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1. Introduction

Let I = {φj}mj=1 be an iterated function system (IFS) consisting of a family of contractive

affine maps on Rd. Hutchinson [8] proved that there exists a unique compact set K = K(I),

called the attractor of the IFS I, such that K =
⋃m
j=1 φj(K). Moreover, for any given

probability vector p = (p1, . . . , pm), i.e. pj > 0 for all j and
∑m

j=1 pj = 1, there exists a

unique compactly supported probability measure ν = νI,p such that

(1.1) ν =
m∑
j=1

pj ν ◦ φ−1
j .

This paper is devoted to the study of fundamental properties of a class of self-affine sets and

measures, such as the Lq spectrum, the Hausdorff dimension and the entropy dimension.

It is well known that problems concerning self-affine sets and measures are typically

difficult. Questions that may be trivial in the self-similar setting are often intractable in

the self-affine setting. A telling example is calculating the Hausdorff and box dimensions of

the attractor of an IFS I = {φj}mj=1. If all φj are similitudes and I satisfies the so-called

open set condition (OSC) the Haudorff dimension and the box dimension of the attractor

K(I) agree, and they are easily computable by the formula
m∑
j=1

ρ
dimH(K)
j = 1

where ρi denotes the contraction ratio of φj , see e.g. Falconer [3]. Even without the open set

condition the dimension of K(I) can often be computed if I belongs to a more general class

called the finite type IFS, see e.g. Lalley [11] and Ngai and Wang [18] and the references

therein. However this is no longer the case when φi are affine maps. Even under the open
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set condition we know how to compute the Hausdorff dimension of K(I) only for very

special I’s, and for which the solutions are quite nontrivial. McMullen [16] and Bedford

[1] independently computed the Hausdorff and box dimensions of K(I) for I = {φj}mj=1 in

which all φj have the form

(1.2) φj(x) =
[
n−1 0

0 k−1

]
x+

[
aj/n
bj/k

]
where all aj , bj are integers, 0 ≤ aj < n and 0 ≤ bj < m. They found that the Hausdorff

dimension and the box dimension are not the same in general. Lalley and Gatzouras [12],

in a highly technical paper along the same spirit of [16], computed the Hausdorff and box

dimensions for a broader class of IFS I = {φj}mj=1, in which φj map the unit square (0, 1)2

into disjoint rectangles having certain geometric arrangement inside the unit square. More

precisely, in the Lalley-Gatzouras class all rectangles φj((0, 1)2) are parallel to the axes and

have longer sides parallel to the x-axis. Furthermore once projected onto the x-axis these

rectangles are either identical or disjoint. Aside from a few other special cases such as the

graph-directed McMullen class studied by Kenyon and Peres [9], the Lalley-Gatzouras class

(which inculdes the McMullen class) remains the only substantial class of true self-affine

sets whose Hausdorff and box dimensions are known.

We focus on the Lq spectrum and the Hausdorff and entropy dimensions of a self-affine

measure in this paper. These quantities are important basic ingredients in the study of

fractal geometry, particularly in the study of multifractal phenomena. As a by-product we

also obtain results on the dimension of the self-affine sets. Let ν be a compactly supported

measure in Rd and q ∈ R. For each n ≥ 1 let Dn be the set of cubes {[0, 2−n)d + α : α ∈
2−nZd}. The Lq spectrum of ν is defined as

(1.3) τ(ν, q) = lim
n→∞

log τn(ν, q)
−n log 2

, where τn(ν, q) =
∑
Q∈Dn

νq(Q),

if the limit exists. Related to τ(ν, q) are the Lq dimension D(ν, q) and the entropy dimension

h(ν) of ν, defined respectively by

(1.4) D(ν, q) :=
τ(ν, q)
q − 1

and

(1.5) h(ν) := lim
n→∞

∑
Q∈Dn

ν(Q) log(1/ν(Q))
n log 2
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if the limit exists. For a similarity IFS I = {φj}mj=1 with the open set condition and any

probability vector p the Lq spectrum of ν = νI,p is known to be analytic for q ∈ R, given

by the equation

(1.6)
m∑
j=1

pqj ρ
−τ(ν,q)
j = 1,

where ρj denotes the contraction ratio of φj , see Cawley and Mauldin [2] and Olsen [19].

Moreover, the Legender transform τ∗(ν, α) of τ(ν, q) given by

(1.7) τ∗(ν, α) := inf
{
qα− τ(ν, q) : q ∈ R

}
equals the Hausdorff dimension of the set

K(α) :=
{
x ∈ supp (ν) : lim

r→0+

log ν
(
Br(x)

)
log r

= α
}
.

For a self-similar measure without the open set condition, however, the Lq spectrum is

generally difficult to obtain and is calculated for only a few special cases, see [13, 4, 5, 14].

One important such special case is the class of finite type IFS’s ([18]), a substantially larger

class than the class with the OSC. For a finite type IFS in R, Feng [6] expressed τ(ν, q)

via products of certain nonnegative matrices, and proved that τ(ν, q) is differentiable for

q ∈ (0,∞).

As one would expect, even less is known about the Lq spectrum and the Hausdorff and

entropy dimensions of a self-affine measure. King [10] calculated τ(ν, q) for ν = νI,p where

the IFS I is in the McMullen class (1.2). He gave a detailed multifractal analysis for such

measures. Olsen [20] generalized King’s results to dimensions d ≥ 3. Peres and Solomyak

[21] proved the existence of τ(ν, q) and h(ν) for the class of self-conformal measures, and

asked whether they also exist for all self-affine measures.

In this paper we calculate the Lq spectrum and the entropy dimension for a class of

self-affine measures in R2. This class of self-affine measures νI,p requires only that the

underlying IFS’s I = {φj}mj=1 satisfy the rectangular open set condition (ROSC). It is a

much larger class than the McMullen class studied in [10] and the Lalley-Gatzouras class.

