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Abstract

Nonstationary signals appear often in real-life applications and many of
them can be modeled as polynomial phase signals (PPS). High-order ambigu-
ity function (HAF) was first introduced to estimate the parameters of a single
component PPS, but has not been widely used for multi-component PPS be-
cause of its nonlinearity. Multi-component PPS arise for example, in Doppler
radar applications when multiple objects are tracked simultaneously. In this
paper, we show that HAF is virtually additive for multi-component PPS and
suggest an algorithm to estimate their parameters. Numerical examples are
presented to illustrate the theories.
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1 Introduction

Signals encountered in engineering applications such as communications, radar, and
sonar often involve amplitude (AM) and/or frequency modulation (FM). AM-FM is
inherent in certain natural signals as well. For example, experimental evidence has
shown that voiced speech segments exhibit amplitude and frequency modulation, cf.
Teager and Teager [14]. In Chen et al [2], spatial-temporal motion was viewed as
an FM problem in the frequency domain, and motion estimation was carried out by

tracking the frequency variations in the Fourier transforms.

An AM-FM signal can be written as z(t) = p(t)e/?()| where p(t) represents the
time-varying amplitude, ¢(¢) stands for the phase, and instantaneous frequency is
defined as the derivative of the phase, f(t) = d¢(t)/dt. Although non-parametric
techniques are available to track amplitude and frequency variations, we focus on
parametric models here because they offer parsimony and inherently unlimited res-

olution.

The phase function of a large class of AM-FM processes can be modeled by a
polynomial function of ¢. It is known that in active systems, the radar echo from a
maneuvering target has nonlinear phase characteristics, which depend on the target
trajectory. In Kelly [5], the radar echo is expressed as z(t) = p(t)e’™ ™, and the
trajectory is approximated by

: 1 w2\ 5 1 e
T(t)zro+vyt+§<ay+r—z>t T gy Gt + g agt 4 (1.1)

From (1.1) we see that radial velocity v, introduces a linear phase term in z(t);
radial acceleration a, and cross-range velocity v, induce a quadratic phase term;
a, and v, induce a cubic phase term, and so forth. The coefficients of the power
series of (t) are thus related to the kinetic parameters of the moving target, cf. also

Rihaczek [10]. According to the Stone-Weierstrass theorem, any continuous function



(such as r(t)) over a closed interval can be approximated uniformly by a polynomial

function. Therefore the class of polynomial phase signals is rather broad.

Single-component polynomial phase signals (PPS) have been investigated exten-
sively in recent years using the high-order ambiguity function (HAF), introduced
by Peleg and Porat [6] (see for example, Porat [9, Ch. 12]). HAF has proven to
be effective in parameter estimation of single-component PPS, and results on con-
stant, random, or time-varying amplitudes have appeared in Peleg and Porat [6],
Shamsunder, Giannakis and Friedlander [12], Swami [13], and Zhou, Giannakis and

Swami [17].

Signals arising from real life applications often have multiple components, and
their estimation poses a great challenge. When HAF is applied to multi-component
PPS, a large number of cross-terms, which are themselves PPS, are introduced. The
cross-terms are nuisance, and in estimation involving multi-component PPS, many
authors have imposed severe constraints on the parameters (e.g., [3], [8]), or, avoided
discussing them altogether (e.g., [7]). In Barbarossa, Scaglione and Giannakis [1]
however, PPS parameter identifiability was resolved using the product multi-lag
HAF, when the components have equal amplitudes. The focus of this paper is on
the application of single-lag HAF to multi-component PPS. In this respect, except
for Zhou and Swami [18], there has been no quantitative study on the magnitudes
of the cross-terms. Our main contribution here is to show that these cross-terms
are almost always negligible, and that HAF is virtually additive. This knowledge is

then incorporated into parameter estimation schemes for multi-component PPS.

The organization of the paper is as follows: in §2, we give a brief overview of
the HAF and the related single-component PPS parameter estimation issues. In §3,
we focus on multi-component chirp signals and examine in detail, the cross-terms in

the ambiguity function domain. The results of §3 are then generalized in §4 to the



Mth-order multi-component PPS. An algorithm for parameter estimation of multi-
component PPS is derived based on these results. Throughout the paper, numerical
examples are provided along with theoretical expositions. Finally, conclusions are
drawn in §5, followed by an Appendix which includes the rather technical proofs of

the three major theorems of this paper.

2 HAF and Single-Component PPS

HAF was originally devised for estimation of single-component, constant amplitude

polynomial phase signals (PPS) of the form
y(t) = pel?t) = pel g amt™ (2.1)

Throughout this paper, we consider y(t) given by (2.1) in discrete time ¢t = 0,...,T—
1, and refer to it as a PPS of order M. Note that y(¢) corresponds to a harmonic
when M =1 and a chirp when M = 2.

