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Abstract

Nonstationary signals appear often in real�life applications and many of
them can be modeled as polynomial phase signals �PPS�� High�order ambigu�
ity function �HAF� was �rst introduced to estimate the parameters of a single
component PPS� but has not been widely used for multi�component PPS be�
cause of its nonlinearity� Multi�component PPS arise for example� in Doppler
radar applications when multiple objects are tracked simultaneously� In this
paper� we show that HAF is virtually additive for multi�component PPS and
suggest an algorithm to estimate their parameters� Numerical examples are
presented to illustrate the theories�
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� Introduction

Signals encountered in engineering applications such as communications� radar� and

sonar often involve amplitude �AM� and�or frequency modulation �FM�� AM�FM is

inherent in certain natural signals as well� For example� experimental evidence has

shown that voiced speech segments exhibit amplitude and frequency modulation� cf�

Teager and Teager ���	� In Chen et al �
	� spatial�temporal motion was viewed as

an FM problem in the frequency domain� and motion estimation was carried out by

tracking the frequency variations in the Fourier transforms�

An AM�FM signal can be written as x�t� � ��t�ej��t�� where ��t� represents the

time�varying amplitude� ��t� stands for the phase� and instantaneous frequency is

de�ned as the derivative of the phase� f�t� � d��t��dt� Although non�parametric

techniques are available to track amplitude and frequency variations� we focus on

parametric models here because they o
er parsimony and inherently unlimited res�

olution�

The phase function of a large class of AM�FM processes can be modeled by a

polynomial function of t� It is known that in active systems� the radar echo from a

maneuvering target has nonlinear phase characteristics� which depend on the target

trajectory� In Kelly ��	� the radar echo is expressed as x�t� � ��t�ejr�t�� and the

trajectory is approximated by

r�t�
�
� r� � vyt�

�
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From ����� we see that radial velocity vy introduces a linear phase term in x�t��

radial acceleration ay and cross�range velocity vx induce a quadratic phase term�

ax and vx induce a cubic phase term� and so forth� The coe�cients of the power

series of r�t� are thus related to the kinetic parameters of the moving target� cf� also

Rihaczek ���	� According to the Stone�Weierstrass theorem� any continuous function






�such as r�t�� over a closed interval can be approximated uniformly by a polynomial

function� Therefore the class of polynomial phase signals is rather broad�

Single�component polynomial phase signals �PPS� have been investigated exten�

sively in recent years using the high�order ambiguity function �HAF�� introduced

by Peleg and Porat ��	 �see for example� Porat ��� Ch� �
	�� HAF has proven to

be e
ective in parameter estimation of single�component PPS� and results on con�

stant� random� or time�varying amplitudes have appeared in Peleg and Porat ��	�

Shamsunder� Giannakis and Friedlander ��
	� Swami ���	� and Zhou� Giannakis and

Swami ���	�

Signals arising from real life applications often have multiple components� and

their estimation poses a great challenge� When HAF is applied to multi�component

PPS� a large number of cross�terms� which are themselves PPS� are introduced� The

cross�terms are nuisance� and in estimation involving multi�component PPS� many

authors have imposed severe constraints on the parameters �e�g�� ��	� ��	�� or� avoided

discussing them altogether �e�g�� ��	�� In Barbarossa� Scaglione and Giannakis ��	

however� PPS parameter identi�ability was resolved using the product multi�lag

HAF� when the components have equal amplitudes� The focus of this paper is on

the application of single�lag HAF to multi�component PPS� In this respect� except

for Zhou and Swami ���	� there has been no quantitative study on the magnitudes

of the cross�terms� Our main contribution here is to show that these cross�terms

are almost always negligible� and that HAF is virtually additive� This knowledge is

then incorporated into parameter estimation schemes for multi�component PPS�

The organization of the paper is as follows� in x
� we give a brief overview of

the HAF and the related single�component PPS parameter estimation issues� In x��
we focus on multi�component chirp signals and examine in detail� the cross�terms in

the ambiguity function domain� The results of x� are then generalized in x� to the
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Mth�order multi�component PPS� An algorithm for parameter estimation of multi�

component PPS is derived based on these results� Throughout the paper� numerical

examples are provided along with theoretical expositions� Finally� conclusions are

drawn in x�� followed by an Appendix which includes the rather technical proofs of

the three major theorems of this paper�

� HAF and Single�Component PPS

HAF was originally devised for estimation of single�component� constant amplitude

polynomial phase signals �PPS� of the form

y�t� � � ej��t� � � ej
PM

m��
amtm � �
���

Throughout this paper� we consider y�t� given by �
��� in discrete time t � �� � � � � T�
�� and refer to it as a PPS of order M � Note that y�t� corresponds to a harmonic

when M � � and a chirp when M � 
�

For an integer � �� �� de�ne P��y�t�� � 	 � y�t�y��t� ��� which can be viewed as a

second�order instantaneous moment of y�t�� Since multiplying y�t� by its conjugated