Simply speaking, I = {φj}mj=1 in R2 satisfies the ROSC if there is an open rectangle T

such that the maps φi map T into disjoint rectangles parallel to the axes inside T . As

an application we obtain the formula for the box dimension of K(I) under the ROSC as

well as the Hausdorff dimension of νI,p under some additional assumptions. Our results on
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the box dimension can be viewed as an extension of the box dimension results by Lalley

and Gatzouras [12]. The techniques we employ here are different from those in any of the

previous studies mentioned in the paper.

2. Statement of Main Results

We first introduce some definitions and notations. The dimension in the rest of the paper

will be set to d = 2, although most of the definitions extend easily to higher dimensions.

Let I = {φj}mj=1 be an affine IFS in R2. Throughout this paper we shall always assume that

φj(x) = (ajx + cj , bjy + dj) with 0 < aj , bj < 1 for all j. Thus each φj maps any square

(0, R)2 + v to a rectangle parallel to the axes.

Definition 2.1. We say that I = {φj}mj=1 satisfies the rectangular open set condition

(ROSC) if there exists an open rectangle T = (0, R1) × (0, R2) + v such that {φj(T )}mj=1

are disjoint rectangles parallel to the axes inside T .

For a self-affine measure ν = νI,p associated with I and probability vector p we shall

define the projections νx and νy of ν onto the x- and y-axes, which we rely on heavily in this

paper. Let Ix := {πx ◦φj ◦π−1
x } and Iy := {πy ◦φj ◦π−1

y } be the projections of I, where πx
and πy are the canonical projections of R2 onto the x- and y-axes, respectively. It is also easy

to check that in our setting both Ix and Iy are well-defined. In fact πx◦φj◦π−1
x (x) = ajx+cj

and πy ◦ φj ◦ π−1
y (y) = bjy + dj . We define νx = νIx,p and νy = νIy ,p. It is easy to check

that νx = ν ◦ π−1
x and νy = ν ◦ π−1

y . For any d = (d1, d2, . . . , dm) we use Γ(d) to denote

(2.1) Γ(d) :=
{

t = (t1, t2, . . . , tm) : tj ≥ 0,
∑m

j=1 tj = 1,
∑m

j=1 djtj ≥ 0
}
.

Our main theorem concerning the Lq spectrum of ν is:

Theorem 2.1. Let I = {φj}mj=1 be an affine IFS in R2 satisfying the ROSC, with φj(x, y) =

(ajx + cj , bjy + dj) and 0 < aj , bj < 1 for all j. Let p = (p1, p2, . . . , pm) be a probability

vector. Then the Lq spectrum of ν = νI,p is τ(ν, q) = min(θa, θb), where

θa = inf
t∈Γ(ea)

∑m
j=1 tj

(
− log tj − τ(νy, q)(log bj − log aj) + q log pj

)
∑m

j=1 tj log aj
,

θb = inf
t∈Γ(eb)

∑m
j=1 tj

(
− log tj − τ(νx, q)(log aj − log bj) + q log pj

)
∑m

j=1 tj log bj
,
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with ea = (log(b1/a1), log(b2/a2), . . . , log(bm/am)) and eb = −ea.

We point out that if aj ≤ bj for all i then the set Γ(eb) is empty, and if so we have

τ(ν, q) = θa. In fact we prove:

Theorem 2.2. Under the hypotheses of Theorem 2.1, assume furthermore that aj ≤ bj for

all j. Then τ(ν, q) satisfies

(2.2)
m∑
j=1

a
τ(νy ,q)−τ(ν,q)
j b

−τ(νy ,q)
j pqj = 1.

Theorem 2.2 allows us to easily calculate the Lq spectrum if τ(νx, q) is known, which is

the case if I is in the McMullen or Lalley-Gatzouras class. Moreoever, Theorem 2.1 allows

us to calculate τ(ν, q), at least in theory, if the projections of I onto the two axes are of finite

type by the result of Feng [6], making the Lq spectrum computable at least in theory for a

considerably larger class of IFS’s than the Lalley-Gatzouras class. We shall give examples

in these settings later on.

One of the applications of the above two theorems is calculating the box dimension of

K = K(I). It is easy to see that K = supp (ν) and by definition dimB(K) is simply −τ(ν, 0).

Therefore we also obtain as a bonus of Theorems 2.1 and 2.2 a formula for dimB(K). Other

than the Lalley-Gatzouras class, dimB(K) is easily computable when all aj ≥ bj and the

projection πx(K) has dimension 1; it is given by

(2.3)
m∑
j=1

b
dimB(K)−1
j aj = 1.

Another application of the theorems is computing the Hausdorff dimension of a self-affine

measure. Let ν be a finite Borel measure in Rd. It is said to be exactly dimensional if there

exists a constant c such that

lim
r→0

log ν(Br(x))
log r

= c ν − a.e. x ∈ Rd.

Ngai [17] proved that if τ(ν, q) is differentiable at q = 1 then ν is exactly dimensional, and

dimH(ν) = c = d
dq τ(ν, 1). As a corollary of Theorem 2.2 we obtain a Ledrappier-Young

type formula (see [15]) for dimH(ν):
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Theorem 2.3. Under the hypotheses of Theorem 2.2, if τ(νx, q) is differentiable at q = 1

then so is τ(ν, q), and

dimH(ν) =

∑m
j=1 pj log pj + dimH(νx)

∑m
j=1 pj(log bj − log aj)∑m

j=1 pj log bj
.

In particular if aj = a and bj = b for all j then

dimH(ν) =

∑m
j=1 pj log pj

log b
+ dimH(νx)

log b− log a
log b

.

