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Abstract

We study a variational problem arising in the approach of Mumford and Shah to the
image segmentation problem of computer vision. Given f € L*(D) for a domain D in
R? the simplified Mumford-Shah energy associated to a decomposition D = Q;U- - -UQ
is

N
Boll.] =Y [ (f(a) = cn)* dz +alr),

where o > 0 is a constant, cg, is the average of f(z) on 2; and where |T'| is the length of
the boundary of the regions 2; not in 0D. Mumford and Shah showed, using geometric
measure theory, that for a continuous f a minimizing I'* exists which is piecewise C2.
We prove this result constructively, and also extend it to show for general bounded
measurable f that a minimizer exists. Furthermore, we prove that every minimizer
must be piecewsie C''. Our approach is to study Eg[I',a] on the class of piecewise
linear T'.

Key words: image segmentaion, Mumford-Shah energy, minimizer, Hausdorff metric.

1 Introduction

The segmentation problem in Computer Vision is the problem of subdividing an image
into regions in such a way that in each region, the image is relatively uniform. Mumford
and Shah (1989) proposed to do this by minimizing energy functionals that encode penalty
measures for properties of a good segmentation. Let f € L (D), where D is a domain in

R?, represent the light intensity of the image. A decomposition of D is
D=QUQU---UQN

where each region €; is closed and has a boundary 9€; which is piecewise C'. Let
I' = U;09Q; \ 9D be the boundary of the segmentation. They propose to find such a decom-

position and an approximating function u(z) by minimizing the Mumford-Shah energy

Efu,T, 1, V] :,uz/D(u(x) —f(x))2dx+Z/Qv Vul? dz + 12T (1)



where p, v > 0 are constants (weight parameters) and |I'| is the length of I'. In addition to
this energy functional Mumford and Shah introduced a simplified functional obtained by
letting 44, v—0 and p?/v?—a > 0. Then Vu = 0, and the simplified Mumford-Shah energy

15 N
BolT] =3 [ (F(a) = en)*do + o), Q

where cq, is the average of f(z) over €2;. It is this simplified Mumford-Shah energy func-
tional that is the subject of this paper.
Mumford and Shah (1989) proved, using methods from geometric measure theory, that

if f(z) is continuous on D then there exists a solution I'* to
EO[F*J o] = l%lf Eo[I', o],

where I'* is piecewise C2. In this paper, we present a constructive approach to find mini-
mizers of Eg[I', @], which is based on studying Eg[I', ] over piecewise linear boundaries I'.
Using it we rederive Mumford and Shah’s existence result, and we show, more generally,
that for any bounded measurable f € L°°(D) there exists a minimizer ['* which is piecewise
C'. Furthermore we show that for every minimizer I'* it must satisfy a weak curvature
bound: the unit tangent vector of v (parametrized by arc length) of any C'-segment of
['* satisfies a Lipschitz condition where the Lipschitz constant depends only on D, a and
maxp | f(z)|. The constructive nature of our approach is in obtaining such I'* as a suitable
limit of piecewise linear I';’s, and constraints on the behavior of the I'),’s, e.g. angles be-
tween segments. It is in principle possible to develop a computer implementation of this
approach.

Now reconsider the general Mumford—Shah problem (1). It is much harder. Mumford

and Shah conjectured there is a minimizing solution to
E[u*7 F*7 l’l’7 ’/] = inleI:u7 F7 /"['7 V]?
u7

where T'* is piecewise C! and u* € W12(D\T*), but this conjecture has never been proved.
Existence results have been achieved for a weaker problem where I' is only required to be
a relatively closed set and |I'| is replaced by Hausdorff 1-dimensional measure, cf [8], [7].
Such existence result has recently been obtained [1], [5]. Shah (1992) obtained some results
on a 1-dimensional simplification of the problem, and Richardson (1992) obtains asymp-
totic information on solutions as u—oo. All these authors use a geometric measure theory
approach relying heavily on existence theorems. The elementary constructive approach of
this paper offers a potentially promising approach to some of the questions.

This paper is part of the author’s dissertation under Professor David Mumford at Har-

vard University. The author is extremely indebted to Professor Mumford, without whose



supervision as well as his kindness and inspiration this work will never be completed. The
author is also greatly indebted to Taka Shiota for his immense help. Finally, the author

would like to thank the anonymous referees for their very constructive comments.

2 Basic Results

Let C = {A C R? | A is compact }. The Hausdorff metric on C is defined as

di (A, B) = sup inf |z — y| + sup inf |z — y|
rceAyeB reEByeA

for A, B € C. It is easy to show that dpy is indeed a metric on C. The following are
well-established facts (see [6]).

Proposition 2.1 1. (C,dy) is a complete metric space.

2. Let {Al} CCand Ay D Ay D Az---. Then

lim A; = ﬂ A;

1— 00 i=1
in the metric space (C,dp).

3. Suppose {A;} is a sequence in C and lim, oo A, = A in (C,dg). Then

=00

4. Let D be any compact subset of R? and Cp = {A C D | Ais closed in D}. Then Cp is
a compact subset of C in (C,dg).

For simplicity we shall write Eg[I'] in place of Eg[I', @] from now on. Given any I" and

D\T = {J; Q; where each Q; is a connected component of D\ I', we can separate the energy
Bolll = Y [ (f = ca)*do+alr|
i i

into two parts:
square energy: Eg[['] = Z/ (f — ca,)?dx;

length energy: Eg[I'l = «o|l.
Recall that cq, denotes the average of f(z) over €2;. Notice that the square energy Eg].]
can be defined for any closed subset A C D.

Lemma 2.2 Let {Ai}i>0 CCp. If Ay D Ay D A3D -+, {Ai}i>0 CCp, and A = ﬂfiIAi,
then
lim B[] = Bs[A].

