(Z) such that AK = mI for some K ≥ 1 and m ∈ Z.

(A) f(x) is an A-refinable spline with integer translates.

(B) There exists an A-cyclic set E = {a1, . . . ,an} (counting multiplicity) with aj ∈ Zr,

a homogeneous polynomial P (ξ), and α0,d1, . . . ,dk ∈ Zr such that

(2.2) f(x) = P (D)
( k∑

j=1

qjBE(x− dj − (A− I)−1α0)
)
,

where all qj ∈ C and the derivatives are well defined. Furthermore, the trigonometric

polynomial G(ξ) := (
∑k

j=1 qje
−2πi〈aj ,ξ〉)

∏n
j=1(e

−2πi〈aj ,ξ〉− 1) has G(ξ)|G(AT ξ) and

the polynomial P (ξ) has P (AT ξ) = CP (ξ) for some constant C.

3. Proof of Theorem 1.2

In this section we apply results from iterated function system (IFS) to prove Theorem

1.2. Given a refinable function f(x) in Rd satisfying the refinement equation (1.1), let

φj(x) = A−1(x + dj). By a well known result of Hutchinson [12] there is a unique compact

set T satisfying T =
⋃n

j=1 φj(T ). The set T is called the attractor of the IFS {φj}. Let
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Φ(S) =
⋃n

j=1 φj(S) for any compact S ⊂ Rd. Then T = limk→∞ Φk(S0) in the Hausdorff

metric for any nonempty compact S0. Now let Ω be the support of f(x). It follows from

the refinement equation (1.1) that Ω ⊆ Φ(Ω). Iterate it we obtain Ω ⊂ T , where T is the

attractor of the IFS {φj}.

Our focus is on the convex hulls of Ω and T in the refinable spline case. Assume that

f(x) is a refinable spline, then Conv(Ω) is a polytope.

Lemma 3.1. Conv(T ) = Conv(Ω).

Proof. Let E = {v1,v2, . . . ,vm} be the vertices of Conv(Ω). Since Ω ⊆ Φ(Ω) we must have

Conv(Ω) ⊆ Conv(Φ(Conv(Ω)). It follows that E ⊂ Φ(E). We show that Φ(E) ⊆ Conv(E).

Assume otherwise, there exists a u ∈ Φ(E) such that u is outside Conv(E) and is a vertex

of Conv(Φ(E)). Thus there exists an a ∈ Rd such that 〈a,u〉 > 〈a,v〉 for any v ∈ Φ(E).

Now u = φi(u∗) ∈ A−1(E) + A−1di for some u∗ ∈ E and i. It follows that 〈a, A−1di〉 >

〈a, A−1dj〉 for all j 6= i and 〈a, A−1u∗〉 > 〈a, A−1v〉 for all v 6= u∗ in E. Going back to the

refinement equation (1.1) we have

f(x) =
n∑

j=1

cjf(Ax− dj),

we infer that the term cjf(Ax−di), which is supported on A−1(Ω)+di, cannot be cancelled

out by any of the other terms in a neighborhood of x = u∗. Thus u∗ ∈ Ω ⊆ Conv(E). This is

a contradiction. Therefore we must have Φ(E) ⊆ Conv(E). Since E ⊆ Φ(E), it follows that

the vertices of Conv(Φ(E)) are precisely E. Iterations of E now yields Φm(E) ⊆ Conv(E).

However, Φm(E)→T as m→∞ and Ω ⊆ T . Thus Conv(E) = Conv(Ω) = Conv(T ).

Lemma 3.2. Assume that the translates {dj} of the A-refinable spline f(x) satisfying (1.1)

are rational. Then the vertices of Conv(T ) = Conv(Ω) are rational.

Proof. Let E = {v1,v2, . . . ,vm} be the vertices of Conv(T ). Since T = Φ(T ) we must have

u0 := v1 = φk1(u1) for some φk1 and some u1 ∈ E. By the same argument u1 = φk2(u2)

for some φk2 and u2 ∈ E. Repeating this process we obtain a sequence ui = φki+1
(ui+1) in

E. Thus we have a cycle um = um+p. This implies that

um = A−pum +
p∑

j=1

A−p+jdkm+j
.
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Since all dj are rational, it follows that um is rational. Going backward we infer that um−1

is also rational. It follows that u0 = v1 must be rational. Hence all vj are rational.