Our technique can also be used to study the entropy dimension, which for a Borel measure

ν is defined in (1.5). It is known [21] that the entropy dimension exists for all self-similar

(in fact self-conformal) measures. We determine the entropy dimension for the self-affine

measures with ROSC:

Theorem 2.4. Let ν be the self-affine measure in Theorem 2.1. Then

h(ν) =



h(νx)
∑m

j=1 pj(log bj − log aj) +
∑m

j=1 pj log pj∑m
j=1 pj log bj

, if
∑m

j=1 pj(log aj − log bj) ≥ 0

h(νy)
∑m

j=1 pj(log aj − log bj) +
∑m

j=1 pj log pj∑m
j=1 pj log aj

, otherwise.

3. Some Combinatorial Results

We establish two combinatorial results that will be needed to prove our main theorems

in this paper.

First let us introduce some notations on symbolic spaces. These notations are mostly

standard. We use Σ = Σ(m) to denote the alphabet {1, 2, . . . ,m}. Whenever there is no

ambiguity we shall use Σ rather than Σ(m), as m is usually fixed in this paper. The set of

all words in Σ of length n is denoted by Σn, with Σ∗ :=
⋃
n≥0 Σn and ΣN being the set of

all one-sided infinite words. Here we adopt the convention that Σ0 contains only the empty

word ∅. Associated with Σ∗ are two actions: The left shift action σ and and the right shift

action δ, defined respectively by σ(∅) = δ(∅) = ∅ and

σ(i1i2 · · · ik) = i2 · · · ik, δ(i1i2 · · · ik) = i1 · · · ik−1

for each i1i2 · · · ik ∈ Σ∗ with k ≥ 1.
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We shall use boldface letters i, j, l to denote elements in Σ∗ or ΣN. For each sequence

a = (aj)mj=1 we may extend it to a function fa : Σ∗ −→ R by fa(∅) = 1 and fa(i) = ai1 · · · aik
for i = i1 · · · ik. Most of the time, because there is no ambiguity, we shall use the simplified

notation ai in place of fa(i).

The above are general purpose notations. Now we introduce some that are specific to

this paper. Suppose that a = (aj)mj=1 and b = (bj)mj=1 are two sequences with 0 < aj , bj < 1

for all j. For any 0 < r < 1 let

Ar := Ar(a,b) =
{

i ∈ Σ∗ : aδ(i) ≥ r, bδ(i) ≥ r, min (ai, bi) < r
}

and

Aar := {i ∈ Ar : ai ≤ bi}, Abr := {i ∈ Ar : ai > bi}.

Suppose that c = (cj)mj=1 is another sequence of positive real numbers. The objective of

this section is to evaluate several limits. Set

Θa = Θa(c) := lim
r→0+

log
(∑

i∈Aar ci
)

log r
, and

Θb = Θb(c) := lim
r→0+

log
(∑

i∈Abr ci
)

log r
.

Similarly, for any probability vector p = (p1, p2, . . . , pm) set

Ωa = Ωa(c,p) := lim
r→0+

∑
i∈Aar pi log ci

log r
, and

Ωb = Ωa(c,p) := lim
r→0+

∑
i∈Abr pi log ci

log r
.

We prove the following results:

Proposition 3.1. Given sequences a = (aj)mj=1 and b = (bj)mj=1 with all aj , bj in (0, 1) let

ea = (log(b1/a1), log(b2/a2), . . . , log(bm/am)) and eb = −ea.

(i) If aj ≤ bj for some 1 ≤ j ≤ m then Θa(c) exists, and

Θa(c) = inf
t∈Γ(ea)

∑m
j=1 tj

(
− log tj + log cj

)∑m
j=1 tj log aj

,

where Γ(ea) is defined in (2.1).

(ii) If aj > bj for some 1 ≤ j ≤ m then Θb(c) exists, and

Θb(c) = inf
t∈Γ(eb)

∑m
j=1 tj

(
− log tj + log cj

)∑m
j=1 tj log bj

.
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(iii) Θa(c) (resp. Θb(c)) is continuous with respect to c if it exists.

Proposition 3.2. Under the assumptions of Proposition 3.1, and let p be a probability

vector.

(i) If
∑m

j=1 pj(log bj − log aj) > 0 then

Ωa(c,p) =

∑m
j=1 pj log cj∑m
j=1 pj log aj

, and Ωb(c,p) = 0.

(ii) If
∑m

j=1 pj(log bj − log aj) < 0 then

Ωb(c,p) =

∑m
j=1 pj log cj∑m
j=1 pj log bj

, and Ωa(c,p) = 0.

(iii) If
∑m

j=1 pj(log bj − log aj) = 0 then∑
i∈Aar pi log(bi/ai)

log r
= 0 =

∑
i∈Abr pi log(ai/bi)

log r
and∑

i∈Ar pi log ci
log r

=

∑m
j=1 pj log cj∑m
j=1 pj log aj

.

We need to first prove some lemmas. For any i = i1i2 · · · in ∈ Σ∗ let [i] ⊂ ΣN denote the

i-cylinder

[i] := {j1j2j3 · · · ∈ ΣN : jk = ik for 1 ≤ k ≤ n}.

Lemma 3.3. For any 0 < r < 1, {[i] : i ∈ Ar} is a partition of ΣN.

Proof. It is clear that {[i] : i ∈ Ar} are distinct subsets in ΣN. Furthermore, for any

j = j1j2j3 · · · ∈ ΣN there exists a smallest n such that min(aj1 · · · ajn , bj1 · · · bjn) < r.

Therefore j ∈ [j1 · · · jn] and [j1 · · · jn] ∈ Ar. This proves the lemma.

Lemma 3.4. Let n = n1 + n2 + · · ·+ nm with each nj ∈ N. Then

1
n

log
( n!
n1!n2! · · ·nm!

)
= −

m∑
j=1

tj log tj +O
( log n

n

)
,

where tj = nj
n .