1—00



Proof: For any compact subset B C D and (z,y) € D x D, define

0 ifxeBoryeB,

0 if x and y do not belong to the same
connected component of D \ B,

1  otherwise.

xB(z,y) =

xB: DxD — R is measurable and |xp| < 1. It is easy to see that for any (z,y) € D x D,
lim;_, 5 XA; ($, y) = XA (xv y)'
Note that for any B C Cp,

where

( f(z) if z € B,

/ xB(7,y)f(y)dy
D

otherwise.

/ xB(z,y)dy
L D
Since lim; , X4; = X4, by the Lebesgue Dominated Theorem,

1—00

lim [ xa,(z,9)f(y)dy = /D xa(@,y) £ (y) dy

1—00 ) D

lim /DXAi(fan)dy = /DXA(%y)dy, and

for any z € D; hence

lim g4, (2) = ga(@).

71— 00

Applying the Lebesgue Dominated Theorem again we obtain

lim Bs[4] = Jim [ (7(2) = ga,(2))da
= [ (f(@) - ga(a))do
D
= Eg[A].

Proposition 2.3 (Lower Semicontinuity) If {A;} C Cp and lim; ..o A; = A € Cp in
(Cp,dy), then
liminf Eg[A;] > Eg[A].

1—00

Proof: For any B;,By € Cp such that By C By, Eg[B1] > Eg[Bs]. Let B, = U;2,, 4i.
Then By D By D B3 D ---. Hence

A= (] B;= lim B;.

h i—00
=1



By Lemma 2.2,
lim BEg[B,] = Eg[A].

Since By, 2 A,, for m > n, Eg[B,] < Eg[A,]; thus

lim inf Eg[A,] > lim inf Eg[B,] = Eg[A].

3 Properties of the Segmentation

In this section, we shall examine the segmentations of the domain D by using piecewise
linear line segments. For simplicity we shall restrict our discussions to the domain D =
[0,L] x [0,L]. When a piecewise linear I' gives a locally minimal Eg[I'], meaning that
Eg[I'] cannot be reduced through a small perturbation of I" (in the topology induced by the
Hausdorff metric), there are some restrictions as to the number of edges, regions, etc.

We devote essentially the entire section to prove the following two facts: if a piecewise

linear I is a local minimum of the energy Eg[.] then

(1) the number of connected components in D \ I' must be bounded by some constant
depending only on D, o and maxp |f|, and so are the numbers of edges and junctions (see

Definition 3.2) in I' (Proposition 3.8);
(2) the angle between any two adjacent linear segments must be sufficiently close to =

(Proposition 3.12).

These two facts are central to our main existence and regularity results, which we prove by
obtaining a piecewise C'! global minimizer from a sequence of locally minimizing piecewise

linear I';’s.

Definition 3.1 I € Cp is called piecewise linear if

N
r=Ju
1=1

for some finite collection {I;}Y; where each l; C D is a linear segment, no l; is part of the
boundary 0D, and for any two different i,j < N, l; and l; intersect at most a common end

point of l; and ;. (l1,l2,...,lx) is called a piecewise linear representation of I'.

Note that the angle between any two adjacent segments is allowed to be w. For each
piecewise linear I' there are infinitely many ways of choosing [;’s, and hence there are

infinitely many different piecewise linear representations. Denote

SL(D) ={I' € Cp | I is piecewise linear} .



Before any further discussion we define the following terms related to I

Definition 3.2 Let I' € SL(D) and let (I;,lo,...ln) be a piecewise linear representation of

I'. Define the following terms related to I' and its piecewise linear representation:

region: A region defined by I' is a connected component of D\ I
node: A node of I is an end point of any linear segment I;.
junction: A junction of I' is a node that satisfies any of the following:
1. It is on OD; or
2. It connects to at least 3 linear segments; or

3. It connects to only one linear segment ( tip of a crack).

edge: An edge of T' is defined as the closure of any connected component of T'\
{the junctions of I'}.

edge-element: An edge-element of " is a linear segment ;.

boundary-component: A boundary-component defined by I' is the closure of any

connected component of 0D \ {the junctions of TI'}.

For any representation of I', we also define

e(I') = Number of edge-elements in the representation of I';

R(T') = Number of regions defined by T’
n(I') = Number of nodes in the representation of I';
J(I') = Number of junctions in I’
E(') = Number of edges in T’
(')
()

B(I') = Number of boundary-components defined by I'.

Note that among all the terms defined, only nodes, edge-elements, n(I'), and e(T") actually

depend on the piecewise linear representation of I'.

Definition 3.3 Let I' € SL(D). An edge v in I is called a crack if the two sides of vy

belong to the same connected component of D\ T

Proposition 3.4 Let I' € SL(D), T'* is derived from T' by removing all cracks in T'. Then
Eo[I'*] < Eg[I']. The equality Eg[I'™*] = Eg[I'] holds only when I'* =T, i.e. T' is crack-free.
Hence

inf Ep[l'l= inf Eo[I'].
reSL(D) ot} reSL(D) oll’
I is crack-free



Proof: Notice that Eg(I'™*) = Eg(T"), and obviously Er,(I'*) < Er,(I") with the equality
being true only when I'* =T [ |

Lemma 3.5 (Euler) For any crack-free I' € SL(D), an edge v of I is called a simple loop
if it contains no junction. Let [(T') be the number of edges of T' that are simple loops and

¢(T") be the number of connected components of ' UOD. Then

where 0(I') = 1 if there is no junction on D, and §(I') = 0 otherwise.