For an integer 7 # 0, define Ply(t); 7] = y(¢)y*(t — 7), which can be viewed as a
second-order instantaneous moment of y(¢). Since multiplying y(¢) by its conjugated
lagged copy y*(t—7) is equivalent to differencing in the phase of y(t), it follows easily
that Pa[y(t); 7] is a new PPS of order M — 1. The above operation can be iterated
to eventually reduce a PPS of any order to a complex constant. These iterates are

called the high-order instantaneous moments (HIM) of y(t).

General properties of the HIM operations are discussed in Porat [9, Ch. 12]. For

self-containment, we include below, some of the basic results of [9, Ch. 12].

Let y(t) be a complex valued signal, and define for any integer ¢

)y 2 ) y(t), if ¢ is even,
v { y*(t), if g is odd. (2.2)



For integers M, T > 0, the corresponding HIM operator is defined as

M-1 M—1
Puly(t); 7] 2 H[y(*‘”(t—w)]( ’ ) (2.3)

q=0

where (Mq_ 1) are the binomial coefficients, and M is the order of Py;. For y(t)
defined in (2.1), it holds that

Puly(t);7] = o2 IoH9, (2.4)

where
o2 pn M1 au, (2.5)
$E (M- 1) M Y ag g —0.5MM — 1)7Many. (2.6)

We notice that Pas[y(t); 7] of an Mth-order PPS is reduced to a constant amplitude
harmonic with amplitude p2M_l, frequency @ and phase g% HIM of order > M will

reduce an Mth-order PPS to a simple complex constant.

Since Pp[y(t); 7] is (almost) periodic,’ we consider its Fourier series (FS) coef-
ficient function (of a € [—m, 7)) defined as,
A 1=
. 2 im — . —jot
Puly; e, 7] = lim = ; Puly(t); 7] e (2.7)
We call Py; a high-order ambiguity function (HAF) of y(t), following the terminology

of Porat [9]. Note that up to a scalar constant, HAF of order M = 2 is the same as

the classical ambiguity function.

Substituting (2.4) into (2.7), we obtain

Puly;a,7] = p2" el §(a — @), (2.8)

! Although e/** is strictly periodic in continuous time Vw, it is strictly periodic in discrete time
only when w is a rational multiple of . This is why we refer to e/“! as almost periodic Vw when ¢
is discrete.



where (-) denotes the Kronecker delta function

A { 1, if « =0 (mod 27), (2.9)

Oe) = 0, otherwise.

The HAF in (2.8) peaks when « is at @ = M! 7M~1a),;. Hence we may obtain

the highest order polynomial phase coefficient ay; from the peak location of (2.8)

1

ay = ————
M! rM-1

arg max ‘PM[y; 0{,7’]‘. (2.10)
a

Now, by multiplying exp{—jant*™} with y(t), we obtain a PPS of order M — 1.
The above procedure is then repeated to obtain an estimate of aj;_1. Subsequent
iterations yield estimates for apr—2,..., a1, cf. [9, Ch. 12]. Finally, pexp{jao} can
be estimated via linear least squares (LS) method. Note that the estimation of aps
via (2.10) requires 7 # 0 and |ay| < 7/(M!7™~1). Unless otherwise stated, we

shall choose 7 = 1 throughout the paper to ensure the maximum range of ay;.

In practice, additive noise v(¢) may be present and we actually observe
M ¢
z(t) =yt) +ovt)=p¢€ 2o Wty v(t). (2.11)

Sample estimate of Pys[y; «, 7] is computed from {z(t)}1_;' as follows:

A A M-1 (M—l )
Puly®);7] = Pylae()ir] = [[ =90 —qr)\ * 7, (2.12)
q=0
. A1 r-1 .
Puly;a.7] = 7 > Puly(t);r] e (2.13)
t=0

Asymptotic unbiasedness and consistency of (2.13) were established in Zhou, Gi-
annakis and Swami [17] (see also [9, Ch. 12]) where v(t) is zero-mean and white
complex Gaussian. Once Py [y; a, 7] is computed, aps can be estimated by substi-

tuting Pys[y; o, 7] for Pysly; a, 7] into (2.10).



3 Multi-Component Chirp Signals

In Doppler applications and when dealing with multiple moving targets, the returned

echo can be modeled as a multi-component PPS,

L L M, .
y(t) = S ut) = 3 pref Lombo wmt (3.1)
=1

=1
where each y(t) is a constant amplitude PPS of order M;. When the nonlinear HIM
operator Py is applied to y(t), many cross-terms will emerge,

L

Puly(); 7] = Purlyi(t); 7] + cross-terms. (3.2)
=1

For an L-component signal with all M; = M, the number of cross-terms is 2 —L,
which gives two cross-terms for L = 2, M = 2 and 14 for L = 2, M = 3. These
cross-terms are themselves PPS. We shall study the M = 2 case in detail here and

generalize to the M > 2 case in the next section.

If the targets are moving along radial directions and have constant accelerations,
then it is appropriate to model the echo as a multi-component chirp. We shall
focus on constant amplitude chirps in this paper; generalizations to the time-varying

amplitude chirps are rather straightforward, by applying the results of [17].