Proof. We apply the Stirling’s formula log(q!) = q log q−q+ 1
2 log q+O(1). Thus log(n!) =

n log n− n+O(log n) and

log(
m∏
j=1

nj !) =
m∑
j=1

(nj log nj − nj +O(log nj)) =
m∑
j=1

nj log nj − n+O(log n).
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Now log nj = log(tjn) = log tj + log n. It follows that

1
n

log
( n!
n1!n2! · · ·nm!

)
= log n−

m∑
j=1

nj log nj
n

+O
( log n

n

)
= −

m∑
j=1

tj log tj +O
( log n

n

)
.

For each i = i1i2 · · · in ∈ Σ∗ we use |i| = n to denote the length of i and |i|j = #{k : ik =

j} to denote the number of occurences of the letter j in i.

Lemma 3.5. There exists a constant C > 1 such that C−1 log r−1 ≤ |i| ≤ C log r−1 for any

0 < r < 1
2 and i ∈ Ar.

Proof. Let s+ = max {aj , bj : 1 ≤ j ≤ m} and s− = min {aj , bj : 1 ≤ j ≤ m}.
Then we have s

|i|
− ≤ ai, bi ≤ s

|i|
+ for any i ∈ Σ∗. The lemma follows by setting C =

max (| log s−|, | log s+|−1 + | log 2|−1). Note that the condition 0 < r < 1
2 can be replaced

with 0 < r < r0 for any fixed r0 < 1.

Proof of Proposition 3.1. We shall prove part (i) of the proposition only, as part (ii)

follows from an identical argument and part (iii) is rather obvious. To prove (i) we estimate

the sum
∑

i∈Aa ci.

For any i = i1i2 · · · in ∈ Aa we observe that i′ = jin is also in Aa, where j is any

permutation of δ(i) = i1 · · · in−1, which gives ci = ci′ . The number of distinct such i′ is

precisely (n− 1)!/
∏m
j=1 nj ! where nj := |δ(i)|j . Let

T (i) :=
(n− 1)!∏m
j=1 nj !

m∏
j=1

c
nj
j =

1
cin

∑
i′=jin

ci′

where j runs through all permutations of δ(i). We prove that for sufficiently small r we

have

(3.1)
1

max {cj}
sup
i∈Aar

T (i) ≤
∑
i∈Aar

ci ≤ O(logm r−1) sup
i∈Aar

T (i).

The left inequality is clear. To see the right inequality we have from Lemma 3.5 that

|i| ≤ C log r−1 for any i ∈ Aar . When i runs through Aa the number of distinct vectors

(|δ(i)|1, |δ(i)|2, · · · , |δ(i)|m) is bounded by (C log r−1)m = O(logm r−1). Also there are at

most m choices for the last letter of i. The right inequality in (3.1) then follows.
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Now for any i = i1 · · · inin+1 ∈ Aa set tj = nj
n where nj = |δ(i)|j and n = |δ(i)|. By

Lemma 3.4,

log T (i)
n

=
m∑
j=1

(
−tj log tj + tj log cj

)
+O

( log n
n

)
.

On the other hand we have ai =
∏m
j=1 a

nj
j ain < r ≤

∏m
j=1 a

nj
j . Hence

− log r
n

= −
m∑
j=1

tj log aj +O
( log n

n

)
.

Combining the two estimates yields

(3.2)
log T (i)

log r
=

∑m
j=1

(
−tj log tj + tj log cj

)∑m
j=1 tj log aj

+O
( log n

n

)
.

The condition ai ≤ bi is equivalent to

(3.3)
m∑
j=1

tj log bj +
bin+1

n
≥

m∑
j=1

tj log aj +
ain+1

n
.

The proposition follows from (3.2) and (3.3), by letting n tends to ∞.

We now prove Proposition 3.2. We will need to invoke the following Large Deviation

Principle:

Lemma 3.6 (Large Deviation Principle). Let p = (p1, . . . , pm) be a probability vector. For

any ε > 0 there exists an N = N(ε) > 0 such that
∑

i∈Bn(ε) pi < e−nN for all sufficiently

large n, where

(3.4) Bn(ε) :=
{

i ∈ Σn :
m∑
j=1

∣∣∣ |i|j
n
− pj

∣∣∣ > ε
}

with Σ = Σ(m).

Proof. Standard.

Proof of Proposition 3.2. As with Proposition 3.1, we prove (i) only. The others are

proved using identical arguments.

Assume that
∑m

j=1 pj(log bj − log aj) = δ0 > 0. For any η > 0 let ε = ε(η) = η/M where

M = 2m
m∑
j=1

(| log cj |+ | log aj |+ | log bj |).



A CLASS OF SELF-AFFINE SETS AND SELF-AFFINE MEASURES 11

Then it is easily verified that for any i ∈ Σn \ Bn(ε) we have∣∣∣ 1
n

log ci −
m∑
j=1

pj log cj
∣∣∣ < η,

as well as ∣∣∣ 1
n

log ai −
m∑
j=1

pj log aj
∣∣∣ < η,

∣∣∣ 1
n

log bi −
m∑
j=1

pj log bj
∣∣∣ < η.

Therefore

(3.5)
log ci
log ai

=

∑m
j=1 pj log cj∑m
j=1 pj log aj

+O(η).

Note that for this ε > 0 there is an N(ε) > 0 such that
∑

i∈Bn(ε) pi < e−nN(ε) for all n ≥ n0.

By Lemma 3.4, for any i ∈ Ar we have C−1 log r−1 ≤ |i| ≤ C log r−1. Let r > 0 be

sufficiently small so that C−1 log r−1 ≥ n0. We now decompose Ar into Ar,1 and Ar,2 with

Ar,1 = Ar \ Ar,2, and Ar,2 = Ar ∩
(⋃
n≥1

Bn(ε)
)
.