Proof of Theorem 1.2: By Lemma 3.1 the attractor of the IFS {φj(x) := A−1(x + dj)}
has a polygonal convex hull. Furthermore by Lemma 3.2 the vertices of the convex hull

are all rational. Thus the normal vectors of the faces of the convex hull can be chosen to

be rational. Now by a theorem of Strichartz and Wang [16], these normal vectors must be

the eigenvectors of Ak for some k ∈ N. Let K the the least common multiple of these k’s.

Then the normal vectors of the faces of the convex hull are all eigenvectors of AK . Now the

convext hull is a d-dimensional polytope so of among the normal vectors there are d linearly

independent ones. Thus AK is diagonalizable. Furthermore, AK is an integer matrix so

the rationality of the eigenvectors implies that all eigenvalues of AK are integers. Note the

eigenvalues of A are nonzero. Hence A itself must be diagonalizable in Md(C).

To prove the converse we only need to construct refinable splines for each matrix satisfying

the hypothesis. By Proposition 2.2 we only need to show the existence for A in the block

diagonal standard form (2.1). In this case, the existence follows from Theorem 2.1 and

Theorem 2.3, which give explicit structure for A-refinable splines. These results will be

proved in the next section.

4. Proof of Main Theorems

We first introduce notation and terminology. An important class of functions in this

study is the so-called quasi-trigonometric polynomials, which are functions of the form

G(ξ) =
n∑

j=1

cje
2πi〈aj ,ξ〉,

where aj ∈ Rd. Let F be a subset of Rd. We use T (F ) to denote the set of quasi-

trigonometric polynomials with all aj ∈ F . Thus T (Zd) is the set of all trigonometric

polynomials in d variables and T (Rd) is the set of all quasi-trigonometric polynomials in d

variables. A polynomial P (ξ) where ξ = [ξ1, . . . , ξd]T is a principal homogeneous polynomial

of degree k if

P (ξ) =
k∏

j=1

〈aj , ξ〉

for some nonzero a1, . . . ,ak ∈ Rd.
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One of the most important properties of the refinable function satisfying (1.1) is that the

Fourier transform f̂(ξ) =
∫

Rd f(x)e−2πi〈x,ξ〉 dx of f(x) satisfies

(4.1) f̂(AT ξ) = H(ξ)f̂(ξ)

where H(ξ) =
∑k

j=1 cje
−2πi〈dj ,ξ〉. H(ξ) is called the mask of the refinement equation (1.1).

Conversely, if f(x) satisfies (4.1) then f(x) satisfies the refinement equation (1.1). We

shall use (4.1) to classify all refinable splines in Rd, which have rather structured Fourier

transforms.

Lemma 4.1. Let f(x) be a compactly supported spline in Rd. Then f̂ has the form

(4.2) f̂(ξ) =
n∑

j=1

Tj(ξ)
Pj(ξ)

,

where each Tj(ξ) ∈ T (Rd) and each Pj(ξ) is a principal homogeneous polynomial.

Proof. See Sun [17].

Lemma 4.2. Assume that f̂(ξ) is of the form (4.2). Then there exist unique (up to scalar

multiplication) polynomials qj(ξ) with gcd(qj(ξ)) = 1 and a principal homogeneous polyno-

mial Q(ξ), as well as a unique E = {aj} ⊂ Rd such that

(4.3) f̂(ξ) =
m∑

j=1

qj(ξ)
Q(ξ)

e2πi〈aj ,ξ〉.

Furthermore, if f is A-refinable then Q(AT ξ) = CQ(ξ) for some constant C.