lagged copy y��t��� is equivalent to di
erencing in the phase of y�t�� it follows easily
that P��y�t�� � 	 is a new PPS of order M � �� The above operation can be iterated

to eventually reduce a PPS of any order to a complex constant� These iterates are

called the high�order instantaneous moments �HIM� of y�t��

General properties of the HIM operations are discussed in Porat ��� Ch� �
	� For

self�containment� we include below� some of the basic results of ��� Ch� �
	�

Let y�t� be a complex valued signal� and de�ne for any integer q

y��q��t�
�
�

�
y�t�� if q is even�
y��t�� if q is odd�

�
�
�

�



For integers M� � � �� the corresponding HIM operator is de�ned as

PM �y�t�� � 	
�
�

M��Y
q��

�y��q��t� q��	

�
M � �

q

�
� �
���

where
�

M � �

q

�
are the binomial coe�cients� and M is the order of PM � For y�t�

de�ned in �
���� it holds that

PM �y�t�� � 	 � ��
M��

ej��t	
��� �
���

where

��
�
�M � �M�� aM � �
���

��
�
� �M � ��� �M�� aM�� � ���M ��M � ���MaM � �
���

We notice that PM �y�t�� � 	 of an Mth�order PPS is reduced to a constant amplitude

harmonic with amplitude ��
M��

� frequency �� and phase ��� HIM of order � M will

reduce an Mth�order PPS to a simple complex constant�

Since PM �y�t�� � 	 is �almost� periodic�� we consider its Fourier series �FS� coef�

�cient function �of � � ��	� 	�� de�ned as�

PM �y��� � 	
�
� lim

T��

�

T

T��X
t��

PM �y�t�� � 	 e�j�t� �
���

We call PM a high�order ambiguity function �HAF� of y�t�� following the terminology

of Porat ��	� Note that up to a scalar constant� HAF of order M � 
 is the same as

the classical ambiguity function�

Substituting �
��� into �
���� we obtain

PM �y��� � 	 � ��
M��

ej
�� 
�� � ���� �
���

�Although ej�t is strictly periodic in continuous time ��� it is strictly periodic in discrete time
only when � is a rational multiple of �� This is why we refer to ej�t as almost periodic �� when t
is discrete�
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where 
��� denotes the Kronecker delta function


���
�
�

�
�� if � � � �mod 
	��
�� otherwise�

�
���

The HAF in �
��� peaks when � is at �� � M � �M��aM � Hence we may obtain

the highest order polynomial phase coe�cient aM from the peak location of �
���

aM �
�

M � �M��
arg max

�

���PM �y��� � 	
���� �
����

Now� by multiplying expf�jaM tMg with y�t�� we obtain a PPS of order M � ��

The above procedure is then repeated to obtain an estimate of aM��� Subsequent

iterations yield estimates for aM��� � � � � a�� cf� ��� Ch� �
	� Finally� � expfja�g can

be estimated via linear least squares �LS� method� Note that the estimation of aM

via �
���� requires � �� � and jaM j � 	��M ��M���� Unless otherwise stated� we

shall choose � � � throughout the paper to ensure the maximum range of aM �

In practice� additive noise v�t� may be present and we actually observe

x�t� � y�t� � v�t� � � ej
PM

m��
amtm � v�t�� �
����

Sample estimate of PM �y��� � 	 is computed from fx�t�gT��t�� as follows�

�PM �y�t�� � 	
�
� PM �x�t�� � 	 �

M��Y
q��

�x��q��t� q��	

�
M � �

q

�
� �
��
�

�PM �y��� � 	
�
�

�

T

T��X
t��

�PM �y�t�� � 	 e�j�t� �
����

Asymptotic unbiasedness and consistency of �
���� were established in Zhou� Gi�

annakis and Swami ���	 �see also ��� Ch� �
	� where v�t� is zero�mean and white

complex Gaussian� Once �PM �y��� � 	 is computed� aM can be estimated by substi�

tuting �PM �y��� � 	 for PM �y��� � 	 into �
�����

�



� Multi�Component Chirp Signals

In Doppler applications and when dealing with multiple moving targets� the returned

echo can be modeled as a multi�component PPS�

y�t� �
LX
l��

yl�t� �
LX
l��

�le
j
PMl

m��
al�mtm �����

where each yl�t� is a constant amplitude PPS of orderMl� When the nonlinear HIM

operator PM is applied to y�t�� many cross�terms will emerge�

PM �y�t�� � 	 �
LX
l��

PM �yl�t�� � 	 � cross�terms� ���
�

For an L�component signal with allMl �M � the number of cross�terms is L�M���L�
which gives two cross�terms for L � 
� M � 
 and �� for L � 
� M � �� These

cross�terms are themselves PPS� We shall study the M � 
 case in detail here and

generalize to the M � 
 case in the next section�

If the targets are moving along radial directions and have constant accelerations�

then it is appropriate to model the echo as a multi�component chirp� We shall

focus on constant amplitude chirps in this paper� generalizations to the time�varying