By observing that log ci
− log r ≤ C0 := C max1≤j≤m{| log cj |} we obtain∣∣∣ ∑

i∈Ar,2

pi log ci
− log r

∣∣∣ ≤ C0

∑
i∈Ar,2

pi ≤ C0

∑
C−1 log r−1≤k≤C log r−1

e−nN(ε).

Hence |
∑

i∈Ar,2
pi log ci
− log r | tends to 0 as r−→0. On the other hand, because ai < r ≤ aδ(i) we

have log r = log ai +O(1). If i ∈ Ar,1 then by (3.5)∑
i∈Ar,1

pi log ci
− log r

= −
∑

i∈Ar,1

pi

(∑m
j=1 pj log cj∑m
j=1 pj log aj

+O(η)
)

= −
∑m

j=1 pj log cj∑m
j=1 pj log aj

∑
i∈Ar,1

pi +O(η).

Since
∑

i∈Ar pi = 1 because {[i] : i ∈ Ar} is a partition of ΣN and∑
i∈Ar,2

pi ≤
∑

C−1 log r−1≤k≤C log r−1

e−nN(ε) −→0

as r−→0, we must have limr→0
∑

i∈Ar,1 pi = 1. Now because
∑m

j=1 pj(log bj− log aj) = δ0 >

0, Ar,1 ⊆ Aar whenever η (and hence ε) is sufficiently small. It follows that

(3.6)
∑

i∈Ar,1

pi log ci
− log r

≤
∑
i∈Aar

pi log ci
− log r

≤
∑
i∈Ar

pi log ci
− log r

.
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Taking limit r−→0 yields Ωa =
∑m
j=1 pj log cj∑m
j=1 pj log aj

. To see that Ωb = 0 we only need to observe

that by (3.6),

Ωa + Ωb = lim
r→0

∑
i∈Ar

pi log ci
log r

= Ωa.

4. Proof of Theorem 2.1.

We adopt the following definition from [21]:

Definition 4.1. Let K be a compact set in Rd. Fix M, ε > 0 and N ∈ N. A covering

{Gi}ni=1 of K by Borel sets is said to be (M, ε,N)–good if diam (Gi) ≤Mε for all i, and any

ε-cube in Rd intersects at most N elements in the covering.

Lemma 4.1. Let M, q > 0 and N, d ∈ N. There exists a constant C1 = C1(M,N, d, q) such

that for any compactly supported probability measure ν on Rd and any (M, 2−n, N)-good

Borel covering {Gi} of supp (ν) we have

C−1
1 τn(ν, q) ≤

∑
i

νq(Gi) ≤ C1τn(ν, q)

where τn(ν, q) is defined in (1.3).

Proof. See [21], Lemma 2.2.

Let {φj}mj=1 be an IFS in Rd. For any i = i1i2 · · · in ∈ Σn, Σ = {1, 2, . . . ,m} we let φi

denote φi1 ◦ φi2 ◦ · · · ◦ φin .

Lemma 4.2. Let I = {φj}mj=1 be an IFS in Rd and p = (p1, p2, . . . , pm) be a probability

vector. Then for any compact set F we have

νI,p(F ) = lim
n→∞

∑
i∈Bn

pi

where Bn = {i ∈ Σn : φi(K) ∩ F 6= ∅} and K = K(I).

Proof. Standard.

Lemma 4.3. Under the assumptions of Theorem 2.1, for any i ∈ Σn we have ν(φi(K)) = pi,

where ν := νI,p and K = K(I).
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Proof. Let T be the open rectangle for the ROSC, so {φj(T )}mj=1 are disjoint open rectangles

in T . First we consider the case in which φj(T ) ⊂ T for some 1 ≤ j ≤ m. Without loss of

generality we assume that φ1(T ) ⊂ T .

Let l ∈ Σn. By Lemma 4.2 we have

Bk =
{

i ∈ Σk : φi(K) ∩ φl(K) 6= ∅
}
⊇ {l} × Σk−n.

Hence ν(φl(K)) = limk→∞
∑

i∈Bk pi ≥ pl. We prove the converse. In fact we prove

ν(φl(T )) ≤ pl. Let

Ck = {i ∈ Σk : φi(K) ∩ φl(T ) 6= ∅}

and set

C1
k = {i ∈ Ck : φi(K) ⊆ φl(T )}, C2

k = Ck \ C1
k .

Note that C1
k = {l} × Σk−n. Hence limk→∞

∑
i∈C1k

pi = pl. On the other hand,

C2
k ⊆

{
i = 11i2 · · · ik : i1i2 · · · in 6= l, lj 6= 1 for j > n

}
.

Hence
∑

i∈C2k
pi < (1− p1)k−n−→0 as k−→∞. Thus limk→∞

∑
i∈Ck pi = pl. It follows that

(4.1) ν(φl(K)) ≤ ν(φl(T )) = pl.

By considering the iterations of the IFS I it is clear that the above proof extends to the

case in which there exists an i ∈ Σ∗ such that φi(T ) ⊂ T .

It remains to prove the lemma when φi(T )∩∂T 6= ∅ for all nonempty i ∈ Σ∗. In this case

itis clear that K is contained in a line parallel to one of the axes, say, the horizontal axis.

Then ν is identical to its projection νx onto the x-axis up to a translation. Furthermore

the projection IFS Ix must satisfy the OSC (and it is self-similar). Therefore the lemma

still holds.

Proposition 4.4. Let ν be a self-similar probability measure in R with supp (ν) ⊆ [c, d].