Proof. We first prove that if g(ξ) :=
∑k

j=1 hj(ξ)e2πi〈bj ,ξ〉 = 0 for all ξ ∈ Rd, where each hj

is a polynomial and {bj} are distinct in Rd, then all hj = 0. We may assume that all hj

are nonzero. Without loss of generality we may assume that b1 is a vertex on the convex

hull of {bj}. Thus there is an a∗ ∈ Rd such that 〈a∗,b1〉 > 〈a∗,bj〉 for all j > 1. Thus for

any a ∈ Rd in a small neighborhood of a∗ the inequality still holds. We can find such an

a ∈ Rd such that 〈a,b1〉 > 〈a,bj〉 for all j > 1 as well as hj(−ia) 6= 0 for all j.

Now g(ξ) = 0 in fact for all ξ ∈ Cd because it is analytic. Take ξ = −ita where t > 0.

Then

e−2πt〈b1,a〉g(ξ) := h1(−ita) +
k∑

j=2

hj(−ita)e−2πt(〈b1,a〉−〈bj ,a〉) = 0.
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Since each hj(−ita) is a polynomial of t and at t = 1 it is nonzero, |h1(−ita)|→∞ as

t→∞. On the other hand, each hj(−ita)e−2πt(〈b1,a〉−〈bj ,a〉) goes to 0 for j ≥ 2. This is a

contradiction.

Clearly in the above we may replace the polynomials hj with rational functions and

the conclusion still holds, because we can multiply everything by the common denominator.

Thus we can write f̂(ξ) uniquely as f̂(ξ) =
∑m

j=1 gj(ξ)e2πi〈aj ,ξ〉 where each gj(ξ) is a rational

function that is a sum of reciprocals of principal homogeneous polynomials. This means

that gj(ξ) = hj(ξ)/pj(ξ) where pj(ξ) is a principal homogeneous polynomial. Let Q(ξ) be

the least common multiple of {pj(ξ)}. Then gj(ξ) = qj(ξ)/Q(ξ) with gcd(qj(ξ)) = 1. The

uniqueness is obvious.

Finally, if f is A-refinable there exists some H(ξ) ∈ T (Rd) such that f̂(AT ξ) = H(ξ)f̂(ξ).

Thus

f̂(AT ξ) =
m∑

j=1

qj(AT ξ)
Q(AT ξ)

e2πi〈aj ,AT ξ〉.

On the other hand,

H(ξ)f̂(ξ) =
m∑

j=1

qj(ξ)
Q(ξ)

H(ξ)e2πi〈aj ,ξ〉.

The uniqueness of Q(ξ) and qj(ξ) now implies that Q(AT ξ) = CQ(ξ).

We shall refer to (4.3) as the standard representation of f̂ .

Lemma 4.3. Let Q(ξ) =
∏n

j=1〈vj , ξ〉 be a principal homogeneous polynomial where vj ∈
Rd. Let A be an expanding matrix in Md(R) such that Q(AT ξ) = CQ(ξ). Then each vj is

an eigenvector of Ak for some k ∈ N.

Proof. Assume that some vj , say v1, is not an eigenvector of Ak for some k. Note that

(4.4) Q(AT ξ) =
n∏

j=1

〈Avj , ξ〉 = C

n∏
j=1

〈vj , ξ〉.

Thus 〈Av1, ξ〉 = c1〈vi, ξ〉 for some vi and hence vi = c1Av1. By the same token another

vi′ is parallel to vi and hence A2v1. It follows that there is a vector in {vj} that is parallel

to Akv1 for each k. But all Akv1 are pairwise non-parallel. This is a contracdition.

Going back to the standard representation (4.3), note that as stated in the proof of

Lemma 4.2 each qj(ξ)/Q(ξ) can be written as sum of reciprocals of principal homogeneous
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polynomials. Clearly these principal homogeneous polynomials are factors of Q(ξ). Thus

we can rewrite (4.3) as

(4.5) f̂(ξ) =
n∑

j=1

Tj(ξ)
Qj(ξ)

,

where Tj(ξ) ∈ T (Rd) and Qj(ξ) is a principal homogeneous polynomial. Furthermore we

may assume that {Q−1
1 (ξ)} are linearly independent, for otherwise we can regroup to use

only those Q−1
j (ξ) that are linearly independent from the others.