amplitude chirps are rather straightforward� by applying the results of ���	�

A discrete time L�component chirp signal with constant amplitudes is give by

y�t� �
LX
l��

yl�t� �
LX
l��

�le
j�al�	al�t	al�t

��� t � �� �� � � � � T � �� �����

For example� a two�component �L � 
� chirp signal with constant amplitude is given

by

y�t� � ��e
j�a��	a��t	a��t�� � ��e

j�a��	a��t	a��t��� �����

The two components will be considered distinct if their respective instantaneous

frequencies� d�l�t��dt � al� � 
al�t� are di
erent�

�



It is not di�cult to show that the 
nd�order instantaneous moment of y�t� in

����� is �assuming � � ��

P��y�t�� �	
�
� y�t�y��t� ��

� ��� e
�ja��t ej�a���a��� � ��� e

�ja��t ej�a���a���

�
���� e
jf�a���a���t�	�a���a��	�a���t	�a���a��	a���a���g� �z �

T��t�

�
���� e
jf�a���a���t�	�a���a��	�a���t	�a���a��	a���a���g� �z �

T��t�

� �����

The FS coe�cient function of P��y�t�� �	 is given by

P��y��� �	 � ��� e
j�a���a��� 
�� � 
a��� � ��� e

j�a���a��� 
�� � 
a���

� lim
T��

�

T

T��X
t��

T��t� e�j�t � lim
T��

�

T

T��X
t��

T��t� e�j�t� �����

We refer to the �rst two terms on the r�h�s� of ����� as auto�peaks because their

locations yield the highest order polynomial phase coe�cients a�� and a��� To

obtain good estimates of a�� and a�� based on the locations of the auto peaks� it is

highly desirable that the last two �cross�� terms on the r�h�s� of ������ i�e� the FS

coe�cient functions of T��t� and T��t�� be negligible as compared to the auto�peaks�

��� FS Coe�cient Function of a Single Chirp

For simplicity� let us rewrite T��t� de�ned in ����� as

T��t� � 
���� e
j��t� ej��t ej�� � �����

where

��
�
� a�� � a��� ��

�
� a�� � a�� � 
a��� ��

�
� a�� � a�� � a�� � a���

Let us denote the FS coe�cient function of ej��t
�

by h����

h���
�
� lim

T��

�

T

T��X
t��

ej��t
�

e�j�t� �����

�



and express the third term on the r�h�s� of ����� as

lim
T��

�

T

T��X
t��

T��t� e�j�t � 
���� e
j�� h�� � ���� �����

We would like to compare its magnitude with ��l � the magnitude of the auto�peaks�

Interestingly� although exp�j��t
�� is aperiodic in continuous time� it is periodic in

discrete time only when �� is a rational multiple of 	� To see this� write �� � 
	N�D

where N and D � � are co�prime integers� For all integers t� we have

ej���t	D��N�D � ej���t
�	�tD	D��N�D � ej��t

�N�D� ������

which is periodic in t with period D �D may not be the minimum period though��

Now since exp�j
	t�N�D� is periodic� h��� contains spectral lines� Theorem �

below establishes a bound on jh���j and is crucial for assessing the contribution of

the cross�terms in ������

Theorem � Suppose that �� � 
	N�D where D � � and N are co�prime integers�

Then the FS coe�cient function h��� of ej��t
�

satis�es

max
�

jh���j �
� p


�D� if D is even�p
��D� if D is odd�

������

Note that the r�h�s of the above expression does not depend on N �

Proof� See the appendix�

Our Theorem � �in x�� asserts that the limit ����� de�ning h��� tends to zero

uniformly in � when �� is an irrational multiple of 	� Although any irrational

number can be approximated to arbitrary precision by rational numbers� the de�

nominators of these rationals tend to in�nity as the precision increases� Theorem

� then predicts that the corresponding h��� is negligible in general� The following

example illustrates the di
erence between the two scenarios�

�
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Figure �� FS coe�cient function of ej��t
�

for �� � 
	 � 
���� and �� � ����

Example �� Figure ��a� shows jh���j �calculated with T � �� �
�� as a function

of � � ��	� 	� for �� � 
	 � 
����� We observe �� spectral lines�� and their

magnitudes do not exceed ��
p
D � ������ In Figure ��b�� we have �� � ���� which

cannot be expressed as 
	N�D for integers D� N � There are no discernible peaks

in Figure ��b� and jh���j here is much smaller than that in Figure ��a��

Because line spectra are produced only when �� is a rational multiple of 	� and

almost all real numbers are irrational� we conclude that spectral lines appear in h���

with probability zero and h��� is very small for large T � Even if a given signal does

have coe�cients that are all rational multiples of 	� unless the common denominator