Proof: The Theorem of Euler states that if a simply connected domain is divided into

some simply connected subdomains, then
e—r—n=-—1,

where e is the number of edges, r is the number of regions, and n is the number of nodes.
Notice that in our case, the definition of junctions is slightly different from the definition

of nodes in The Theorem of Euler . In our definition, whenever an edge forms a closed loop,

we do not consider there is a junction on the edge. In The Theorem of Euler, however, such

an edge is considered to contain one node. Thus, if ¢(I') = 1, then

Therefore,
E(T)+ B(I') — R(T") — J(T') = =1+ o(T).

If ¢(') > 1, applying The Theorem of Euler to each connected component of T' U dD.

Summing the equalities up, we have
E()+B(I") — R(') — J(I') = —¢(I") + (T") + o(I).

For the second part of our lemma, compensating for [(I') is not needed because a line

segment can’t form a closed loop. Hence

e(l) + B(I') — R(T") — n(T) = —¢(I') + 8(I).

Let A(Q2) denote the area of €2 for any region (.



Lemma 3.6 Let Q C D be any connected piecewise C' domain. Let 09 = E U B where
B=0QN0D and E =00\ B. Suppose A(2) < A(D)/2. Then

1
B 2 5B

Proof: Recall that D = [0, L] x [0, L]. We consider two cases. If |[E| > L, then it follows

from the isoperimetric inequality that

|E| +4L — |B| = [0(D \ Q)| > \/4wA(D \ Q) > V2rL.

Hence 3|E| > (4 — V2r)L + |E| > B.
Suppose |E| < L. Then each connected component of E either does not intersect 0D,
or the two intersecting points lie on the same side of 0D or two adjacent side of dD. It is

easy to see whatever happens, we always have |E| > |B|/v/2 > |B|/3. |

Lemma 3.7 Let I' € SL(D) and Q be a region defined by T'. If v C 9Q is an edge of T
such that |y| > apA(Q) where ap = 4maxp |f|?/a, then

Eo[I'] > Eo[I"\ 7].

Proof: If v is a crack, then obviously

Eo[I'] > Eo[I"\ 7].

So we assume that 7 is not a crack. Thus «y separates two different regions 2 and Q*. Let
cq, co+ and cquo+ be the average of f(z) over Q, Q* and QU Q* respectively. Then,
Eo[I'] — Eo['\ 1]
= /Q(f — cq)’dz + /Q*(f — cq-)2dx — /QUQ*(f — cquor ) dz + aly|
> / (f —cq)’dx +/ (f — cq-)2dx — / (f — co-)?dz + aly|
Q Q- Qua*
= /Q{(f —cq)® = (f - CQ*)2} dz + aly|
> —dmax |fPA@) +aly| > 0

Therefore, Eg[['] > Eg[I" \ 7] |

Proposition 3.8 There exists a constant Ky = Ko(D,a,max |f|) > 0 such that for any
I' e SL(D), if R(I') + E(I') + B(I') + J(I') > Ky, then Eg[I' \ 7] < Eg[I'] for some edge -y
of I.



Proof: Let I' € SL(D) and Q be a region defined by I' with A(Q2) < A(D)/2. Then
|E| > |B|/3 where 02 = E'U B as in Lemma 3.6. Hence

1B > (1B + |B)) = 1109] > 1\/4rA(@) = 1 /rA(Q).

Choose 0 < b < A(D)/2 so that for all 0 < e < b,
1—10 (%\/ﬂ'—€> > ape,

where ap = 4maxp |f|?/a. It follows from Lemma 3.7 that if A(Q) = ¢ < b and v is an

edge of T, then Eg[T" \ 7] < Eo[I'] whenever |y| > \/me/20.

Let A C SL(D) denote the set of I'’s such that Eg[T \ 7] > Eq[I'] for any edge v of T.
For any I' € A the above implies that given any region € defined by I' with A(Q2) < b and
002 = E U B, the edge part E comprises at least 10 edges of I'. Let R, be the number
of regions defined by I" which have area > b. Obviously R, < A(D)/b. Since each edge
corresponds to only two regions while except for those with area > b each region corresponds
to at least ten edges, we have
5A(D)

o

B(T) > D(R(T) - R.) > 5R(T) -

Applying the same argument to junctions, namely each junction corresponds to at least three
edges or boundaries, while each edge or boundary corresponds to at most two junctions, we

have
E(T) + B(T) > gJ(I‘).

Combining the two inequalities we obtain

E() + B(I') — R(T) — J(I)

_ %E(F) + %B(F) _R(D) + ; (E(F) + B — —J(F))
> B - R(D)

> 5A(D)
> 2ri) - 2A0)

On the other hand, Lemma 3.5 gives us
E()+B(I') — R(') — J(I') = —¢(I") + (T") + o(I"),

where [(T") is the number of edges that are simple loops in I'. Since any region defined by
I can not be enclosed by such a simple loop if the area of the region is < b, it implies

I(I') < A(D)/b and therefore

E(L) + B(I) — R(T') — J(I') < 1+ A(D)/b.



Hence R(T') < Cr where Cp =8A(D)/b+ 3/2.

The rest follows easily. For any I' € A, since E(I') + B(I') > 2.J(I') we have

S(BD) +BID) < BD)+ BI) — J(D)
= (E()+ B() - J(T) - R(1)) + R(T)
< -1+ @ + R(I).
Hence both E(T') and B(I') are uniformly bounded. So J(I') < 2(E(T) 4+ B(T')) must also
be uniformly bounded. This proves the proposition. [ |

Corollary 3.9 Let
SLy(D) = {I" € SL(D) ‘ R(I') + E(T) + B(T) + J(T) < Ko }.