Lemma 4.4. Let A = diag (A1, . . . , Am) be expanding such that Ai ∈ Mri(R) satisfies

AK = λiIri, where all |λi| are distinct. Let f(x) be an A-refinable spline (not necessarily

with integer translates) with f̂ given by (4.5) such that {Q−1
j (ξ)} are linearly independent.

Then there exist constants cj, Cj and H∗(ξ) ∈ T (Rd) such that Qj((AT )Kξ) = cj Qj(ξ)

and Tj((AT )Kξ) = Cj H∗(ξ)Tj(ξ). Furthermore each Qj(ξ) = Qj(ξ1, . . . , ξm) has the form

Qj(ξ) =
∏m

i=1 qji(ξi) where ξi ∈ Rri.

Proof. By Lemma 4.3 Q(ξ) is a principal homogeneous polynomial Q(ξ) =
∏n

j=1〈vj , ξ〉
where each vj is an eigenvector of Ak for some k. It follows immediately that Q(ξ) =∏k

i=1 Ri(ξi) for some principal homogeneous polynomials Ri(ξi), ξi ∈ Rri . Now each

Qj(ξ)|Q(ξ). Thus each Qj(ξ) = Qj(ξ1, . . . , ξm) has the form Qj(ξ) =
∏m

i=1 qji(ξi), with

ξi ∈ Rri . It also follows that Qj((AT )Kξ) = cj Qj(ξ) for some cj .

To complete the proof, observe that given the linear independence of {Q−1
j } the repre-

sentation (4.5) is unique. This can be seen from a term by term comparison. We only need

to show that if
∑n

j=1 Sj(ξ)Q−1
j (ξ) ≡ 0 where Sj ∈ T (Rd) then all Sj(ξ) ≡ 0. First, by

Lemma 4.2 we must have
∑n

j=1 ajQ
−1
j (ξ) ≡ 0, where aj is the constant term of Sj . The

linear independence now yields all aj = 0. The same argument applies to all terms to obtain

Sj ≡ 0. The uniqueness now follows.

Now we have f̂((AT )Kξ) = H∗(ξ)f̂(ξ) where H∗(ξ) =
∏K−1

j=0 H((AT )jξ). It follows that

n∑
j=1

Tj((AT )Kξ)
Qj((AT )Kξ)

=
n∑

j=1

Tj((AT )Kξ)
cjQj(ξ)

=
n∑

j=1

H∗(ξ)Tj(ξ)
Qj(ξ)

.

The uniqueness now yields Tj((AT )Kξ) = Cj H∗(ξ)Tj(ξ), with Cj = 1/cj .
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Lemma 4.5. Let H(ξ), G1(ξ), G2(ξ) ∈ T (Rd) and not identically 0. Let A ∈ Md(R) be

expanding such that Gi(AT ξ) = CiH(ξ)Gi(ξ) for i = 1, 2, where Ci ∈ C. Then C1 = C2

and G1(ξ) = CG2(ξ) for some C ∈ C.

Proof. Let G1(ξ) =
∑n

j=1 cje
2πi〈aj ,ξ〉 and G2(ξ) =

∑m
j=1 dje

2πi〈bj ,ξ〉, where cj , dj 6= 0. Set

K = maxj,i(|aj − bi|). We first prove {aj} = {bj}. If not, we may assume without loss

of generality that a1 6∈ {bj}. Since A is expanding, we may choose k sufficiently large

such that |Aka1 − Akbi| > 2K for all i and |Aka1 − Akaj | > 2K for all j > 1. Note that

G1((AT )kξ)/G2((AT )kξ) = C ′G1(ξ)/G2(ξ), where C ′ = C1/C2. Hence G1((AT )kξ)G2(ξ) =

C ′G2((AT )kξ)G1(ξ). It follows that
n∑

j=1

cje
2πi〈Akaj ,ξ〉

m∑
j=1

dje
2πi〈bj ,ξ〉 = C ′

m∑
j=1

dje
2πi〈Akbj ,ξ〉

n∑
j=1

cje
2πi〈aj ,ξ〉.

Note that the term c1d1e
2πi〈Aka1,ξ〉e2πi〈b1,ξ〉 cannot be cancelled out by any other terms.

