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SPARSE COMPLETE GABOR SYSTEMS ON A LATTICE

YANG WANG

Abstract. It is well known that if a Gabor system G(Λ, g) is complete and Λ is a lattice
then D(Λ) ≥ 1, where D(·) denotes the Beurling density. But what if Λ is a subset of
a lattice but is not itself a lattice? We investigate this question here. We show that the
upper Beurling density of Λ can be arbitrarily small, provided that the lattice containing
Λ has density greater than 1. We conjecture that this cannot be done if the lattice has
density exactly equal to 1.

1. Introduction

Let Λ be a discrete subset in Rd × Rd, and let g(x) ∈ L2(Rd). The Gabor system (also

known as the Weyl-Heisenberg system) with respect to Λ and g is the following family of

functions in L2(Rd):

(1) G(Λ, g) :=
{

gλ,p := e2πiλxg(x − p)
∣

∣

∣
(λ, p) ∈ Λ

}

.

Such a family was first introduced by Gabor [6] in 1946 for signal processing, and is still

widely used today.

A well-known question concerning a Gabor system G(Λ, g) is how sparse the set Λ can

be if the system is complete, see [13]. For any J ∈ Rm define the upper and lower Beurling

density D+(J ) and D−(J ) respectively by

D+(J ) = lim sup
r→∞

sup
x∈Rm

#J ∩ (x + [0, r]m)

rm
,

D−(J ) = lim inf
r→∞

inf
x∈Rm

#J ∩ (x + [0, r]m)

rm
.

If D+(J ) = D−(J ) then D(J ) = D+(J ) = D−(J ) is the Beurling density of J . In [13]

Ramanathan and Steger made the following conjecture, which can actually be traced back

much earlier:

Conjecture (Ramanathan and Steger [13]): Suppose that a Gabor system G(Λ, g) is com-

plete in L2(Rd) then D+(Λ) ≥ 1.

The above conjecture is shown to be true under the additional assumption that Λ is a

lattice in Rd × Rd, see Rieffel [14] and Ramanathan and Steger [13]. In the non-lattice
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setting the conjecture is true for Gabor frames, see Janssen [9]. However, the conjecture is

false in general. Benedetto, Heil and Walnut [2] constructed a family of complete Gabor

systems G(Λ, g) in which D+(Λ) can be made arbitrarily small. In their counter-examples

Λ is not contained in a lattice.

The work of Benedetto, Heil and Walnut [2] raises the following question: Are there

complete Gabor systems G(Λ, g) in which Λ is contained in a lattice L such that D+(Λ)

can be made arbitrarily small? If so, how sparse can the lattice L be? Obviously D+(L) ≥ 1

because the completeness of G(Λ, g) is preserved when Λ is replaced by L. But can D+(L)

be 1, or arbitrarily close to 1?

A related question concerns the density of a complete set of exponential functions. Lan-

dau [10] showed that there exists a small perturbation Γ of Z such that {e2πiλx : λ ∈ Γ} is

complete in C(Ω) where µ(Ω) can be arbitrarily large. This is not possible if Γ is a lattice,

in which case we must have D+(Γ) ≥ µ(Ω). So again we may ask: For any ε > 0 does there

exist a Γ ⊂ Z and a Ω ⊂ [0, 1] such that D+(Γ) < ε and µ(Ω) > 1 − ε?

The objective of this note is to answer these questions. Part of the answers can be derived

from the earlier work of Landau [10].

Theorem 1. Let L be a lattice in R ×R such that D(L) > 1. For any ε > 0 there exists a

g ∈ L2(R) and a subset Λ ⊂ L such that D+(Λ) < ε, D−(Λ) = 0 and G(Λ, g) is complete

in L2(R).

We remark that if the lattice L is separable, i.e. L = L1 × L2 where each Li is a lattice

in R, then we may choose a compactly supported g.

It is not clear whether the result holds in dimension d > 1. But it does lead to:

Theorem 2. For any a > 1 there exists a separable lattice L in Rd × Rd with D(L) = a

with the following property: For any ε > 0 there exists a compactly supported g ∈ L2(Rd)

and a subset Λ ⊂ L such that D+(Λ) < ε, D−(Λ) = 0 and G(Λ, g) is complete in L2(Rd).

We also construct examples showing that for any ε > 0 there exist a Γ ⊂ Z and an

Ω ⊂ [0, 1] such that D(Γ) < ε, µ(Ω) > 1 − ε and {e2πiλx : λ ∈ Γ} is complete in C(Ω).

It should be pointed out that complete Gabor systems are less studied and not as well

understood, comparing to Gabor bases or frames. We pose the following conjecture:

Conjecture:

(i) Let L be a lattice in Rd × Rd with D(L) > 1. Let Λ ⊆ L such that G(Λ, g) is

complete in L2(Rd) for some compactly supported g ∈ L2(Rd). Then D+(Λ) > 0.

(ii) Let L be a lattice in Rd × Rd with D(L) = 1. Let Λ ⊆ L such that G(Λ, g) is

complete in L2(Rd) for some compactly supported g ∈ L2(Rd). Then D+(Λ) = 1.

The conjecture is false when we replace D+(Λ) with D−(Λ). We give an example in

the next section of a complete Gabor system G(Λ, g) in which D(L) = 1 and D−(Λ) = 0.
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Nevertheless we establish the following special case of the conjecture for symplectic lattices

(details on symplectic lattices can be found in Gröchenig [7]).

Theorem 3. Let L be a symplectic lattice in Rd × Rd with D(L) = 1. Let Λ ⊆ L such

that G(Λ, g) is complete for some g ∈ L2(Rd). Then L \ Λ does not contain any (possibly

translated) sublattice of L.