For any q, δ > 0 there exist constants C1, C2 > 0 depending on ν, q, δ such that for any

n > 0 we have

C1n
−τ(ν,q)−δ ≤

n∑
i=1

νq(Ii) ≤ C2n
−τ(ν,q)+δ.

where Ii = [c+ (i−1)(d−c)
n , c+ i(d−c)

n ].
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Proof. It is known that for a self-similar measure the Lq spectrum exists, see Peres and

Solomyak [21]. Set ∆n = d−c
n , which is the length of each interval Ii. By definition and

Lemma 4.1 we have

lim
n→∞

log
∑n

i=0 ν
q(Ii)

log ∆n
= τ(ν, q).

and

lim
n→∞

∑n
i=0 ν

q(Ii)
log ∆n

= τ(ν, q).

Thus for any δ > 0 there exists an n0 such that for all n > n0 we have

∆−τ(ν,q)−δ
n ≤

n∑
i=0

νq(Ii) ≤ ∆−τ(ν,q)+δ
n .

Now for 1 ≤ n ≤ n0 we simply choose C1 and C2 to satisfy the inequalities of the proposition.

Proof of Theorem 2.1. Let r > 0 be sufficiently small. We construct a covering {Gi} of

supp (ν) as follows: Let T be the open rectangle associated with the ROSC for the IFS I.

Without loss of generality we may assume that T is a unit square. For a = (aj)mj=1 and

b = (bj)mj=1 define the subsets of Ar, Aar and Abr of Σ∗ with Σ = {1, 2, . . . ,m} as in Section

3. For any i ∈ Aar by definition bi ≥ ai, and we set wa(i) := [bi/ai]. Note that φi(T ) is

a closed rectangle of width ai and height bi; so wa(i) is the aspect ratio of the rectangle

rounded off to an integer. We now cut φi(T ) horizontally into wa(i) equal rectangles of

width ai and height bi/wa(i). Call these smaller rectangles {Rai,k}
wa(i)
k=1 . Similarly for any

i ∈ Abr by definition ai > bi, and we set wb(i) := [ai/bi]. φi(T ) is a closed rectangle of width

ai and height bi. We now cut φi(T ) vertically into wb(i) equal rectangles of width ai/wb(i)

and height bi. Call these smaller rectangles {Rbi,k}
wb(i)
k=1 .

Observe that if s− = min{aj , bj} and s+ = max{aj , bj} then each Rai,k and Rbi,k has width

and height between s−r and r/s+. Furthermore

Cr =
{
Rai,k : i ∈ Aar , 1 ≤ k ≤ wa(i)

}
∪
{
Rbi,k : i ∈ Abr, 1 ≤ k ≤ wb(i)

}
is a covering of supp (ν). It follows that Cr is an (M, r,N)-good covering of supp (ν) with

M = s−/2 and N = 4.

The key is to estimate
∑wa(i)

k=1 νq(Rai,k) for i ∈ Aar and
∑wb(i)

k=1 νq(Rbi,k) for i ∈ Abr. We

make the following claim:
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Claim: For any δ > 0 there exist constants C1 and C2 independent of i and r such that

(4.2) C1p
q
i (wa(i))

−τ(νy ,q)−δ ≤
wa(i)∑
k=1

νq(Rai,k) ≤ C2p
q
i (wa(i))

−τ(νy ,q)+δ.

Proof of Claim: The combination of Lemma 4.2 and Lemma 4.3 implies that

ν(Rai,k) = lim
n→∞

{
pj : j ∈ Σn, φj(K) ⊆ φi(T ), φj(K) ∩Rai,k 6= ∅

}
= lim

n→∞

{
pj : j ∈ {i} × Σn−|i|, φj(K) ∩Rai,k 6= ∅

}
= pi lim

n→∞

{
pj : j ∈ Σn, φi ◦ φj(K) ∩Rai,k 6= ∅

}
.

But observe that the set {j ∈ Σn : φi ◦ φj(K) ∩Rai,k 6= ∅} is precisely the set

(4.3)
{

j ∈ Σn : φyj (Ky) ∩ Ii,k 6= ∅
}
,

where φyj := πy◦φj◦π−1
y , Ky = πy(K) and Ii,k := [ c+(k−1)(d−c)

wa(i) , c+k(d−c)
wa(i) ] with [c, d] = πy(T ).

(So by assumption actually d− c = 1.) Proposition 4.4 now asserts that

C1p
q
i (wa(i))

−τ(νy ,q)−δ ≤
wa(i)∑
k=1

νq(Rai,k) ≤ C2p
q
i (wa(i))

−τ(νy ,q)+δ

for some constants C1 and C2, proving the claim.

By an identical argument we also have constants C ′1 and C ′2 such that

(4.4) C ′1p
q
i (wb(i))

−τ(νx,q)−δ ≤
wb(i)∑
k=1

νq(Rbi,k) ≤ C ′2p
q
i (wb(i))

−τ(νx,q)+δ

for any i ∈ Abr.

To complete the proof of our theorem,∑
D∈Cr

νq(D) =
∑
i∈Aar

wa(i)∑
k=1

νq(Rai,k) +
∑
i∈Abr

wb(i)∑
k=1

νq(Rbi,k).

It follows from (4.2) and (4.4) that

C1

∑
i∈Aar

pqi (wa(i))
−τ(νy ,q)−δ ≤

∑
i∈Aar

wa(i)∑
k=1

νq(Rai,k) ≤
∑
i∈Aar

C2p
q
i (wa(i))

−τ(νy ,q)+δ,

and similarly

C ′1
∑
i∈Abr

pqi (wb(i))
−τ(νx,q)−δ ≤

∑
i∈Abr

wb(i)∑
k=1

νq(Rbi,k) ≤
∑
i∈Abr

C ′2p
q
i (wb(i))

−τ(νx,q)+δ.
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Note that bi
2ai
≤ wa(i) ≤ bi

ai
. Applying Proposition 3.1 twice with c = {cj}mj=1 set to be

cj = pqj(
bj
aj

)−τ(νy ,q)−δ and cj = pqj(
bj
aj

)−τ(νy ,q)+δ respectively, and with δ−→0, yields

lim
r→0

log
∑

i∈Aar
∑wa(i)

k=1 νq(Rai,k)

log r
= inf

t∈Γ(ea)

∑m
j=1 tj

(
− log tj − τ(νy, q)(log bj − log aj) + q log pj

)
∑m

j=1 tj log aj
,

and similarly

lim
r→0

log
∑

i∈Abr
∑wb(i)

k=1 νq(Rbi,k)

log r
= inf

t∈Γ(eb)

∑m
j=1 tj

(
− log tj − τ(νx, q)(log aj − log bj) + q log pj

)
∑m

j=1 tj log bj
.