A discrete time L-component chirp signal with constant amplitudes is give by

L

L
y(t) = Z yl(t) = Zplej(azo+az1t+azztz)7 t=0,1,..., T —1. (3'3)
=1 =1

For example, a two-component (L = 2) chirp signal with constant amplitude is given
by

y(t) _ plej(a10+a11t+a12t2) + p2€j(a20+a21t+a22t2). (34)

The two components will be considered distinct if their respective instantaneous

frequencies, d¢;(t)/dt = aj + 2a;9t, are different.



It is not difficult to show that the 2nd-order instantaneous moment of y(¢) in

(3.4) is (assuming 7 = 1)

Poly(t);1] = y(t)y*(t—1)

— PZ e2jaizt J(au—am)_*_p%e

2jazat ej(a21 —a22)

4 2P1P2 ej{(GIZ*‘IZZ)tQ‘F(all*aQI +2a22)t+(a21 —a22+ai10—a20)}

~

Ti(0)
+ 2012 eI (a22—a12)t* +(a21—a11+2a12)t+(a11—a12+az0—a10)} (3.5)

v

Ta()
The FS coefficient function of Pa[y(t);1] is given by

Pyly;a,1] = p? ej(a“ﬂ“z) 5(a — 2a15) + pa (9217922) §(op — 2a4,)
. 1 It .
1 = —jat Li = —]Oét‘ .
+£20TZTI g 2 PO B0

We refer to the first two terms on the r.h.s. of (3.6) as auto-peaks because their
locations yield the highest order polynomial phase coefficients ai2 and a9. To
obtain good estimates of a2 and age based on the locations of the auto peaks, it is
highly desirable that the last two (cross-) terms on the r.h.s. of (3.6); i.e. the FS

coefficient functions of 77 (¢) and 72(t), be negligible as compared to the auto-peaks.
3.1 FS Coefficient Function of a Single Chirp

For simplicity, let us rewrite 71(¢) defined in (3.5) as
T1(t) = 2p1p2 6j72t2 elmt ej%, (3.7)
where
A A A
Y2 = ai2 — a2, Y1 = a11 —a21 +2a2, Yo = a21 — a2 + aip — ay.

Let us denote the FS coefficient function of /72! by h(«),

h(c) é ZeJ72t2 —Jjat (3.8)

%ooT



and express the third term on the r.h.s. of (3.6) as

= . _
; - —Jjot _ J7o _
Jim ; Ti(t) e 2p1p2 €7° h(a — ). (3.9)

We would like to compare its magnitude with plQ, the magnitude of the auto-peaks.

Interestingly, although exp(jy2t?) is aperiodic in continuous time, it is periodic in
discrete time only when ~y; is a rational multiple of 7. To see this, write yo = 20 N/D

where N and D > 0 are co-prime integers. For all integers ¢, we have

eJ72(t+D)?N/D _ j2m(t*+2tD+D*)N/D _ ej27rt2N/D’ (3.10)

which is periodic in ¢ with period D (D may not be the minimum period though).
Now since exp(j2nt?N/D) is periodic, h(c) contains spectral lines. Theorem 1
below establishes a bound on |h(«)| and is crucial for assessing the contribution of

the cross-terms in (3.6).

Theorem 1 Suppose that v = 2rN/D where D > 0 and N are co-prime integers.
Then the FS coefficient function h(a) of eIn2t? satisfies
| V2/D, if D is even,
max [h(c)| _{ VI/D,  if D is odd. (3-11)

Note that the r.h.s of the above expression does not depend on N.

Proof. See the appendix. [ |

Our Theorem 3 (in §4) asserts that the limit (3.8) defining h(a) tends to zero
uniformly in « when 7, is an irrational multiple of 7. Although any irrational
number can be approximated to arbitrary precision by rational numbers, the de-
nominators of these rationals tend to infinity as the precision increases. Theorem
1 then predicts that the corresponding h(«) is negligible in general. The following

example illustrates the difference between the two scenarios.
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Figure 1: FS coefficient function of eIt for vo = 2m x 24/35 and 7, = 0.5.

Example 1. Figure 1(a) shows |h(a)| (calculated with 7' = 1,024) as a function
of @ € [—m,m) for 75 = 27 x 24/35. We observe 35 spectral lines?, and their
magnitudes do not exceed 1/v/D = 0.169. In Figure 1(b), we have vy, = 0.5, which
cannot be expressed as 2rN/D for integers D, N. There are no discernible peaks

in Figure 1(b) and |h(«)| here is much smaller than that in Figure 1(a).

Because line spectra are produced only when - is a rational multiple of 7, and
almost all real numbers are irrational, we conclude that spectral lines appear in h(«)
with probability zero and h(«) is very small for large T'. Even if a given signal does
have coefficients that are all rational multiples of 7, unless the common denominator
D is very small such as D = 3, 4, the algorithm should still work (see the analysis
on the worst case scenarios in the next subsection). In fact, in real applications such

small D’s can only be due to very low and insufficient sampling rates.