Then
inf Eg[I'l= inf Eg[[].
reéli(D) oll’] FeSIEo(D) oll’]
We now introduce a new subset of SL(D). Let SL(D,m,e) C SL(D) denote the set of
I"s which have a piecewise linear representation such that n(I') < m and |e| < ¢ for any

edge-element e of I'. We have
Lemma 3.10 SL(D,m,e) C Cp is a compact subset in {C,dg} for any m >0 and € > 0.

Proof:  We establish a bound for e(I') + B(I') for I' € SL(D,m,¢). Since except for
possibly those that contain at least a corner of D, each region corresponds to at least three
edge-elements or boundaries while each edge-element or boundary corresponds to no more

that two regions, so
e(I') + B(T') >

N | W

(R() - 4).

Hence

1
5 (e(D) + B(D)) < e(D) + B(D) = R(D) +4 = (D) = o(I') + 8(I) + 4 < n(T) + 4.
Therefore e(I') + B(I') < 3m + 12. We now conclude the compactness of SL(D,m,¢) by

showing that the limit of {I';} where I'; € SL(D, m, ) must also be in SL(D,m,¢). Let

ni

_ %

Fi = U ej,
Jj=1

i
J
Because n; are bounded for all 7, we may without loss of generality assume that n; = n* for

where €’ is an edge-element and e§- N efc for any j # k is either empty or a node in T';.

all 7, or we may replace the sequence I'; by a subsequence.

10



0

Figure 1: A small perturbation of I'.

Choose a subsequence 'y, I'x,, Ty, -+ of {I';}i>0 such that Vj < n*

lim efi = e;-
1— 00 J
*

J
Now let I'* be the limit of {I';}. Then I'* = U;l; ej. It is clear that I'" € SL(D).

Notice that if €} is a single point for some jo then we still have I'* = (J;_; €. So we may

The for any j < n* either €] is a linear segment with |e}| < € or a single point.

without loss of generality assume that all e} are line segments. If (e]) is a piecewise linear

representation of I'* then we have I'* € SL(D, m, ). Suppose (e}

representation of I'. Then the following must occur: for some ¢ # j, a node of € may lie in

) is not a piecewise linear

the interior of some e;, or €j Ne; may be a linear segment itself. However, given either of
the above cases we can always subdivide €j U €} into smaller edge-elements without adding
any new nodes. So by this procedure we obtain a piecewise linear representation of I'. Since
no new nodes are added all nodes in this representation are limit points of nodes of in I';,

so n(I') < m and I" € SL(D,m,¢). This implies the compactness of SL(D,m,¢). |

Proposition 3.11 For any m > 0 and € > 0, there exists a I'* € SL(D, m,e) N SLy(D)
such that

Eo[*] = inf Eoll'].
0[ ] FESIIJ?D,m,E) 0[]

Proof: Notice that for any sequence {I';} C SL(D,m,¢) such that I',—I', we have
Ey,(I') < liminf, Ef,(I';). The existence of I'* € SL(D,m,¢) follows immediately from
the compactness of SL(D,m,¢) and the lower semi—continuity of the energy Eg("). I'* €
SL((D) follows from Proposition 3.8. |

Proposition 3.12 Suppose I'y € SL(D,m,¢€) and ez, ez are any two adjacent edge-elements

of T'g which intersect at o non-junction node. Let 0 < 0 < w be the angle between e; and
€. If
[m— 0] > Mo(lex| + lez]),

11



where My = 8 maxp |f|?/a, then

Eo[lo] > _inf  Ep[).
o[lo] - oll']

Proof: Suppose that e; and e intersect at the node P. Let €1 and Q5 be the regions
separated by the edge containing e; and eg, as illustrated in Figure 1.

Consider a new I'" € SL(D,m, ¢) which is obtained from I'y by slightly perturbing e;
and ey, also shown in Figure 1. As Iy becomes I'?, the node P becomes P, so that the line
segment PP, satisfies |PPy| = h and it bisects the angle 6. Let the domain formed by the

polygon ejesehe be Q. Then
Eo[I""] — Eo[I']

= [ e, o+
Q1UQy, Q2\2p,

—/Ql(f—ch)de—/Qz(f—CQz)2d$—04(|€1|+|€2|)-

(f = cana,)dz + a(|el] + |eb])

(As usual, for any domain  C D, cq is the mean value of f(z) over .) Elementary

trigonometry gives
.0 0 .
A(Q) = (|el| + |62|>hsm 2 and |e;| = |e;| — hcos 2 +o(h), i=1,2.
Because

AU )ea,n, — A@)en, = [ fdu— [ fdz = O(AS)),
QUQy, 1921

it is immediate that co,uq, — co, = O(A(Qy)). Similarly, co,\q, — ca, = O(A(24)). We

have therefore

/ (f_CmUQh)de—/ (f—091)2d$
QU0

191

= / (f —cq, +co — chUQh)2dx _/ (f - CQI)de
Q1UQp, Q1

9 2
= [ (= eoun,)do+ (co, —caion,) A()
h

< dsuplf > A(924) + o(h),

Jopio O = e de = [ (7 oo

Qo

< 4sup|f[2A(Qn) + o(h).
D
Hence,

Eo[l'"] — B[] < 8sup|f?A(Q) — 2ah cos g + o(h)
D

12



0 0
= 83up|f|2(|61| + |62|)hsin— — 2ah cos = + o(h)
5 2 2

0 0
= aM0(|61| + |62|)hsin§ — 2ah cos 3 + o(h)

Let My = 8supp, |f|?/a. If |7 — 0| > My(le1]| + |ez2|), then

i sup, 20" = Eo[To]
im sup
h—0+ h
.0 6
< aM0(|61| + |62|) sin 5 — 2 cos 2
.0 0
= a31n§{Mga(|el|+|eg|) —2cot§}
0 -0
< asin§{|7r—9|—2tanﬂ2 }
0 m™—0
< asin={|r— 0] —
< a81n2{|7r 0 —2 5 ‘}
= 0.
Therefore Eg[I'"] < Eg[I'y] for sufficiently small A > 0. |

4 Approximation

In this section we shall be looking at more general segmentations of D, namely those formed
by piecewise C' T’s. The key idea in this section is to show that for any locally minimizing
piecewise linear ', the restriction on the angle between any two adjacent linear segments
of I' stated in Proposition 3.12 implies that each edge of I' can be approximated well by a
Ch! curve. Using this fact we prove our existence result (Proposition 4.6).