This is a contradiction. Thus {aj} = {bj}. Without loss of generality we may assume

that aj = bj . The same argument now implies that by taking k sufficiently large we get

cidj = C ′dicj for all i, j. Thus C ′ = 1 and cj = Cdj with C = c1/d1.

Lemma 4.6. Let H(ξ) ∈ T (Zd) and T (ξ) ∈ T (Rd) such that T (AT ξ) = cH(ξ)T (ξ) for

some c ∈ C, where A ∈ Md(Z) is expanding. Then there exists some α0 ∈ Zd and v =

(A− I)−1α0 such that e−2πi〈v,ξ〉T (ξ) ∈ T (Zd).

Proof. There exist unique a1, . . . ,an ∈ [0, 1)d such that T (ξ) =
∑n

j=1 cje
2πi〈aj ,ξ〉Tj(ξ),

where each Tj(ξ) ∈ T (Zd). It follows from T (AT ξ) = cH(ξ)T (ξ) that
n∑

j=1

cje
2πi〈Aaj ,ξ〉Tj(AT ξ) = c

n∑
j=1

cje
2πi〈aj ,ξ〉H(ξ)Tj(ξ).

Observe that Tj(AT ξ) and H(ξ)Tj(ξ) are all trigonometric polynomials. So {Aaj (mod 1)} =

{aj}. In other words Aa1 (mod 1), . . . , Aan (mod 1) is a permutation of a1, . . . ,an. Let K

be the order of this permutation. Then AKaj (mod 1) = aj for all j, i.e. AKaj = aj + αj

for some αj ∈ Zd. Set HK(ξ) = cK
∏K−1

j=0 H((AT )jξ). Then HK ∈ T (Zd) and T (BT ξ) =

HK(ξ)T (ξ) where B = AK . This yields
n∑

j=1

cje
2πi〈aj ,ξ〉HK(ξ)Tj(ξ) =

n∑
j=1

cje
2πi〈Baj ,ξ〉Tj(BT ξ) =

n∑
j=1

cje
2πi〈aj ,ξ〉e2πi〈αj ,ξ〉Tj(BT ξ).

Hence we must have Tj(BT ξ) = e−2πi〈αj ,ξ〉Hk(ξ)Tj(ξ).
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Set T ∗
j (ξ) = e−2πi〈uj ,ξ〉Tj(ξ) where uj = (B−I)−1αj . It is easy to check that T ∗

j (BT ξ) =

HK(ξ)T ∗
j (ξ). However, T (ξ) satisfies the same equation. It follows from Lemma 4.5 that

T (ξ) = CjT
∗
j (ξ) = Cje

−2πi〈uj ,ξ〉Tj(ξ). This immediately implies that n = 1 and T (ξ) =

C1e
−2πi〈u1,ξ〉T1(ξ), where T1(ξ) ∈ T (Zd). Now

T (AT ξ) = C1e
−2πi〈Au1,ξ〉T1(AT ξ) = cH(ξ)T (ξ) = cC1H(ξ)e−2πi〈u1,ξ〉T1(ξ).

Since both T (ξ) and T1(AT ξ) are trigonometric polynomials we must have Au1 = u1 −α0

for some α0 ∈ Zd. Setting v = −u1 now proves the lemma.

Lemma 4.7. Let λi ∈ N such that 1 < λ1 < · · · < λm. Let P (z) = P (z1, . . . , zm) be a

polynomial, zi ∈ Rri, such that P (z) divides P (zλ1
1 , . . . , zλm

m ). Then there exist polynomials

P1(z1), . . . , Pm(zm) such that P (z1, . . . , zm) =
∏m

j=1 Pj(zm).

Proof. We shall prove that P (z1, . . . , zm) = Pm(zm)P̃ (z1, . . . , zm−1). We prove it first for

the case where zm is a scalar variable, i.e. rm = 1. We shall use zm for zm.