D is very small such as D � �� �� the algorithm should still work �see the analysis

on the worst case scenarios in the next subsection�� In fact� in real applications such

small D�s can only be due to very low and insu�cient sampling rates�

Considering the above conclusion and together with ������ we infer that the two

cross�terms in ����� are negligible and hence HAF is virtually additive�

P��y��� �	 � ��� e
j�a���a��� 
�� � 
a��� � ��� e

j�a���a��� 
�� � 
a���� ����
�

�It can be shown that h��
 contains D�� spectral lines when D is even� and D spectral lines
when D is odd�

��



��� Worst Case Scenarios

In ��	� Polad and Friedlander proposed a procedure for tracking multi�component

PPS parameters� Those of the strongest component are �rst identi�ed� The compo�

nent is then removed and the estimation process is continued with the other L� �

components� Relation ����� � 
 was assumed in ��	 in order for ��� � 
���� and

to ensure that the cross�terms are never more than the strongest auto peak� With

the help of Theorem � �and Theorem � in x��� however� we can show that such an

assumption is unnecessarily strong�

We observe that the contribution from the cross�term in ����� is no more than


����max� jh���j� i�e�

lim
T��

����� �T
T��X
t��

T��t� e�j�t
����� � 
���� max

�
jh���j� ������

The r�h�s� tends to zero �Theorem �� when �� is an irrational multiple of 	� and is

nonzero otherwise� The worst cases are when �� � 
	N�D with D small� and we

shall examine them below�

First� we recognize that with � � �� the leading chirp coe�cients must satisfy

ja��j � 	�
 and ja��j � 	�
 in order to satisfy the HAF�based identi�ability con�

dition stated following �
����� This implies that j��j � ja�� � a��j � 	� and hence

N�D � ��
� Without loss of generality� we assume that �� � ��� Worst case

scenarios are identi�ed as follows�

�c�� D � �� N � � and ja�� � a��j � 	�
� The r�h�s� of ������ is then
p

 �����

In order for the cross�terms not to exceed the strongest auto peak ���� we must have

����� �
p

�

�c�� D � �� N � � and ja��� a��j � 
	��� The r�h�s� of ������ is then 
�����
p
��

In order for the cross�terms not to exceed the strongest auto peak ���� we must have

��



����� � 
�
p
��

For all other D�s� Theorem � ensures that the the cross�term in ������ is never

more than the strongest auto�peak� Hence� we conclude that if ja�� � a��j �� 	�
 or


	��� then the successive estimation algorithm described in ��	 can be implemented

for any ����� � �� Otherwise� one needs to ensure ����� �
p

 or 
�

p
�� This is a

much weaker condition than the one stated in ��	�

We further infer from Theorem � that if D � � is even and � � ����� �
p
D���

or� if D � � is odd and � � ����� �
p
D�
� then the two strongest peaks in

P��y��� �	 will always be due to the auto�terms� because the r�h�s� of ������ will

always be smaller than ��� �and hence ����� For a generic �� � a�� � a�� to be well

approximated by 
	N�D� D would have to be fairly large� and the above condition is

then easily met� This implies that in general� P��y��� �	 can be regarded as virtually

additive� and it is safe to use the locations of the L largest peaks to estimate al� for

l � �� 
� � � � � L�

Example �� We generated T � ��
� samples of a two�component PPS y�t� given

by ������ where each alm is an i�i�d� uniform random variable in ��� ��� Figures 
�a�

and 
�b� show particular realizations of �P��y��� �	 with amplitudes �� � �� � � and

�� � 
��� �� � �� respectively� We observe two distinct peaks in �P��y��� �	� the

locations of which correspond to 
a�� and 
a��� illustrating the virtual additivity of

�P��y��� �	� This experiment was repeated ��� times� and two peaks were observed

for all ��� realizations� Note that although the dynamic range in Figure 
�b� is

large due to �� �� ��� the two strongest peaks nevertheless yield the correct 
a�� and


a���

Proceeding arguments assume that the leading chirp coe�cients are di
erent�

The picture changes when a�� � a��� because then the two auto�peaks merge to one�

�
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Figure 
� �P��y��� �	 of a two component chirp�

and �� � � makes both cross�terms T��t� and T��t� behave like harmonics� Under

the assumption that the instantaneous frequencies of the di
erent components must

be di
erent� we infer that a�� �� a�� when a�� � a�� and T��t� and T��t� generate
peaks at 
a����a���a��� and 
a��� �a���a��� in P��y��� �	� which are equidistant

from the auto�peak at 
a���

When the leading chirp coe�cients are di
erent but are close to each other� we

observe two closely spaced peaks in P��y��� �	� High resolution algorithms such as

MUSIC� matrix pencil� and the Tufts�Kumaresan method can then be employed

�see ���	� to estimate the coe�cients of the polynomial phase�

� Multi�Component PPS of Order M

Recall that a general L�component� constant amplitude PPS is de�ned as

y�t� �
LX
l��

yl�t� �
LX
l��

�l e
j
PMl

m��
al�mtm �

We may assume without loss of generality that the polynomial phase orders satisfy