Considering the above conclusion and together with (3.9), we infer that the two

cross-terms in (3.6) are negligible and hence HAF is virtually additive:

Pyly; o, 1] = p? el (9117912) 5 — 2a15) + pd e7(@217922) §(0y — 2ay,). (3.12)

It can be shown that h(a) contains D/2 spectral lines when D is even, and D spectral lines
when D is odd.

10



3.2 Worst Case Scenarios

In [8], Polad and Friedlander proposed a procedure for tracking multi-component
PPS parameters. Those of the strongest component are first identified. The compo-
nent is then removed and the estimation process is continued with the other L — 1
components. Relation p;/py > 2 was assumed in [8] in order for p? > 2p1py and
to ensure that the cross-terms are never more than the strongest auto peak. With
the help of Theorem 1 (and Theorem 3 in §4), however, we can show that such an

assumption is unnecessarily strong.
We observe that the contribution from the cross-term in (3.9) is no more than
2p1p2 max, |h(a)[; ie.

lim
T—o0

< 2p1py max [h(a)]. (3.13)

1 T-1 )
73 T
t=0

The r.h.s. tends to zero (Theorem 3) when 7, is an irrational multiple of 7, and is
nonzero otherwise. The worst cases are when v = 20 N/D with D small, and we

shall examine them below.

First, we recognize that with 7 = 1, the leading chirp coefficients must satisfy
la12] < 7/2 and |agz| < 7/2 in order to satisfy the HAF-based identifiability con-
dition stated following (2.10). This implies that |y2| = |a12 — ag2| < 7, and hence
N/D < 1/2. Without loss of generality, we assume that p; > ps. Worst case

scenarios are identified as follows:

(c1) D =4, N =1 and |ajz — agz| = 7/2. The r.h.s. of (3.13) is then v/2 ppo.
In order for the cross-terms not to exceed the strongest auto peak p?, we must have

p1/p2 > V2.

(c2) D=3, N =1and |ajz —ag|=2r/3. The r.h.s. of (3.13) is then 2p1p2/V/3.

In order for the cross-terms not to exceed the strongest auto peak p?, we must have

11



pr/p2 > 2/V/3.

For all other D’s, Theorem 1 ensures that the the cross-term in (3.13) is never
more than the strongest auto-peak. Hence, we conclude that if |a19 — age| # 7/2 or
27m/3, then the successive estimation algorithm described in [8] can be implemented
for any p1/p2 > 1. Otherwise, one needs to ensure p;/py > /2 or 2/4/3. This is a

much weaker condition than the one stated in [8].

We further infer from Theorem 1 that if D > 8 is even and 1 < p;/p2 < \/D—/S,
or, if D > 5 is odd and 1 < p;/ps < \/5/2, then the two strongest peaks in
Ply; o, 1] will always be due to the auto-terms, because the r.h.s. of (3.13) will
always be smaller than p% (and hence p%) For a generic 9 = a12 — agz to be well
approximated by 20N/ D, D would have to be fairly large, and the above condition is
then easily met. This implies that in general, P>[y; «, 1] can be regarded as virtually
additive, and it is safe to use the locations of the L largest peaks to estimate a;y for

1=1,2,...,L.

Example 2. We generated T' = 1024 samples of a two-component PPS y(¢) given
by (3.4), where each ajy, is an i.i.d. uniform random variable in [0, 1). Figures 2(a)
and 2(b) show particular realizations of Py ly; a, 1] with amplitudes p; = po =1 and
p1 = 2.5, p2 = 1, respectively. We observe two distinct peaks in Pg[y; a, 1], the
locations of which correspond to 2a12 and 2asgs, illustrating the virtual additivity of
P, [y; a, 1]. This experiment was repeated 100 times, and two peaks were observed
for all 100 realizations. Note that although the dynamic range in Figure 2(b) is

large due to p; # p2, the two strongest peaks nevertheless yield the correct 2a15 and

2a22.

Proceeding arguments assume that the leading chirp coefficients are different.

The picture changes when a12 = a2, because then the two auto-peaks merge to one,

12
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Figure 2: P, [y; v, 1] of a two component chirp.

and 2 = 0 makes both cross-terms 77 (t) and 72(t) behave like harmonics. Under
the assumption that the instantaneous frequencies of the different components must
be different, we infer that a1 # a1 when a9 = a9 and 71(t) and T2(t) generate
peaks at 2a12 + (a1 —a21) and 2a12 — (a11 — a21) in P[y; «, 1], which are equidistant

from the auto-peak at 2aqs.

When the leading chirp coefficients are different but are close to each other, we
observe two closely spaced peaks in P[y;a, 1]. High resolution algorithms such as
MUSIC, matrix pencil, and the Tufts-Kumaresan method can then be employed

(see [17]) to estimate the coefficients of the polynomial phase.