Write P (z) =
∑N

k=1 ckpk(zm)wβk where w := (z1, . . . , zm−1), βk ∈ Zd−rm , ck 6= 0 and

pk(zm) are monic polynomials. Let L = maxk ‖βk‖1 where ‖.‖1 denotes the l1-norm. Let

Qn(w, zm) = P (zλn
1

1 , . . . , z
λn

m−1

m−1 , z
λn

m
m ). Then P |Qn and Qn(w, 1) is a polynomial of w of

degree no more than Lλn
m−1. Now for sufficiently large n let ω be a primitive λn

d -th root

of unity. Then Qn(w, ωj) = Qn(w, 1) for all 0 ≤ j < λn
m. Thus P (w, ωj) is a factor

of Qn(w, 1). But up to constant multiples Qn(w, 1) cannot have more than Lλn
m−1 + 1

factors. Thus there exist j1, . . . , jK with K = bλn
m/(Lλn

m−1 + 1)c such that up to constant

multiples all P (w,ωjk) are the same. Thus the vectors {[p1(ωjk), . . . , pN (ωjk)]T } are pairwise

parallel. However, by taking n sufficiently large K can be arbitrarily large (greater than

2 max1≤j≤N (deg pj)). This immediately yields that the vectors {[p1(zm), . . . , pN (zm)]T :

zm ∈ C} are all parallel. This is only possible if all pj(zm) are scalar multiples of one

another. Since all pk are monic, it follows that all of them are equal, pj(zm) = Pm(zm) for

some Pm. Hence P (w, zm) = P̃ (w)Pm(zm).

In the case rm > 1 let M = deg(P ) + 1. For zm = (s1, . . . , srm) we make the sub-

stitution zm 7→ (tM
0
, tM

1
, . . . , tM

rm−1
). With this substitution we obtain the polynomial

Q(w, t) := P (w, zm) with zm = (tM
0
, tM

1
, . . . , tM

rm−1
). Observe that after the substitution

a term wαzβ
m is mapped to some wαtnβ , and the map is one-to-one. Now clearly Q divides

Q(zλ1
1 , . . . , zλm−1

m−1 , tλm). Thus Q(w, t) = P̃ (w)Qm(t). Now all powers of t come from Qm(t),
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and by the fact that the map of wαzβ
m to some wαtnβ is one-to-one we can reconstruct the

polynomial P from Q. It follows that P (z1, . . . , zm) = Pm(zm)P̃ (z1, . . . , zm−1).

The rest of the lemma follows from induction on m.

We now come to our most important lemma, which summarizes what we have proved in

previous lemmas.

Lemma 4.8. Let A = diag (A1, . . . , Am) ∈ Md(Z) such that AK
i = λiIri and all |λi| ∈ Z

distinct. Let f(x) be an A-refinable spline with integer translates. Then

(4.6) f̂(ξ) =
T (ξ)P (ξ)

Q(ξ)
,

where T (ξ) ∈ T (Rd), Q(ξ) is a principal polynomial and P (ξ) is a polynomial. Furthermore

they satisfy the following properties:

(A) There exist Ti(ξi),Hi(ξ) ∈ T (Zri) for 1 ≤ i ≤ m and v = (A−I)−1α0 with α0 ∈ Zd

such that Ti(AT
i ξi) = Hi(ξ)Ti(ξ) for all i and

(4.7) T (ξ) = T (ξ1, . . . , ξm) = e2πi〈v,ξ〉
m∏

i=1

Ti(ξi).

(B) There exist constants c1, c2 such that P (AT ξ) = c1P (ξ) and Q(AT ξ) = c2Q(ξ).

Furthermore P and Q have no common factor, and there exist principal homoge-

neous polynomials Qi(ξi), ξi ∈ Rri, such that

(4.8) Q(ξ) = Q(ξ1, . . . , ξm) =
m∏

i=1

Qi(ξi).