We call a curve v a simple C* curve if there exists a C* map c : [0, 1]—R? with /(t) # 0
for all ¢ € [0, 1] such that c(t1) # c(t2) for any ¢, € [0,1], t2 € (0,1) and ¢; # to.

Definition 4.1 T € Cp is called piecewise C' if

N
r={J
i=1

for some finite collection {v;}Y.; where each v; C D is a simple C' curve and for any i and
J # 1, both vy N OD and ~yj Ny are either empty or contain one or two end points of ;.

(Y1,72, - - -, YN) is called a piecewise C' representation of T.

Denote
S'(D) = {T' € Cp | T is piecewise C'} .

It is obvious that SL(D) C S'(D). We have the following generalization of Definition 3.2.

13



Definition 4.2 Let I' € S'(D). We define the following terms related to T':

region: A region defined by I' is a connected component of D\ T

junction: A junction of ' is a point in D where some v; and 0D meet, or where at

least three different v;’s meet.

edge: An edge of I' is defined as the closure of any connected component of I\
{junctions of T'}.

boundary: A boundary defined by ' is the closure of a connected component of 0D \
{junctions of T'}.

Notice that none of the terms defined above depends on the representation of I'. The

following are also independent of the representation of I':

R(I') = Number of regions defined by I’
J(I') = Number of junctions in T

E(') = Number of edges in T

B(') = Number of boundaries defined by T

Lemma 4.3

inf Ego[['l= inf Eq[[
peif ) Boll]= | inf Eoll]

Proof: It is obvious that

inf Eg[I'| < inf Eg[I].
relsl}(D) 0[]_Fe§1i(D) olI’]

But since any I' € S'(D) can be approximated to arbitrary degree of accuracy, it is easy to

see that ianesl(D) Eo[r] > ianESL(D) Eo[r]. [ |
Lemma 4.4 For any ¢ >0,

inf Epl[['| = i inf Eqll'].
vl Bolll = lim  oinf . Foll]

Proof: Notice that any linear segment can be broken up and viewed as the union of linear

segments of length < e. Therefore,

SL(D) = | SL(D,m,e¢) = lim SL(D,m,e).
m=1

The lemma follows immediately. |
Lemma 4.3 and Lemma 4.4 indicate that in order to minimize Eg[['] for T' € S!(D),
we can first minimize Eg[I'] over SL(D,m,e) N SLy(D) and consider the limit of Eg[I'] as

m — OQ.

14



Lemma 4.5 Let f(t) : [a,b) — R? be a piecewise constant map such that f(t) = X; for
t € [ti,tiy1), where a =ty < t; < --- < tp, = b. Suppose |tit1 —t;| < e forany 0 <i<n
and there exists a constant M such that | X1 — X;| < M(|tive —ti]) for any 0 <i <n—1.
Then there is a F(t) : [a,b) — R? which has the following properties:

1. F(t) is C'.
2. |F'(t)] < 6M.

3. |F(t) — f(t)| < 8Me.

/. /abF(t)dt _ /abf(t)dt.

Proof: Consider

a=ty<t; <---<t,=0,
where for any 0 < i < n, t; = (t; + ti+1)/2. Let Fi(t) be a cubic spline approximation of
f(t) on [a,b] defined as follows: for ¢ € [t;,t;+1) where 0 <i <n—1,
_ Xi—Xin 713 I T 7\2
Fi(t) = m@(t — ;)" = 3(tiv1 — 1) (¢t — ti) ) + Xi,
and for t € [t, 1, 1y]
Fi(t) = Xn-1.

Clearly, F(t;) = X; and F|(t;) = 0 for any i < n; hence F(t) is C*.

For any ¢ € [a,b], if t € [t;,t;41), then either f(t) = X; or f(t) = X;+1. Notice that if
t e [tiati-i-l) then

0 <3(Fi1 — L)t — 1) —2(t — 1) < (fip1 — 1)

Hence we have

|F1(t) — f()] < [Fu(t) — Xo| + | X — f(2)]
< PRl e - - 3@ - (e - 67
+| X — Xipa|
< X = X + X — Xig|
< 20X — X
< 2M|t; — tiyo
< 4Mse,

15



and

[ Xi — Xig1|

[Fi(t)| = G —t)? ‘6(75 —13)% — 6(Fir1 — L) (t — 1)
(3 (3
Xi—Xoal
> m (= ti) (tip — 1)
2. 3M|ti — ti+2|
tive +tiv1 — tiy1 + 4
= 6M.

Let F(t) = F1(t) + 6 where

then F'(t) = Fj(t) and

[F(t) = f()] < [F(@) = Fu)] + |[Fi(t) — f(2)]
< |0]+4Me
b —
o B0 -ROE
b—a
< 8Me.
Hence F(t) satisfies the listed properties. |

Proposition 4.6 Let {I';}i~o be a sequence in Cp such that I'; € SL(D,m;,€;), where

lim; oo m; = 00 and lim;_,, ; = 0. Suppose

Eo[l;] = inf Eo[L].
o[l rest oll']

Then there exists a I'* € Cp which is limit point of {U;}i~o such that I'* satisfies the

following properties:
1.
N*
j=1
with N* < 2Ky where Ky = Ko(D,«, max |f|) is defined in Proposition 3.8 and each

v; is a simple C! curve.