4 Multi-Component PPS of Order M

Recall that a general L-component, constant amplitude PPS is defined as

L L gy N
y(t) = Z yl(t) = Zpl el Zm=0 al,mt .
I=1 =1

We may assume without loss of generality that the polynomial phase orders satisfy
M, > My, > ... > M. The HAF of order M;, Py [y; «, 7], exhibits peaks at

M1!7']V[1_1al,]\41 for all I such that a;p;, # 0, but a large number of cross-terms

13



are also present. As in §3.1, we shall examine the magnitude of the FS coefficient

function of

o(t) = &f Lmmp @™ (4.1)

in order to make inference about the contribution of these cross-terms.

4.1 FS Coefficient Function of the Cross-Terms

As with the case of a chirp, ¢(t) given in (4.1) is periodic in discrete time ¢ if and
only if all a,, are rational multiples of 7, in which case the F'S coefficient function
of ¢(t) contains spectral lines. Unlike the chirp, there is no general formula for the
largest magnitude of these spectral lines when M > 2. Instead, a bound can be

established as stated in the following theorem:

M m
Theorem 2 Consider the polynomial phase signal c(t) = ¢’ 2immn @™ suppose

that ay, = 27mb, /D, where D, by, ..., by, are relatively prime integers, D > 0. Then
1 T-1 .
lim max | — c(t) e | < min (1, c¢p/DYM) (4.2)
T—00 « T =0
where cp = dIIJOg2M and dp denotes the number of divisors of D. Hence the FS

coefficient function of c(t) is uniformly bounded by min (1, c¢p/DYM).

Proof. See the appendix. [ |

Remark 1. If D has the prime factorization D = pfl pg2 . -pg’“, then it follows

that dp = (b1 + 1) (B + 1).

Remark 2. It can be shown that the rate of growth of dp as D increases is
approximately logarithmic or less, depending on how many factors D has, see Rosen

[11]. Therefore, limp_,oo dp/D* = 0 for any € > 0, and the r.h.s. of (4.2) tends to

14



TABLE I. EXAMPLES OF (4.2)

by b3 D dp | lLhs. | r.hs.
1024708 | 7286213 | 11142379 | 8 | 0.0813 | 0.1038
1135718 | 950919 | 1247601 | 8 | 0.0864 | 0.2155
1545555 | 279513 | 5888885 | 16 | 0.0880 | 0.4085

zero as D — oo as a result.

We note here that Theorem 2 provides bounds on the F'S coefficient functions of
all Mth-order PPS. Since they include worst case scenarios, these bounds may not
be always optimal. However, the established bounds do point out the qualitative
dependence of the magnitude of F'S coefficient function on D~'/M  which tends to
zero as D — oo. The works by Hua [4], Vinogradov [16] and others also indicate that
the exponent —1/M of D on the r.h.s. of (4.2) is optimal and cannot be improved.
From (4.2), we infer that the larger the D and the smaller the dp, the tighter the
bound. For generic a,, = 27b,,/D, such will be the case. Table 4.1 gives numerical

examples on the use of (4.2).

In practice, it is unlikely for an arbitrarily chosen a,, to be a rational multiple
of m, and it is even less likely for all {a,,}, m =2,..., M, to be rational multiples of
m. The following theorem show the magnitude of the FS coefficient function tends

to zero uniformly when the conditions of Theorem 2 are not met.

M m
Theorem 3 Consider the polynomial phase signal c(t) = ¢’ 2o @™ suppose

that at least one a., is an irrational multiple of m. Then

= '
li = —at] =, 4.
Jim - max | t:ZO c(t) e 0 (4.3)
Proof. See the appendix. [ |



The importance of Theorem 2 and Theorem 3 is to guarantee that except in the
pathological case where all a,, are rational multiples of = with a very small common
denominator, the FS coefficient function of the cross-term ¢(t) is negligible. Hence

in a multi-component PPS setting, the HAF is virtually additive.

4.2 Parametric Estimation of Multi-Component PPS

The fact that the HAF of a multi-component PPS is virtually additive allows us
to develop an algorithm that estimates the PPS parameters in a straightforward

manner. We illustrate the algorithm by way of two examples.

Example 3. Two-component cubic FM signals.

In this example, we have available T' = 2048 samples of

2
z(t) = y(t) +o(t) = eilanttant®+ast®) | o)
=1

where a1y = 1, aj2 = —1, a13 = —0.25, ag; = 2, age = 0.5, azz = 0.5, and v(t) is a
zero-mean, white complex Gaussian process with variance o2 = 0.01. Note that we
assume without loss of generality that the amplitudes are 1 and the initial phases
are zero, because otherwise these parameters can be estimated from the standard
LS after all other parameters have been estimated. Our procedure consists of the

following steps:

Step 1. We compute Ps3[y(t);1] 2 Pslz(t);1] = z(t)[z*(t — 1)]22(t — 2), the FS
coefficient function of which should produce spectral lines at 3!a13 and 3lasoz. Indeed,
we observe peaks at 6a13 = —1.5 and 6ag3 = 3.0 from Figure 3(a). These two peaks

give estimates a13 = —0.2500, and a23 = 0.5000.
Step 2. In this step, we form two new PPS
z11(t) = 2(t)e 718 and  zyy(t) = z(t)e 7027,

16
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We compute Pyl (£); 1] 2 zy(t)at,(t — 1) for [ = 1, 2. Note that each Py[zy;(t); 1]
is the sum of one harmonic and some other higher order PPS. Therefore by our
theorems their F'S coefficient functions should each produce a single peak. This is
precisely the case as shown in Figure 3(b) and Figure 3(c). These two peaks yield

estimates 19 = —1.000 and aq9 = 0.5001 respectively.