Proof. It is clear that (4.6) follows directly from (4.5) and the subsequent Lemma 4.4 and

Lemma 4.5. Since f(x) is A-refinable with integer translates there exists H(ξ) ∈ T (Zd)

such that f̂(AT ξ) = H(ξ)f(ξ). It now follows from (4.6) that T (ξ) = aH(ξ)T (ξ), and from

Lemma 4.6 we have T (ξ) = e2πi〈v,ξ〉T̃ (ξ) where T̃ (ξ) ∈ T (Zd). Using the property that

v = (A− I)−1α0 for some α0 ∈ Zd we see that T̃ (Aξ) = e2πi〈α0,ξ〉H(ξ)T̃ (ξ). This implies

that T̃ (ξ)|T̃ (AT ξ) and hence T̃ (ξ)|T̃ ((AT )Kξ) = (̃λ1ξ1, . . . , λmξm).

Without loss of generality we may assume all λj > 0, for otherwise we can iterate the

equation once to use A2K for AK . Lemma 4.7 now applies to the trigonometric polynomial

T̃ to yield T̃ (ξ) =
∏m

i=1 Ti(ξi) where each Ti(ξi) ∈ T (Zri). Clearly T (ξi)|Ti(AT
i ξi). Setting

Hi(ξi) = Ti(AT ξi)/Ti(ξi) proves (A).
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To prove (B) note that we can always assume P (ξ) and Q(ξ) have no common factors.

Furthermore clearly we have P (AT ξ)Q−1(AT ξ) = CP (ξ)Q−1(ξ) for some constant C. Since

Q(ξ) and Q(AT ξ) have the same degree, it follows that Q(AT ξ) = c2Q(ξ) and P (AT ξ) =

c1P (ξ). The property (4.8) follows from Lemma 4.4.

Proof of Theorem 2.1. Part (C) of the theorem is obvious. So we shall focus on (A)

and (B).

(A) Clearly if f(x) =
∏m

i=1 gi(xi) where each gi(xi) is an Ai-refinable spline with integer

(resp. rational) translates, xi ∈ Rri , then f(x) is an A-refinable spline with integer (resp.

rational) translates. We need to prove the converse. Since the case of rational translates is

a rescaling of the case of integer translates, we only need to prove it for the latter case.

Now assume f(x) is an A-refinable spline with integer translates. By Lemma 4.8 we

have f̂(ξ) = T (ξ)P (ξ)Q−1(ξ) where P,Q have no common factor and Q is a principal

homogeneous polynomial. Assume that

Q(ξ) =
n∏

j=1

〈aj , ξ〉.

It is shown in Sun [17] that there exist nonzero t1, . . . , tn ∈ R such that tjaj ∈ Zd and

T (ξ) = S(ξ)
n∏

j=1

(1− e2πi〈tjaj ,ξ〉)

for some S(ξ) ∈ T (Rd). Now since rescaling aj yield a principal homogeneos polynomial

that differs from Q only by a constant multiple, we may without loss of generality assume

that all tj = 1 and aj ∈ Zd.

We now apply (4.8) in Lemma 4.8, which states that Q(ξ) =
∏m

i=1 Qi(ξi). Write Qi(ξ) =∏ni
j=1〈bij , ξi〉 where bij ∈ Zri . Since T (ξ) = e2πi〈v,ξ〉 ∏m

i=1 Ti(ξ) by (4.7) we have Ti(ξ) =

Si(ξi)
∏ni

j=1(1− e2πi〈bij ,ξi〉) for some Si(ξ) ∈ T (Zri). Let

Gi(ξi) =
Ti(ξi)
Qi(ξi)

= (2πi)niSi(ξi)
ni∏

j=1

1− e2πi〈bij ,ξi〉

2πi〈bij , ξi〉
.

Then by Lemma 4.8 we have Gi(AT
i ξi) = ciHi(ξ)Gi(ξi). Since Hi ∈ T (Zri) it follows that

the inverse Fourier transform g̃(xi) of Gi is Ai-refinable. But Si(ξ) ∈ T (Zri), so g̃i(xi) is a

linear combination of some integer translates of the box spline BEi(xi), where Ei = {bij}
(counting multiplicity). Thus g̃i(xi) is an Ai-refinable spline with integer translates.
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Finally, set gi(xi) = g̃i(xi + vi) where v = [v1, . . . ,vm] with vi = (Ai − I)−1αi for

some αi ∈ Zri . By (1.2) gi is a refinable spline in Rri with integer translates. Hence

g(x) =
∏m

i=1 gi(xi) is an A-refinable spline with integer translates. Furthermore,

(4.9) f̂(ξ) = ĝ(ξ)P (ξ).