M� � M� � � � � � ML� The HAF of order M�� PM�
�y��� � 	� exhibits peaks at

M���
M���al�M�

for all l such that al�M�
�� �� but a large number of cross�terms

��



are also present� As in x���� we shall examine the magnitude of the FS coe�cient

function of

c�t� � ej
PM

m��
amtm � �����

in order to make inference about the contribution of these cross�terms�

��� FS Coe�cient Function of the Cross�Terms

As with the case of a chirp� c�t� given in ����� is periodic in discrete time t if and

only if all am are rational multiples of 	� in which case the FS coe�cient function

of c�t� contains spectral lines� Unlike the chirp� there is no general formula for the

largest magnitude of these spectral lines when M � 
� Instead� a bound can be

established as stated in the following theorem�

Theorem � Consider the polynomial phase signal c�t� � ej
PM

m��
amtm and suppose

that am � 
	bm�D� where D� b�� � � � � bm are relatively prime integers� D � �� Then

lim
T��

max
�

����� �

T

T��X
t��

c�t� e�j�t
����� � min ��� cD�D

��M � ���
�

where cD � d
log�M
D and dD denotes the number of divisors of D� Hence the FS

coe�cient function of c�t� is uniformly bounded by min ��� cD�D
��M ��

Proof� See the appendix�

Remark �� If D has the prime factorization D � p��� p��� � � � p�kk � then it follows

that dD � �
� � �� � � � �
k � ���

Remark �� It can be shown that the rate of growth of dD as D increases is

approximately logarithmic or less� depending on how many factors D has� see Rosen

���	� Therefore� limD�� dD�D
� � � for any � � �� and the r�h�s� of ���
� tends to

��



Table I� Examples of �����

b� b� D dD l�h�s� r�h�s�

��
���� �
��
�� ����
��� � ������ ������

������� ������ �
����� � ������ ��
���

������� 
����� ������� �� ������ ������

zero as D �	 as a result�

We note here that Theorem 
 provides bounds on the FS coe�cient functions of

all Mth�order PPS� Since they include worst case scenarios� these bounds may not

be always optimal� However� the established bounds do point out the qualitative

dependence of the magnitude of FS coe�cient function on D���M � which tends to

zero as D �	� The works by Hua ��	� Vinogradov ���	 and others also indicate that

the exponent ���M of D on the r�h�s� of ���
� is optimal and cannot be improved�

From ���
�� we infer that the larger the D and the smaller the dD� the tighter the

bound� For generic am � 
	bm�D� such will be the case� Table ��� gives numerical

examples on the use of ���
��

In practice� it is unlikely for an arbitrarily chosen am to be a rational multiple

of 	� and it is even less likely for all famg� m � 
� � � � �M � to be rational multiples of

	� The following theorem show the magnitude of the FS coe�cient function tends

to zero uniformly when the conditions of Theorem 
 are not met�

Theorem � Consider the polynomial phase signal c�t� � ej
PM

m��
amtm and suppose

that at least one am is an irrational multiple of 	� Then

lim
T��

max
�

����� �T
T��X
t��

c�t� e�j�t
����� � �� �����

Proof� See the appendix�

��



The importance of Theorem 
 and Theorem � is to guarantee that except in the

pathological case where all am are rational multiples of 	 with a very small common

denominator� the FS coe�cient function of the cross�term c�t� is negligible� Hence

in a multi�component PPS setting� the HAF is virtually additive�

��� Parametric Estimation of Multi�Component PPS

The fact that the HAF of a multi�component PPS is virtually additive allows us

to develop an algorithm that estimates the PPS parameters in a straightforward

manner� We illustrate the algorithm by way of two examples�

Example �� Two�component cubic FM signals�

In this example� we have available T � 
��� samples of

x�t� � y�t� � v�t� �
�X
l��

ej�al�t	al�t
�	al�t

�� � v�t��

where a�� � �� a�� � ��� a�� � ���
�� a�� � 
� a�� � ���� a�� � ���� and v�t� is a

zero�mean� white complex Gaussian process with variance ��v � ����� Note that we

assume without loss of generality that the amplitudes are � and the initial phases

are zero� because otherwise these parameters can be estimated from the standard

LS after all other parameters have been estimated� Our procedure consists of the

following steps�

Step �� We compute �P��y�t�� �	
�
� P��x�t�� �	 � x�t��x��t � ��	�x�t � 
�� the FS

coe�cient function of which should produce spectral lines at ��a�� and ��a��� Indeed�

we observe peaks at �a�� � ���� and �a�� � ��� from Figure ��a�� These two peaks

give estimates �a�� � ���
���� and �a�� � �������

Step �� In this step� we form two new PPS

x���t� � x�t�e�j
a��t
�

and x���t� � x�t�e�j
a��t
�

�

��
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Figure �� Parameter estimation of a two�component cubic FM signal
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We compute �P��x�l�t�� �	
�
� x�l�t�x