Step 3. In this final step, we form two still new PPS
zo1(t) = 211 (e 920 and  mgy(t) = m19(t)e I8

Now each zg; is the sum of a harmonic and some other higher order PPS, so again
by our theorems the F'S coefficient function of each should have a single peak. The
single peak of the FS coefficient function of w2 (t) is shown in Figure 3(d), its
location yields the estimate a;; = 1.0002. Similarly, the single peak of the FS

coefficient function of x99 (t) yields the estimate ag; = 1.9999.

The FFT length used in this example is N = 214, [ |
Example 4. Often, the components of a multi-component PPS are not all of the
same order. The algorithm outlined in Example 3 can be easily extended to these
settings. Here we explain how the parameters can be estimated when the given

multi-component PPS consists of a cubic phase signal and a quadratic phase signal

(a chirp) corrupted by a zero-mean white complex Gaussian noise v(t),

:E(t) — y(t) + U(t) — ej(a11t+a12t2+a13t3) + 6J'(a2175-|-a22152) + U(t).

As in Example 3, we first compute P3[z(t);1] = z(t)[z* (t — 1)]?z(t — 2), the FS
coefficient function of which should produce one peak at 3lai3. This allows us to

obtain estimate ai3 of a13. In our next step, we form two PPS x11(¢) and x12(¢) by
211 (t) = z(t)e 743 and  myy(t) = z(8).

18



Now, we can just repeat Step 2 and Step 3 in Example 3 to find the remaining

parameters. [ |

5 Conclusions

Multi-component AM-FM models describe a large class of nonstationary processes,
among which multi-component polynomial phase signals (PPS) form a particularly
important subclass. The so-called high-order ambiguity function (HAF) was origi-
nally introduced by Peleg and Porat to estimate the parameters of single-component
PPS, but has not been widely used for multi-component problems due to the appear-
ance of many cross-terms. In this paper, we have carefully examined the magnitudes
of the cross-terms and shown that they are almost always negligible in comparison
with the peaks due to the original signal components. Thus HAF can be regarded

as virtually additive and be applied to multi-component PPS.

Our simulations show that cross-terms rarely cause false peaks in the HAF do-
main. Problems may arise when the components share the same (highest order)
polynomial phase coefficients or when the dynamic range of the component ampli-
tudes is large. We have used examples to illustrate the use of HAF to estimate

multi-component PPS parameters.

Acknowledgment. We thank Prof. L.D. Pitt of the University of Virginia (UVA)
for introducing the second author to relevant results on Gauss sums. The work
presented in this paper is an extension of the second author’s joint work with Prof.

G.B. Giannakis of UVA and Dr. A. Swami of the US Army Research Laboratories.
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Appendix. Proofs of the Theorems

We prove our main theorems by using several well-known estimates of the Weyl
sum ZtT;Ol eI/ where f(t) is a polynomial. Weyl sums have been used in analytic
number theory to study, among many other problems, Goldbach’s Conjecture and
Waring’s Problem. Several deep results, which we shall use in this paper, were

obtained by Weyl, Vinogradov, Hua, Vaughan, and others, see [4], [15], [16].

To simplify the exposition, we shall use e(t) to denote /27" throughout the

appendix.

Lemma 1 Let f(z) = Y M | b, 2™ with all b, € Z. Let D > 0 and T = Dn. Then

r-1 D-1 n—1
e(Ff(t) —at) = e(f(t) —at) - Z e(—aDk).
t=0 t=0 k=0

Proof. Note that % f(t+ D) = % f(t) (mod 1) for all ¢ € Z. Therefore,
1

T-1 n—1D-1
e(5f(t)—at) = Y > e(5f(Dk+1t)— a(Dk +1))
t=0 k=0 t=0
n—1D—1
= e(5f(t) — at)e(—aDk)
k=0 t=0
D—1 n—1
= Y e(bf()—at) - Y e(—aDk),
t=0 k=0
proving the lemma. [ |

Lemma 2 Let f(z) be as in Lemma 1 and D > 0. Then
T-1 1 D—-1
: 1 1 c
Th_lggo max | — 2 e(pf(t) —at)| = max | t:ZO e(5f(t) — 5t) |- (A.1)

Proof. For any 7' > 0, write T' = Dn + ry where 0 < r9 < D. Then by Lemma 1,

T-1 D-1 n—1 T-1
e(%f(t) —at) = e(%f(t) —at) - Z e(—aDk) + Z e(%f(t) —at).
t=0 t=0 k=0 t=Dn
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Now the last term is bounded by ro < D. If aD ¢ Z then |Y}"5 e(—aDk)| <
2/|1 — e(—aD)|, which is independent of T'. Therefore

=0.