2. For any j < N* let Tj(s) denote the unit tangent vector of v; parametrized by the arc

length s of vj. Then,
[T (s1) — Tj(s2)| < Cols1 — sal,

where Cy = Cy(D, a, max |f|) is a constant.

3. For any © and j # i, both v; N 0D and ~; N~} are either empty or contain some
endpoints of ;. Hence I'* € SY(D).

16



Ego[l'"] = inf Eg[l].

o[l"] el o[I]
Proof: Let ['; = U;-n:il ’y; where ,),;'_ are the edges of I';. According to Corollary 3.9, since
m; < Kg, we may without loss of generality assume that m; = Ny because we can always

find an Ny < Ky such that there are infinitely many ¢’s for which m; = Ny.

Now, fix a j and consider the family {fy; }iso- Define f; by
@) =50+ [ o,

where s is the arc length parameter of 'y;: and 0 < s < lg = |7;| Since 7;- is piecewise linear,
fi is piecewise constant. Because I'; minimizes Eg[I'] in SL(D,m;,¢;), Proposition 3.12
implies that f;(t) satisfies the conditions stated in Lemma 4.5 for some constant M =

M (D, ,max |f|). Hence there is a C! function F;(t) defined on [0, lf] such that

|F;(t) — fi(t)| <8Me;,  |Fj(t)] <6M, and
lj

: :
fiwdt = [ F()dt.
0 0

For a given ¢ let f?;: be the parameterized curve
. . S
3 =50 + [ Eod

for 0 < s < lg . Since |F}(t)| is a uniformly bounded sequence of functions, there exists a

subsequence {7} }i>o of {ﬁ’;'-}i>0 which converges uniformly to some 7;(s) which is either
No
j:
some jo, then we still have I'" = Uj;;,7;. So without loss of generality we may assume that

C! or in the degenerate case, a single point. Let I'* = U 17; - If v, is a single point for

7; is not a single point for all j, and that lim;_,o ')/Ji- =1;-

We now prove that I'* € S!(D) by showing that it has a piecewise C' representation. If
('y;-‘ ) is a piecewise C'! representation of I'* then we are done. Suppose it is not a piecewise
C'! representation of ['*. Then there must be some n # m such that the set y;: N7, contains
a point z which is not an endpoint of both v, and +;,, or there is an « € v N 0D such
that z is not an end point of v, for some n. We show that in the former case z must be
an endpoint of either 4 or . If not, since v}, N ¢, for any i contains only endpoints of
both v} and +%,, v and v, must be tangent to each other at z (there cannot cross each
other at z, otherwise v/ and 7/ will intersect for sufficiently large i). For any a > 0, let
§ = 6(a) = dy(v: N Bu(z),v;, N Ba(7)). Since v and «, are C! and tangent to each other

at =, we can make J/a arbitrarily small by choosing a sufficiently small a > 0.

17
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q2 g2

Figure 2: A case in which v} is tangent to ;,.

Let p1, p2 be the endpoints of By(z) N} and qi, g2 of Be(z) N}, Since p1, p2, q1,
and ¢y are all on 0B,(x), we assume that on 0B, (x), g1 is in between p; and g2 while g9
is in between py and ¢;. This is shown in Figure 2. Consider p%, pb € v} and ¢}, ¢b € 7,
which satisfy

lim p} = py, lim P = po

1— 00

and
limg =q, lim g} = .
71— 00 71— 00

Let

[; = I'; U {line segments piq¢} and phqs};
;e SL(D,m; +n;,¢;) for some n; > 0. Denote the portion of v} between p% and pi by 9!,
and the portion of 4%, between ¢i and ¢4 by 1?,. Let Q be the region enclosed by ", pbqs,

¢t and piqi. Since for sufficiently large i,

d (Pl h,) <20, W] < 3a, and |Yl,| < 3a,

we have
A(Q;) < 26 max{yl, ¢} < 6a.
Therefore
[Es[li \ 4] — BEs[Ty]| < CLA() < 6C1da,
and

Eo[l'; \ %] — Eo[[';] < 6C1da + 20 — |4 | < 6C16a + 20 — a.

Since d/a can be made arbitrarily small by choosing a sufficiently small a > 0, we can
choose an a > 0 such that

6C10a +20 —a < —g.

18



Thus for ¢ sufficiently large,
; , a
Eo[l'; \ 4] < Eo[l] — 5.
But

lim Eg[[';] = inf Eg[I'] < inf Eq[l"
z#r& 0[ Z] FEISI%(D) 0[ ]_FESIIJ?D,m,E) 0[ ]

for any Ny > 0 and € > 0. This is a contradiction. Hence any x € ) N, must be an
endpoint of either 7, or v;,. The same argument shows that any € v N 0D must be an

endpoint of v;, and that if v, has a self-intersection at z then z must be an endpoint of ;.

So we may now refine each v, into v, = Uy, , such that each endpoint of v, , is and
endpoint of some ~y;,, and that every z € =y, , Ny, must be an endpoint of both ;
and vy, ;. Each v, , is simple. Furthermore, since the total number of endpoints of all
Yy is bounded by Ko, the number of ~; , is bounded by 2Ky. So (fy;‘;k) is a piecewise C'*

representation of I'*.

It is clear that I'* = Ufﬁ;k satisfies properties 1, 3 of the proposition. Because each 'yr*l,k
is simple, property 2 follows immediately from Lemma 4.5. We now prove property 4. Since
lim; ,, I'; = I'*, we have

liminf Eg[';] > Eg[[™*].