�
�l�t� �� for l � �� 
� Note that each �P��x�l�t�� �	

is the sum of one harmonic and some other higher order PPS� Therefore by our

theorems their FS coe�cient functions should each produce a single peak� This is

precisely the case as shown in Figure ��b� and Figure ��c�� These two peaks yield

estimates �a�� � ������ and �a�� � ������ respectively�

Step �� In this �nal step� we form two still new PPS

x���t� � x���t�e
�j
a��t� and x���t� � x���t�e

�j
a��tt �

Now each x�l is the sum of a harmonic and some other higher order PPS� so again

by our theorems the FS coe�cient function of each should have a single peak� The

single peak of the FS coe�cient function of x���t� is shown in Figure ��d�� its

location yields the estimate �a�� � �����
� Similarly� the single peak of the FS

coe�cient function of x���t� yields the estimate �a�� � �������

The FFT length used in this example is N � 
���

Example �� Often� the components of a multi�component PPS are not all of the

same order� The algorithm outlined in Example � can be easily extended to these

settings� Here we explain how the parameters can be estimated when the given

multi�component PPS consists of a cubic phase signal and a quadratic phase signal

�a chirp� corrupted by a zero�mean white complex Gaussian noise v�t��

x�t� � y�t� � v�t� � ej�a��t	a��t
�	a��t�� � ej�a��t	a��t

�� � v�t��

As in Example �� we �rst compute P��x�t�� �	 � x�t��x��t� ��	�x�t� 
�� the FS

coe�cient function of which should produce one peak at ��a��� This allows us to

obtain estimate �a�� of a��� In our next step� we form two PPS x���t� and x���t� by

x���t� � x�t�e�j
a��t
�

� and x���t� � x�t��

��



Now� we can just repeat Step 
 and Step � in Example � to �nd the remaining

parameters�

� Conclusions

Multi�component AM�FM models describe a large class of nonstationary processes�

among which multi�component polynomial phase signals �PPS� form a particularly

important subclass� The so�called high�order ambiguity function �HAF� was origi�

nally introduced by Peleg and Porat to estimate the parameters of single�component

PPS� but has not been widely used for multi�component problems due to the appear�

ance of many cross�terms� In this paper� we have carefully examined the magnitudes

of the cross�terms and shown that they are almost always negligible in comparison

with the peaks due to the original signal components� Thus HAF can be regarded

as virtually additive and be applied to multi�component PPS�

Our simulations show that cross�terms rarely cause false peaks in the HAF do�

main� Problems may arise when the components share the same �highest order�

polynomial phase coe�cients or when the dynamic range of the component ampli�

tudes is large� We have used examples to illustrate the use of HAF to estimate

multi�component PPS parameters�
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Appendix� Proofs of the Theorems

We prove our main theorems by using several well�known estimates of the Weyl

sum
PT��

t�� ejf�t� where f�t� is a polynomial� Weyl sums have been used in analytic

number theory to study� among many other problems� Goldbach�s Conjecture and

Waring�s Problem� Several deep results� which we shall use in this paper� were

obtained by Weyl� Vinogradov� Hua� Vaughan� and others� see ��	� ���	� ���	�

To simplify the exposition� we shall use e�t� to denote ej��t throughout the

appendix�

Lemma � Let f�x� �
PM

m�� bmx
m with all bm � Z� Let D � � and T � Dn� Then

T��X
t��

e� �
Df�t�� �t� �

D��X
t��

e� �
Df�t�� �t� �

n��X
k��

e���Dk��

Proof� Note that �
Df�t�D� 
 �

Df�t� �mod �� for all t � Z� Therefore�

T��X
t��

e� �
Df�t�� �t� �

n��X
k��

D��X
t��

e� �
Df�Dk � t�� ��Dk � t��

�
n��X
k��

D��X
t��

e� �
Df�t�� �t�e���Dk�

�
D��X
t��

e� �
Df�t�� �t� �

n��X
k��

e���Dk��

proving the lemma�

Lemma � Let f�x� be as in Lemma � and D � �� Then

lim
T��

max
�

����� �T
T��X
t��

e� �
Df�t�� �t�

����� � max
c�Z

����� �D
D��X
t��

e� �
Df�t�� c

D t�

����� � �A���

Proof� For any T � �� write T � Dn� r� where � � r� � D� Then by Lemma ��

T��X
t��

e� �
Df�t�� �t� �

D��X
t��

e� �
Df�t�� �t� �

n��X
k��

e���Dk� �
T��X
t�Dn

e� �
Df�t�� �t��


�



Now the last term is bounded by r� � D� If �D �� Z then jPn��
k�� e���Dk�j �


�j� � e���D�j� which is independent of T � Therefore

lim
T��

�

T

�����
T��X
t��

e� �
Df�t�� �t�

����� � ��

Therefore the maximum of
��� �
T

PT��
t�� e� �

Df�t�� �t�
��� can only be attained when

�D � Z� But if � � c�D for some c � Z then
Pn��

k�� e���Dk� � n� Hence

lim
T��

�

T

T��X
t��

e� �
Df�t�� �t� �

�

D

D��X
t��

e� �
Df�t�� c

D t��

and the lemma follows�

A�� Proof of Theorem �

We �rst restate Theorem � in the following slightly di
erent �but stronger� form�

Theorem � Let D � � and N be co�prime integers� Then

lim
T��

max
�

����� �T
T��X
t��

e�ND t
� � �t�

����� �
� p


�D� if D is even�p
��D� if D is odd�

�A�
�

Theorem � is proved by applying the following result on the so�called Gauss sumPD��
t�� e�ND t

���

Lemma � Let N � D be co�prime integers� D � �� Then

�����
D��X
t��

e�ND t
��

����� �
	
�

�

p
D� if D is odd�p

D� if D is a multiple of ��
�� otherwise�

�A���

Proof� Let D � p��� p��� � � � p�kk be the prime factorization of D� where p� � p� �

� � � � pk are primes� Denote S�D�N� �
PD��

t�� e�ND t
��� Then there exist integers


�



Nj � � � j � k� such that

S�D�N� �
kY

j��

S�p
�j
j � Nj�

with gcd�Nj � pj� � �� cf� Vaughan ���	� Lemma 
���� Now� for any prime p and any

integer b such that gcd�b� p� � � we have jS�p�� b�j � p���� except that S�
� b� � �

�see Vinogradov ���	� Chapter II� Lemma � and Lemma ��� This proves the lemma�

Proof of Theorem �� By Lemma � we only need to evaluate the maximum of

jPD��
t�� e�ND t

� � c
D t�j for all c � Z� Note that because N and D are co�prime� there

exists some b � Z such that c 
 Nb �mod D�� Therefore

�

D

�����
D��X
t��

e�ND t
� � c

D t�

����� � �

D

�����
D��X
t��

e�ND �t
� � bt��

����� �
Case �� D is odd�

Without loss of generality� we assume that b is even� because we can replace b

by b�D if otherwise� Let b � 
�b� Then completing square� we obtain�����
D��X
t��

e�ND �t
� � bt��

����� �
�����
D��X
t��

e�ND �t� �b���

����� � �A���

As t runs through a complete residue system �mod D�� in this case from t � � to

t � D � �� so does t� �b� Hence the r�h�s� of �A��� has�����
D��X
t��

e�ND �t� �b���

����� �
�����
D��X
t��

e�ND t
��

����� � p
D

following Lemma �� and proving the theorem in this case�

Case �� D is even but not a multiple of ��

If b � 
�b� then as in �A���� by completing square and applying Lemma �� we

have
D��X
t��

e�ND �t
� � bt�� � ��







Suppose now b is odd� Let D � 
D�� We break the sum
PD��

t�� e�ND �t
� � bt�� into

two sums� one for all even t and the other for all odd t� First� for even t�s�

X
t��s

e�ND �t
� � bt�� �

D���X
s��

e� ND�
�
s� � bs�� �

p
D�

following Case � because D� is odd� For the sum over odd t�s� note that each

odd t can be written as �t � D� for some even �t� Furthermore� one can check that

e�ND �t
� � bt�� � e�ND �

�t� � b�t��� As t runs through all odd residue classes �mod D�� �t

runs through all even residue classes �mod D�� Thus the sum of e�ND �t
� � bt�� over

odd residue classes t �mod D� is identical to that over all even residue classes t �mod

D�� i�e� X
t��s	�

e�ND �t
� � bt�� �

X
t��s

e�ND �t
� � bt�� �

p
D��

Therefore�
D��X
t��

e�ND �t
� � bt�� � 


p
D� �

p

D�

proving the theorem in this case�

Case �� D is a multiple of ��

Again� if b � 
�b then as in �A���� by completing square� we immediately have

D��X
t��

e�ND �t
� � bt�� �

p

D�

Suppose that b is odd� We show that�����
D��X
t��

e�ND �t
� � bt��

����� � �� �A���

To see �A���� let D � 
D�� For each � � t � D�� denote s � t�D�� One can check

that

e�ND �t
� � bt�� � �e�ND �s� � bs���


�



Therefore� the l�h�s sum in �A��� can be grouped into pairs that cancel each other�

This immediately yields �A��� and hence the theorem in this case�

A�� Proof of Theorem �

We �rst restate Theorem 
�

Theorem � Let c�t� � ej
PM

m��
amtm and suppose that am � 
	bm�D� where

D� b�� � � � � bm are relatively prime integers� D � �� Then

lim
T��

max
�

����� �

T

T��X
t��

c�t� e�j�t
����� � min ��� cD�D

��M � �A���

where cD � d
log�M
D and dD denotes the number of divisors of D�

Proof� Let f�t� �
PM

m�� bmt
m� Then the l�h�s� of �A��� is precisely

lim
T��

max
�

����� �T
T��X
t��

e� �
Df�t�� �t�

����� � max
c�Z

����� �D
D��X
t��

e� �
Df�t�� c

D t�

����� �
following Lemma 
� Now� write g�t� � f�t� � ct� A deep result of Hua ��	 states

that
�

D

�����
D��X
t��

e� �
D g�t��

����� � d
log�M
D �D���M �A���

where dD is the number of divisors of D �cf� ��	� Theorem � and its proof�� This

proves the theorem�

A�� Proof of Theorem �

Theorem � Let c�t� � ej
PM

m��
amtm and suppose that at least one am is an irra�

tional multiple of 	� Then

lim
T��

max
�

����� �T
T��X
t��

c�t� e�j�t
����� � ��


�



The proof of Theorem � is the most technical of all three� and relies heavily on

the di�cult estimates of the Weyl sum
PT��

t�� e�f�t�� where some of the coe�cients of

f�t� are irrational� We shall apply estimates by Vinogradov ���	 and Vaughan ���	�

The general idea of the proof is to approximate irrationals with rationals by contin�

ued fractions� Once this is done� we may apply the theorem of Hua �see the proof of

Theorem 
�� and the fact that the denominators of these rationals tend to in�nity�

First� let us recall that for any irrational � � R� its continued fraction gives no

worse than quadratic approximations of � by rational numbers� More precisely� let

p�q and P�Q be two consecutive convergents of the continued fraction of �� q � Q�

Then ������ p

q

���� � �

qQ
� �A���

As an example� one can check �A��� for � �
p

� the �rst � convergents of its con�

tinued fraction are ���� ��
� ���� ����
� ���
�� ������ For a reference on continued

fractions� see Rosen ���	�

Lemma � �Vinogradov� Let f�t� �
PM

t�� bmt
m with all bm real� Assume that br

is irrational for some 
 � r � M � Let p�q� P�Q be two consecutive convergents of

the continued fraction of br� Then there exist positive constants c� � depending only

on M such that �����
T��X
t��

e�f�t��

����� � c � T ��	� �A���

for all T satisfying q � T � q�M or T � Q � T r�����

Proof� See of Vinogradov ���	� Chapter IV� Theorem I�

Lemma � Let f�t� �
PM

t�� amt
m with all am real� Assume that am � bm�q�
m for


 � m �M where q � � and gcd �q� b�� � � � � bM � � �� Let g�t� � a�t�
�
q

PM
m�� bmt

m�


�



Then
T��X
t��

e�f�t�� �
�

q

� q��X
t��

e�g�t��
�
� A�B� �A����

where jAj � T and jBj � q�� � j
�jT � � � � �� j
M jTM ��

Proof� See Vaughan ���	� Theorem ��
 and Theorem ���� We remark that our

lemma is stated slightly di
erently from Vaughan�s Theorem ��
 in that we allow

the �rst coe�cient of g�t� to be irrational while in Vaughan�s theorem a� is also

approximated by a rational b��q� However� from the proof of Vaughan�s theorem it

is quite obvious that his result still holds in our case�

Proof of Theorem �� Let f�t� �
PM

m�� bmt
m �
� �

��

PM
m�� amt

m� Then

max
�

����� �T
T��X
t��

c�t� e�j�t
����� � max

�

����� �T
T��X
t��

e�f�t�� �t�

����� �
bm may be rational for some 
 � m � M � and we let L� denote the least common

denominator of these rational bm�s�

Let T � L�M
� � For any irrational br� let pr�qr and Pr�Qr be the consecutive

convergents of the continued fraction of br such that qr � T � Qr� By Lemma �� if

qr � T � q�Mr or T � Qr � T r���� for some r then�����
T��X
t��

e�f�t�� �t�

����� � c � T ��	� �A����

where c � �� � � � depend only on M �

Now� suppose q�Mr � T and Qr � T r���� for all r where br is irrational� Let

q � � be the least common multiple of L� and the qr�s� Then for each irrational br�

br �
pr
qr

� 
r �
kr
q
� 
r


�



with j
rj � ��qrQr� while for each rational bm� bm � km�q � 
m with 
m � �� Let

g�t� � �
q

PM
m�� kmt

m� By Lemma ��

�

T

�����
T��X
t��

e�f�t�� �t�

����� � �

q

������
q��X
t��

e�g�t� � �t�

�������
jBj
T

� �A��
�

where jBj � q�� � 
�T
� � � � � � 
MTM �� We show that jBj�T is small� For each


r �� ��

j
rjT r �
T r

qrQr
�

T r���� � T ���

qrQr
� T ���

qr
�

Hence
jBj
T

� q

T

�
� � j
�jT � � � � �� j
M jTM

�
� Mq

T ���
� �A����

Notice that

q � L�

Y
qr �

�
T ���M

�M
� T ����

Therefore by �A�����
jBj
T

�
M � T ���

T ���
�M � T����� �A����

Combining �A��
�� �A���� and Theorem 
� we obtain

�

T

�����
T��X
t��

e�f�t�� �t�

����� � �� � d log�M
q � � q���M �M � T����� �A����

whenever T is su�ciently large� Since q � 	 as T � 	� �A���� combines with

�A���� to give

lim
T��

max
�

����� �T
T��X
t��

e�f�t�� �t�

����� � ��


�
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