LIS et -

t=0

lim
T—00 T

P e(5f(t) — at) ‘ can only be attained when

aD € Z. But if a = ¢/D for some ¢ € Z then Y1~ e(—aDk) = n. Hence

Therefore the maximum of ‘%

H

lim — e(5f(t) —at) e(pf 5t)s
T—oo T =0 =0
and the lemma follows. [ |

A.1 Proof of Theorem 1

We first restate Theorem 1 in the following slightly different (but stronger) form.

Theorem 1 Let D >0 and N be co-prime integers. Then

1 N2 V2/D, if D is even,
fh max | 7, t:ZOe(ﬁt =\ VI/D, ifD is odd. (A.2)

Theorem 1 is proved by applying the following result on the so-called Gauss sum

Ztoe( )

Lemma 3 Let N, D be co-prime integers, D > 0. Then

VD, if D is odd,
N =< V2D, if D is a multiple of 4, (A.3)
0, otherwise.

Proof. Let D = p{"p3?---pi* be the prime factorization of D, where p; < py <

- < pg are primes. Denote S(D,N) = Y125 e(NtQ). Then there exist integers
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Nj, 1 < j <k, such that

k

U p]] ’ N
with ged(V;,p;j) = 1, cf. Vaughan [15], Lemma 2.10. Now, for any prime p and any
integer b such that ged(b, p) = 1 we have |S(p®,b)| = p®/2, except that S(2,b) = 0

(see Vinogradov [16], Chapter 1I, Lemma 4 and Lemma 5). This proves the lemma.
|

Proof of Theorem 1. By Lemma 3 we only need to evaluate the maximum of
> Le(Xt2 — £1)] for all ¢ € Z. Note that because N and D are co-prime, there
exists some b € Z such that ¢ = Nb (mod D). Therefore

D—
Z% —bt‘

t=0

Case 1. D is odd.

Without loss of generality, we assume that b is even, because we can replace b

by b + D if otherwise. Let b= 2b. Then completing square, we obtain

- D—-1
Z (B (t* —bt)) ‘ Yo e(y(E—=0)7)]. (A4)
t=0 t=0

As t runs through a complete residue system (mod D), in this case from ¢ = 0 to

t =D —1, so does t — b. Hence the r.h.s. of (A.4) has

D—1 5 D-1
deBt—-b0%)| =D e(Ft)|=VD
t=0 t=0

following Lemma 3, and proving the theorem in this case.
Case 2. D 1is even but not a multiple of 4.

If b = 2b, then as in (A.4), by completing square and applying Lemma 3, we

have

S

t=0

—bt

UIZ
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Suppose now b is odd. Let D = 2D;. We break the sum Y°/5" e(% (2 — bt)) into
two sums, one for all even ¢ and the other for all odd ¢. First, for even t’s,

D1—-1

> e(HE —bt) = > e(5(25” —bs) = VD1

t=2s s=0

following Case 1 because D; is odd. For the sum over odd t’s, note that each
odd t can be written as £ + D; for some even . Furthermore, one can check that
e(&(t2 — bt)) = e(5%(#2 — bt)). As t runs through all odd residue classes (mod D), £
runs through all even residue classes (mod D). Thus the sum of e(% (2 — bt)) over
odd residue classes ¢ (mod D) is identical to that over all even residue classes ¢ (mod
D); i.e.

S oM@ —bt) = ¥ e(X (2 - b)) = VDr.

t=2s+1 t=2s

Therefore,
D—

=k

proving the theorem in this case.

=

—bt)) = 2v/D; = V2D,

@IZ

Case 3. D 1is a multiple of 4.

Again, if b = 2b then as in (A.4), by completing square, we immediately have

e(N (2 - b)) ‘ =0. (A.5)

To see (A.5), let D =2D;. For each 0 <t < Dy, denote s = t+ D;. One can check
that

e(%(t2 —bt)) = —e(%(s2 — bs)).
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Therefore, the Lh.s sum in (A.5) can be grouped into pairs that cancel each other.

This immediately yields (A.5) and hence the theorem in this case.

A.2 Proof of Theorem 2

We first restate Theorem 2:

M m
Theorem 2 Let c(t) = €’ 2im=2 @™ gnd suppose that ap, = 2wby, /D, where

D, by, ..., by, are relatively prime integers, D > 0. Then
1 = .
: - —jat : 1/M
TI;IEO max | o ;C(t) e <min (1, ep/D") (A.6)
logy M

where cp = dp, and dp denotes the number of divisors of D.