The proof is finally complete by observing that for any A ≥ B > 0 we have

logA < log(A+B) ≤ logA+ log 2.

Proof of Theorem 2.2. It is clear from the proof of Theorem 2.1 that if all aj ≤ bj

then τ(ν, q) = θa where θa is given in Theorem 2.1. In this case Γ0 := Γ(ea) = {t =

(t1, . . . , tm) : tj ≥ 0 and
∑m

j=1 tj = 1}. Hence

(4.5) τ(ν, q) = τ(νy, q) + inf
t∈Γ0

∑m
j=1 tj

(
− log tj − τ(νy, q) log bj + q log pj

)
∑m

j=1 tj log aj
.

We first simplify the notation. Set Aj = 1/aj and Bj = pqjb
−τ(νy ,q)
j . Then (4.5) becomes

(4.6) τ(νx, q)− τ(ν, q) = sup
t∈Γ0

∑m
j=1 tj log Bj

tj∑m
j=1 tj logAj

.

Let θ be the unique real root of the equation
∑m

j=1(Aj)−θBj = 1 (the existence of θ follows

from the fact that Aj > 1 and Bj > 0 for all j). Then∑m
j=1 tj log Bj

tj∑m
j=1 tj logAj

− θ =

∑m
j=1 tj log (Aj)

−θBj
tj∑m

j=1 tj logAj
.

By the Jessen inequality,
m∑
j=1

tj log
(Aj)−θBj

tj
≤ log

( m∑
j=1

(Aj)−θBj
)

= 0.

The “=” in the first inequality is achieved when tj = (Aj)−θBj for 1 ≤ j ≤ m. It follows

τ(νx, q)− τ(ν, q) = θ. This proves the theorem.
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5. Proof of Theorem 2.4

Let ν be a compactly supported probability measure in Rd. For any ε > 0 and N ∈ N
a family of Borel sets {Gi} is called an (ε,N)-good partition of supp (ν) if the following

conditions are met:

(i)
⋃
iGi ⊇ supp (ν) and ν(Gi ∩Gj) = 0 for all i 6= j.

(ii) Any cube of side ε intersects at most N elements of {Gi} and diam (Gi) < ε.

Set f(x) = x log(1/x) = −x log x and define hn(ν) =
∑

Q∈Dn
f(ν(Q)), where Dn is the

standard partition of Rd by cubes of sides 2−n defined in Section 1. We have

Lemma 5.1. Let {Gi} be a (2−n, N)-good partition of supp (ν) where ν is any compactly

supported probability measure in Rd. Then∣∣∣∑
i

f(ν(Gi))− hn(ν)
∣∣∣ ≤ C

where C = max (logN, log 2d).

Proof. It is easy to check that for all x1, . . . , xk ≥ 0 we have

(5.1) f(
k∑
i=1

xi) ≤
k∑
i=1

f(xi) ≤ f(
k∑
i=1

xi) + (
k∑
i=1

xi) log k.

Write Dn = {Qj} and consider the refinement G∗ = {Gi ∩ Qj} of the (2−n, N)-good

partition {Gi}. Note that diam (Gi) < 2−n implies that Gi intersects at most 2d cubes in

Dn. It follows from (5.1) that

(5.2) f(ν(Gi)) ≤
∑
j

f(ν(Gi ∩Qj)) ≤ f(ν(Gi)) + log(2d) ν(Gi).

Conversely, also by (5.1) we have

(5.3) f(ν(Qj)) ≤
∑
i

f(ν(Gi ∩Qj)) ≤ f(ν(Qj)) + log(N) ν(Qj).

Summing up (5.2) over i yields

(5.4)
∑
i

f(ν(Gi)) ≤
∑
i,j

f(ν(Gi ∩Qj)) ≤
∑
i

f(ν(Gi)) + log(2d),

and summing up (5.3) over j yields

(5.5) hn(ν) ≤
∑
i,j

f(ν(Gi ∩Qj)) ≤ hn(ν) + logN.

The lemma now follows by combining (5.4) and (5.5).



18 DE-JUN FENG AND YANG WANG

Proposition 5.2. Let ν be a self-similar probability measure in R with supp (ν) ⊆ [c, d].

For any q, δ > 0 there exist constants C1, C2 > 0 depending on ν and δ such that for any

n > 0 we have

(h(ν)− δ) log n+ C1 ≤
n∑
i=1

f(Ii) ≤ (h(ν) + δ) log n+ C2,

where Ii = [c+ (i−1)(d−c)
n , c+ i(d−c)

n ).

Proof. The proof is essentially identical to that of Proposition 4.4. By Lemma 5.1 we have

|
∑n

i=0 f(Ii)− hk(ν)| ≤ C for some constant C, where k > 0 is chosen so that 2−k > d−c
n ≥

2−k−1, since {Ii} is a (2−k, 2)-good partition of supp (ν). For any δ > 0 there exists a k0 > 0

such that for all k > k0 there is

h(ν)− δ < hk(ν)
k log 2

< h(ν) + δ.

But clearly by assumption | log n− k log 2| ≤ C ′ for some constant C ′. Therefore for k > k0

we have constants C ′1 and C ′2 such that

(h(ν)− δ) log n+ C ′1 ≤
n∑
i=0

f(Ii) ≤ (h(ν) + δ) log n+ C ′2.