Now P (AT ξ) = CP (ξ) for some C. Since f̂(0) 6= 0 we must have P (0) 6= 0. So C = 1. It is

easy to see that the only polynomial with this property is a constant. Thus f(x) = C0g(x).

This proves (A).

(B) Note that (4.9) is derived without the assumption that f̂(0) = 0. Assume that f(x) is an

A-refinable spline with integer translates. Thus it follows from (4.9) that f(x) = P (D)g(x),

where g(x) =
∏m

i=1 gi(xi) and each gi(xi) is an Ai-refinable spline with integer translates.

Now f̂(ξ) = P (ξ)ĝ(ξ). It follows that f(x) = P (D)g(x). The property P (AT ξ) = CP (ξ) is

already established in Lemma 4.8. Conversely, if g(x) is an A-refinable spline and P (ξ) is a

polynomial such that ĝ(ξ)P (ξ) ∈ L2(Rd) then f(x) given by f̂(ξ) = ĝ(ξ)P (ξ) is in L2(Rd).

It is A-refinable with integer translates as

f̂(AT ξ) = ĝ(AT ξ)P (AT ξ) = CH1(ξ)ĝ(ξ)P (ξ),

where H1(ξ) ∈ T (Zd). Hence f(x) = P (D)g(x) is an A-refinable spline. This completes

the proof of (B).

Proof of Proposition 2.2 Assume f(x) is A-refinable with translates {dj}n
j=1,

f(x) =
n∑

j=1

cjf(Ax− dj).

Then g(x) = f(Qx) satisfies the refinement equation

g(x) = f(Qx) =
n∑

j=1

cjf
(
Q(Q−1AQx−Q−1dj)

)
=

n∑
j=1

cjg(Bx−Q−1dj).

Thus g(x) is B-refinable with translates {Q−1dj}. Both (A) and (B) of the proposition

follows immediately.

Proof of Theorem 2.3. We first prove that (B) implies (A). Clearly G(ξ)|G(mξ) as

(AT )K = mI. By the result of Sun [17] f(x) is an mI-refinable spline with integer translates.

In particular it is a spline. We only need to show that f is A-refinable. To achieve this,
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observe that

(4.10) f̂(ξ) = e2πi〈v,ξ〉G(ξ)P (ξ)R−1
E (ξ)

where RE(ξ) =
∏n

j=1〈aj , ξ〉. Now E is A-cyclic so RE(AT ξ) = C1RE(ξ). By assumption

we also have G(AT ξ) = H1(ξ)G(ξ) for some H1 ∈ T (Zr) and P (AT ξ) = CP (ξ). Finally,

〈v, AT ξ〉 = 〈Av, ξ〉 = 〈α0 + v, ξ〉. Thus e2πi〈v,AT ξ〉 = e2πi〈α0,ξ〉e2πi〈v,ξ〉, which yields

f̂(AT ξ) = H(ξ)f̂(ξ), where H(ξ) := CC−1
1 e2πi〈α0,ξ〉H1(ξ).

Since H(ξ) ∈ T (Zr) it follows that f is A-refinable with integer translates.

To prove the converse (A) implies (B), notice that since f is A-refinable with integer

translates it must also be mI-refinable with integer translates. Thus f(x) must be in

the form (2.2) by [17]. Hence f̂(ξ) is given by (4.10). By Lemma 4.8 part (B) we have

P (AT ξ) = CP (ξ) and RE(AT ξ) = C1RE(ξ). We now prove that E can be rescaled to

become an A-cyclic set. Let a ∈ E. By RE(AT ξ) = C1RE(ξ), 〈a, AT ξ〉 = 〈Aa, ξ〉 must be

a factor of RE(ξ). Thus there exists an a′ ∈ E such that a′ is parallel to Aa. Thus we may

replace a′ with Aa so the new RE differ from the old by only a constant multiple. This

procedure can be repeated until we make E an A-cyclic set.
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