Proof. Let f(t) = YM ,b,,t™. Then the Lh.s. of (A.6) is precisely

-1

12 (51(1) - at)

following Lemma 2. Now, write g(t) = f(¢) — ct. A deep result of Hua [4] states

LS - o
D ~ D D )

lim max
T—o0 «

= max
ceZ

that
D—1

p| &

where dp is the number of divisors of D (cf. [4], Theorem 1 and its proof). This

)| < ape™. piM (A.7)

proves the theorem. [ |

A.3 Proof of Theorem 3

M m
Theorem 3 Let ¢(t) = ¢’ 2= @™ g suppose that at least one an, is an irra-

tional multiple of w. Then

1 T-1
lim max Z c(t) et | = .
T—o0 t—O




The proof of Theorem 3 is the most technical of all three, and relies heavily on
the difficult estimates of the Weyl sum 37! e(f()) where some of the coefficients of
f(t) are irrational. We shall apply estimates by Vinogradov [16] and Vaughan [15].
The general idea of the proof is to approximate irrationals with rationals by contin-
ued fractions. Once this is done, we may apply the theorem of Hua (see the proof of

Theorem 2), and the fact that the denominators of these rationals tend to infinity.

First, let us recall that for any irrational o € R, its continued fraction gives no
worse than quadratic approximations of « by rational numbers. More precisely, let
p/q and P/Q be two consecutive convergents of the continued fraction of a, ¢ < Q.
Then

p ‘ 1
a—=| < —. (A.8)
‘ ql qQ

As an example, one can check (A.8) for & = v/2; the first 6 convergents of its con-
tinued fraction are 1/1,3/2,7/5,17/12,41/29,99/77. For a reference on continued

fractions, see Rosen [11].

Lemma 4 (Vinogradov) Let f(t) = M b, t™ with all by, real. Assume that b,
is irrational for some 2 <r < M. Let p/q, P/Q be two consecutive convergents of
the continued fraction of b,. Then there exist positive constants ¢, p depending only
on M such that

<c- TP, (A.9)

T-1
> elf()
=0

for all T satisfying ¢ <T < ¢*M or T < Q < T" /4,

Proof. See of Vinogradov [16], Chapter IV, Theorem I. [ |

Lemma 5 Let f(t) = Egl amt™ with all ay, real. Assume that an, = by, /q+ P for
2 <m < M where ¢ > 0 and ged (q,ba, ..., by) = 1. Let g(t) = alt—l—% M bt™.
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Then

S

-1 g—1

(7(0) = (L elalt)) - 4+ B, (A.10)

t=

~+

where |A| < T and |B| < q(1+ |B2|T? + - -- + |Bu|TM).

Proof. See Vaughan [15], Theorem 7.2 and Theorem 7.3. We remark that our
lemma is stated slightly differently from Vaughan’s Theorem 7.2 in that we allow
the first coefficient of g(¢) to be irrational while in Vaughan’s theorem a; is also

approximated by a rational b, /q. However, from the proof of Vaughan’s theorem it

is quite obvious that his result still holds in our case. [ |
Proof of Theorem 3. Let f(t) = S, b, t™ 2 =y amt™. Then

1 T-1 )
— Z c(t) e 9™
Ti=

b, may be rational for some 2 < m < M, and we let Ly denote the least common

max = max
« «

1 -1
T t:ZO e(f(t) —at)|.

denominator of these rational b,,’s.

Let T > L3™. For any irrational b, let p./q, and P./Q, be the consecutive
convergents of the continued fraction of b, such that ¢, <T < @),. By Lemma 4, if
g <T < q?M orT <Q, < T4 for some r then

T

|
—

e(f(t) —at)| <c- TP, (A.11)

t

Il
<)

where ¢ > 0, p > 0 depend only on M.

Now, suppose ¢?™ < T and Q, > TT=1/4 for all r where b, is irrational. Let

q > 0 be the least common multiple of Ly and the ¢,’s. Then for each irrational b,,

T kT‘
=0y =4,
dr q
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with |6,| < 1/¢,Q,, while for each rational by, by, = ki /q + By with 8, = 0. Let

g(t) = % M, k,,t™. By Lemma 5,

|B|
+ (A.12)

T t=0

where |B| < q(1 + BT? + -+ + ByT™M). We show that |B|/T is small. For each

Br # 0,
T" Tr—1/4 . pl/4 T1/4

T < = < )
6] 7 Qr 7 Qr qr
Hence
Bl _4q Mq
Notice that
M
g<Lo][ar < (Tl/QM) =T'/2
Therefore by (A.13),
Bl _ M-T'V? —1/4
Combining (A.12), (A.14) and Theorem 2, we obtain
1|71
- e(f(t) —at)| < (L+dlkeM). g VM 4 pp.op A, (A.15)
t=0

whenever T is sufficiently large. Since ¢ — oo as T' — oo, (A.15) combines with
(A.11) to give

lim max
T—o0 «

1 -1
— e(f(t) —at)| =0.
PICUCREY
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