1— 00

The proof of (1) also shows that

lim Eg[T] > Eg [I™].

1—00
Therefore,

: - " < Jim I .
rels%)EO[F] < Eo[I"] < lim inf Eq[I'] relsqu Eo[l']

5 Conclusion

Theorem 5.1 Let f(x) € L>°(D) where D = [0, L] x [0, L]. Then there exists a T* € S*(D)

such that Eg[I™] = 1Sr{f( )EO[F]. Moreover, every such I'* satisfies the following properties:
I'e D

1. T is crack-free and there ezxists a constant K = K(D,«, maxp |f|) such that

R(I*) + BE(I™) + J(I'*) + B(I'*) < K.

2. Every edge in I'* is C'.
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3. Suppose v = 7y(s) is an edge of T* parametrized by the arc length. Let T'(s) = +'(s) be

the unit tangent vector of v. Then
|T(81) - T(82)| S Co|81 — §92].
where Cy = 18 maxp |f|?/c.

4. Every junction in D° connects to exactly three edges such that the angle between any
two edges is 2w /3. Every junction on 0D connects one edge to OD such that the edge
meets 0D perpendicularly.

Before proving Theorem 5.1, we first examine the effect a small perturbation of I' will
have on Eg[[']. Let ['* € S'(D) and v C I'* be a piece of C! curve parametrized by its arc
length s,

v(s) : [0,1] — R2.

Consider a perturbation of y(s) with a sufficiently small A > 0:
Yh(s) = (s) — ha(s)So,

where a(s) € C§°[0,1] and Sy is a unit vector pointing to a fixed side of v on the support of

a(s). This can be achieved if the support of a(s) is sufficiently small. We have
v (2)* = |T(s) — ha'(5)So|” = 1 — 2hd' ()91 (s) + o(h),
where g;(s) = (Sp, T(s)) with (.,.) being the inner product in R?. Hence

k()| = 1 — ha'(s)g1(s) + o(h).

Denote the region on the left side of v (with respect to the orientation of y(s)) by Q and
the region on the right side of v by Qg. Let 2} be the domain sandwiched by v and .

Qh:{y(s)—ta(s)So‘Ogsgl, Ogtgh}.
Then

A = [ [ 16u(s s = o),

where J(7:(s)) is the Jacobian of ;(s):

dot ( ' (s) — ta'(s)So )‘ _

| J (72 (s))] = —a(s)So

() \|_
det ( ()80 )‘ = a(s)ga(s).
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Lemma 5.2 Let T'" = (T* \ v) Uy,. Then

[ rh l
Boll"] ~Eoll"] = | " Fln(s))ga(s)als) dtds — ah | gi(s)a/(s) ds +o(h).
where F(z) = (ca, —ca,)(2f(x) —ca, — cay)-

Proof: Without loss of generality, we assume that ) C 2g. Calculations in the proof of

Proposition 3.12 have shown that

CQrLuy, =€y + €L, Cagp\Q, = CQr TER,

where €1, er = O(A(Q)) = O(h).

/ (f _CQLUQh)2d$—/ (f—CQL)2d.’I3
QU

Qr,

= /QL(f —cq, _6L)2d$+/ﬂh(f —cq, —ep)%de — /QL(f —cQL)2d$
= /QL —25L(f—cQL)dx+/QL €%d$+/ﬂh(f—CQL —ep)%de
— /Q (f — cq, )2dz + ofh).

Similarly,
/ (f — CQR\Qh)de - / (f — cap)lde = —/ (f — cag)?dz + o(h).
Qr\Qp Qr Q

Therefore

Eg[l"] - Es[[]
= [ AU e (¢ —can)?} e+ ofh)
- /Oz /Oh {(f(%:(s)) _CQL)2 N (f(%(s)) —cQR)2} | T (7 (5))|dtds + o(h)
B /ol /oh {(f(%(s)) a CQL>2 - (f(%(s)) - 093)2} a(s)ga(s)dtds + o(h)
= h OZF(%(S))gg(s)a(s)ds + o(h).
l

[
By ("] = BLl"] = o [ ()] =17/ (5)]) ds = —oh [ qa()a/(s)ds + o(h).

This proves the lemma. |

Proof of Theorem 5.1: It is clear from Proposition 4.6 that there exists a I'* € S}(D)

such that E(I'*) = - ESHED) E(T), and that for each such T'™* it must satisfy properties 1. We
€

show that I'* satisfy property 2—4.
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Figure 3: Close-up of a junction.

First we prove that the unit tangent vector of every C' curve in I'* must satisfy Lip-
schitz condition. Property 3 will follow easily from property 2, which we prove later. Let
7(5):0,1]—R? be an edge of I'* parametrized by its arc length. Using the same notations

as in Lemma 5.2 we have

I rh l
Boll"] ~Eoll"] = | [ Fln(s)ga(s)als) dtds = ah | gi(s)a/(s) ds +o(h).