Now for k ≤ k0 there are only finitely many correpsonding n, so we may find C1 and C2

such that

(h(ν)− δ) log n+ C1 ≤
n∑
i=0

f(Ii) ≤ (h(ν) + δ) log n+ C2.

This proves the proposition.

Proof of Theorem 2.4. For ν = νI,p we may assume without loss of generality that

ν(L) = 0 for any line L in R2, for otherwise ν is in essence a self-similar measure in the one

dimension, leaving us with nothing to prove.

We adopt the same notations from the proof of Theorem 2.1. For any r > 0 sufficinetly

small let Cr be the covering of supp (ν) given by

Cr =
{
Rai,k : i ∈ Aar , 1 ≤ k ≤ wa(i)

}
∪
{
Rbi,k : i ∈ Abr, 1 ≤ k ≤ wb(i)

}
as in the proof of Theorem 2.1. It follows that Cr is a (r,N)-good covering of K = supp (ν)

for some suitable N independent of r. We estimate
∑

Q∈Cr
f(ν(Q)) for f(x) = x log(1/x) =

−x log x.
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We first estimate
∑wa(i)

k=1 f(ν(Rai,k)) for any i ∈ Aar . By (4.3) we have

ν(Rai,k) = pi lim
n→∞

∑ {
j ∈ Σn : φyj (Ky) ∩ Ii,k 6= ∅

}
= piν

y(Ii,k)

where Ky and Ii,k are as in the proof of Theorem 2.1. Thus

wa(i)∑
k=1

f(ν(Rai,k)) = pi

wa(i)∑
k=1

f(νy(Ii,k))− pi log pi.

It now follows from Proposition 5.2 that for any δ > 0 there are C1 and C2 independent of

r such that

(5.6)

pi(h(νy)−δ) logwa(i)−pi log pi+C1pi ≤
wa(i)∑
k=1

f(ν(Rai,k)) ≤ pi(h(νy)+δ) logwa(i)−pi log pi+C2pi.

Similarly for any i ∈ Abr there exist C ′1 and C ′2 independent of r such that

(5.7)

pi(h(νx)−δ) logwb(i)−pi log pi+C ′1pi ≤
wb(i)∑
k=1

f(ν(Rbi,k)) ≤ pi(h(νx)+δ) logwb(i)−pi log pi+C ′2pi.

Now, observe that bi
2ai
≤ wa(i) ≤ bi

ai
. So log(bi/ai) − log 2 ≤ logwa(i) ≤ log(bi/ai). This

means we may replace wa(i) in (5.6) with bi/ai, with only the modification of the constants

C1 and C2. Now for (5.6) we apply Proposition 3.2 twice, with cj = p−1
j (bj/aj)h(νy)−δ and

cj = p−1
j (bj/aj)h(νy)+δ respectively, and set δ−→0. It follows that

(5.8) lim
r→0

∑
i∈Aar

∑wa(i)
k=1 f(ν(Rai,k))

log r
=
h(νy)

∑m
j=1 pj(log bj − log aj)−

∑m
j=1 pj log pj∑m

j=1 pj log aj

if
∑m

j=1 pj(log bj − log aj) ≥ 0, and 0 if
∑m

j=1 pj(log aj − log bj) > 0. Similarly,

(5.9) lim
r→0

∑
i∈Abr

∑wb(i)
k=1 f(ν(Rbi,k))

log r
=
h(νx)

∑m
j=1 pj(log aj − log bj)−

∑m
j=1 pj log pj∑m

j=1 pj log bj

if
∑m

j=1 pj(log aj − log bj) ≥ 0, and 0 if
∑m

j=1 pj(log bj − log aj) > 0. Combining (5.8) and

(5.9) yields
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(5.10) lim
r→0

∑
G∈Cr

f(ν(G))
log r

=



h(νy)
∑m
j=1 pj(log bj−log aj)−

∑m
j=1 pj log pj∑m

j=1 pj log aj

( if
∑m

j=1 pj(log bj − log aj) > 0),

h(νx)
∑m
j=1 pj(log aj−log bj)−

∑m
j=1 pj log pj∑m

j=1 pj log bj

( if
∑m

j=1 pj(log aj − log bj) > 0).

To estimate the left-hand side of the above equation whenever
∑m

j=1 pj(log aj − log bj) = 0,

by summing (5.6) over i ∈ Aar and (5.7) over i ∈ Abr we have

Qr,1 ≤
∑
G∈Cr

f(ν(G)) ≤ Qr,2

with

Qr,1 := C3 +
∑
i∈Aar

pi(h(νy)− δ) log(bi/ai) +
∑
i∈Abr

pi(h(νx)− δ) log(ai/bi)−
∑
i∈Ar

pi log pi

and

Q2,r := C4 +
∑
i∈Aar

pi(h(νy) + δ) log(bi/ai) +
∑
i∈Abr

pi(h(νx) + δ) log(ai/bi)−
∑
i∈Ar

pi log pi,

where C3 and C4 are constants independent of r. Applying Proposition 3.2 (iii) we have

(5.11) lim
r→0

∑
G∈Cr

f(ν(G))
log r

=
−
∑m

j=1 pj log pj∑m
j=1 pj log aj

when
m∑
j=1

pj(log aj − log bj) = 0.

Note that Cr is a (r,N)-good covering of supp (ν) for some constant N independent of r.

Taking r = 2−n and applying Lemma 5.1 we have

h(ν) = lim
n→∞

hn(ν)
n log 2

= lim
n→∞

∑
G∈C2−n

f(ν(G))

n log 2
= lim

r→0

∑
G∈Cr

f(ν(G)
− log r

.

The theorem now follows by combining (5.10) and (5.11).
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