Let N(s) be the unit normal vector of (s) pointing to the region ;. Suppose 1 >
|T'(s1) —T(so)| > C|s1 — so| where sg,s1 € [0,!] are sufficiently close. Choose Sy = N (sp).
Then g1 (so) = (So,T(s0)) = 0 and

()] = {80, ()] > 51 — 5ol
Let supp(a(s)) C [s0,51]. So
B -~ Boll] = [ [ Feulo)aa(s)ats)deds —an [ (o) (5)ds + oln)
_ h/: (/0 G(t)ga(t) dt — agy(s))a'(s) ds + ofh),

where G(s) = L [1 [* F(y(s)) dt. Note that

S S
[ Gon®d < [ 16000]dt < smax |72l - sl
S0 S0 D
So if C' > 18 maxp |f|?/c then

max /G gg()dt—agl( - mln /G )g2(t

sE 50,51 se so,sl

> |([ tm - antn) - ([ G(t)gz(t)dt—agl(sw)\

18 maxp |f|?
2a
= mgx|f|2|sl—50| > 0.

alsy — so| — 8nfllf)iX|f|2|31 — 50l
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Therefore we can find an a(s) € C§°([0,1]) such that Eg[[*] < Eg[['*] by choosing a
sufficiently small h. This is impossible. Hence |T'(s1) — T'(s0)| < (18 maxp |f|?/a) |s1 — sol-

Next we prove that property 4 must be satisfied by ['*. Let P be any junction in I'* such
that P & 0D; assume that two edges v, and 72 meet at P at angle 0 < § < w. Consider
P’ € D such that |[PP'| = h and PP’ bisect angle 0, as illustrated in Figure 3. Let A € 4
and B € 2 be sufficiently close to P and |AP| = |BP| = a. We first assume that both -,
and s are locally linear around P. Denote the domain enclosed by the polygon APBP’ by

Q. Elementary trigonometry shows that

|AP'| = |BP'| = a — hcos g +o(h),

A(Q) = ahsin g

Let
I = (1" \ {line segment AP, BP}) U {line segments PP', AP', BP'}.

Calculations in the proof of Proposition 3.12 have shown that
Eg[l'"] - Eg[*] < C1A(Q) = Ciah sing,
EL[l"] - EL[l*] = ah (1 — 2cos g) +o(h).
Thus,
Eo[l'"] — B[] < (Cla sing + 04(1 — 2cos g)) h+o(h).

If 0 < @ < 27/3 then we can choose sufficiently small a and h so that Eg[I'*] — Eo[I'*] < 0.
This contradicts the fact that ['* minimizes Eg[I']. Thus, the angle at which 7; and v, meet

must be 27/3 or more.

In general v; and s are not locally linear. Let the length of v; between A and P be
s1 and let the length of v, between B and P be s;. Because both ; and v, are C! and

the unit tangent vectors parametrized by their respected arc length satisfy the Lipschitz

[ i as
_ ‘ [ ds + [ i) = o)) s

5
> 5—/ Cosds
0

COSZZ
— T;

condition, for ¢ = 1,2 we have

= Si
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hence s; —a = O(a?). Similarly, we can show that the area enclosed by ; and AP and that
by 72 and BP are both O(a®). Thus all arguments used in the locally linear case will not
be affected. So 6 > 27/3.

Therefore at any junction P € D, the angle at which every two edges meet should be
no less than 27 /3. Consequently, the junction must connect exactly 3 edges and the angle

at which every two edges meet must be 27/3.

Suppose P € 9D is a junction. Let 0 < 6 < 7/2 be the angle at which an edge vy meets
0D. Same as in the P € 0D case, we may assume that v is locally linear at P. Consider
A € vy and B € 9D such that the line segment AB is perpendicular to the boundary.
Assume that |PA| = h; thus |AB| = hsinf. Let

rh = (F* \ {line segment PA}) U {line segments AB}.
Then
Eo[l"] — Eo[l™*] < %hQ sinfcos — (1 —sinf)h + o(h)
< —(1—siné)h + o(h).

Hence 6 = /2, i.e. v must meet 0D perpendicularly.
Property 2 can be proved by using essentially the same idea. If two C' curves meet at
a nonjunction point such that they form a corner at that point, then we can decrease Eg

by cutting the corner. We omit the detail of the proof here. [ |
Theorem 5.3 Let f(x) be continuous on D = [0, L] x [0, L]. Suppose T'* € S*(D) and
Eo[l'*] = inf Eg[[].
o[L™] it oll]

Then I'* € S2(D). Moreover, let y be any edge of I'* and x € y be a nonjuction point. Then
a’f(x) = (CQR - CQL)(CQR t+ca, — 2f($))7

where v is oriented with Qf and Qg being the region on its left and right respectively, and

k(z) is the curvature of vy at x.

Proof: Again, we use the same notations as in Lemma 5.2. Let v(s):[0,1] — R? be any

edge of I'* parametrized by its arc length s. Then according to Lemma 5.2,

l h l
Boll"] ~Eoll"] = | " Fln(s)ga(s)als) dtds = ah | gi(s)a/(s) ds +o(h).

Denote Fy(s) = (ca, — ca,)(2f(v(s)) — ca, — ca,). Then because f(z) is continuous,
F(v(s)) — Fo(s)—0 as h—0. Thus

[
Eoll"] ~ Boll") = b [ (Fy(9)g2(s)a(s) ~ ag1(5)a'(s)) ds + ofh).
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Hence

/Oz(F(s)g2(s)a(s) — ag1(s)a'(s))ds -0,
/Ol {_(As F(t)QQ(t)dt)a,’(s) _ 091(8)a'(s)} ds — 0.

Because a(s) can be any function in C§°([0,1]) as long as Sp points to a fixed side of vy on

the support of a(s), it implies
S

/ F(t)go(t)dt + agi(s) = constant
0

on any interval [b,c] C (0,7) in which Sy points to a fixed side of y. Thus on [b,c], g1(s) =
(S0, T(s)) is Ct. Since Sy is arbitrary, T'(s) is C' and hence 7(s) is C2. Let x = y(sg) where
so € [0,1] and choose Sy = N(sg) where N(s) is the unit normal vector of y(s) pointing to

the region 7. Then
a(So, —k(s)N(s)) = (S0, T'(s)) = agy(s) = —F(s)g2(s)-

It is clear that Sy = N(sp) implies g2(so) = 1; hence

anle) = —(7(r(5) —ea,) + (F((9) —car)
= (CQR - CQL) (CQR +ca, — Zf(x))
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