We thank Russ Lyons for bringing to our attention the question concerning the com-

pleteness and density of exponentials for subsets of [0, 1]. We are especially indebted to

Alex Powell for the example in the end of the paper, and to the anonymous referee for

very carefully reading the manuscript and pointing out a mistake in the earlier version of

the paper. We also thank John Benedetto, Chris Heil and Gitta Kutyniok for very helpful

discussions.

2. Proof of Results

We first construct, for any given ε > 0, a set Γ ⊂ Z and an Ω ⊂ [0, 1] such that D(Γ) < ε,

µ(Ω) > 1 − ε and {e2πiλx : λ ∈ Γ} is complete in C(Ω). This construction is only slightly

modified from the examples in [10].

Lemma 4 (Landau [10]). We may partition N into infinitely may disjoint sequences Sr =

{k
(r)
n } (in increasing order), r = 0, 1, 2, . . . , such that lim supn→∞ n/k

(r)
n = 1 for each r.

It follows from a well-known result that {e2πiλx : λ ∈ Sr} is complete in L2([a, b])

whenever b − a < 1, see [15]. Now for any N, p ≥ 1 and 0 < δ ≤ 1
N

denote

(2) ΓN =

N−1
⋃

r=0

(Sr + r
N

), ΩN,p,δ =

N−1
⋃

k=0

([δ, 1 − δ] + kp).

Lemma 5. Suppose that p,N ∈ Z are relatively prime. Then the set of exponentials

{e2πiλx : λ ∈ ΓN} is complete in L2(ΩN,p,δ).

Proof. Again the basic idea is in [10]. We include a proof for self-containment. Assume that

the lemma is false. Then there exists a nonzero f ∈ L2(ΩN,p,δ) such that f is orthogonal to

all e2πiλx, λ ∈ ΓN . Denote I0 = [δ, 1−δ]. It is easy to check that for each λ = λ′+ r
N

∈ Sr+
r
N

we have
∫

ΩN,p,δ

f(x)e−2πiλx dx =

N−1
∑

k=0

∫

I0+kp

f(x)e−2πi(λ′+ r
N

)x dx

=
N−1
∑

k=0

e−2πi
rkp
N

∫

I0

f(x + kp)e−2πiλx dx.

Choose λr ∈ Sr + r
N

arbitrarily for 0 ≤ r < N . The orthogonality assumption now yields
∫

ΩN,p,δ
f(x)e−2πiλrx dx = 0. It follows that

(3)
N−1
∑

k=0

e−2πi
rkp
N

∫

I0

f(x + kp)e−2πiλrx dx = 0, r = 0, 1, . . . , N − 1.
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Observe that the matrix [crk] with entries crk = e−2πi rk
N is a Vandermonde matrix. It is

nonsingular because its rows are distinct. Therefore
∫

I0
f(x+kp)e2πiλrx dx = 0 for all r and

k. Since λr ∈ Sr + r
N

is arbitrarily chosen, and {e2πiλx : λ ∈ Sr + r
N
} is complete in L2(I0),

we must have f(x + kp) = 0 for x ∈ I0 and all 0 ≤ k < N . Therefore f ≡ 0 on ΩN,p,δ. This

is a contradiction.

To construct our example, for any ε > 0 let N, p ≥ 1 and δ > 0 such that N, p are

relatively prime, 1
N

< ε and δ < 1
2N

. Set

(4) Ω =
1

N
ΩN,p,δ and Γ = NΓN .

Then {e2πiλx : λ ∈ Γ} is complete in L2(Ω) by Lemma 5. Observe that ΓN is a small

perturbation of a subset of N, so D+(ΓN ) ≤ 1 and D−(ΓN ) = 0. Hence D+(Γ) ≤ 1
N

< ε

and D−(Γ) = 0. Note that Γ ⊂ N and µ(Ω) = 1 − 2δ > 1 − ε. By taking p = 1 we also

have Ω ⊂ [0, 1]. This yields an example of Γ ⊂ Z and Ω ⊂ [0, 1] such that {e2πiλx : λ ∈ Γ}

is complete in L2(Ω), with D+(Γ) < ε and D−(Γ) = 0.

We use a the construction in 4 to prove Theorem 1.

Lemma 6. Let T be a uniformly discrete subset of Rd and Ω ⊂ Rd be measurable such that
⋃

p∈T (Ω + p) = Rd. Let Γ be a discrete subset of Rd such that {e2πiλx : λ ∈ Γ} is complete

in L2(Ω). Then for g(x) = χΩ(x) and Λ = Γ × T the Gabor system G(Λ, g) is complete in

L2(Rd).

Proof. Let ϕ(x) =
∑

p∈T χΩ(x− p). Since
⋃

p∈T (Ω + p) = Rd and T is uniformly discrete,

we have 1 ≤ ϕ(x) ≤ K for some K ≥ 1 for all x. For each p ∈ T set hp(x) = χΩ(x−p)/ϕ(x).

Then hp is supported on Ω + p and hp ∈ L2(Ω + p), with
∑

p∈T hp(x) = 1 for all x.

Now for any f(x) ∈ L2(Rd) let fp(x) := f(x)hp(x). Then fp is supported on Ω+p. Hence

fp is in the closure of the span of {e2πiλxg(x − p) : λ ∈ Γ}. However,
∑

p∈T fp(x) = f(x).

Therefore f(x) is in the closure of the span of G(Λ, g). This proves the lemma.

Proof of Theorem 1. We first establish the theorem for the lattice L = Z × a−1Z with

D(L) = a > 1. For any ε > 0 let Γ, Ω be as in (4) with N sufficiently large so that
1
N

< ε/a. We show that there exist relatively prime N, p and δ > 0 sufficiently small such

that
⋃

q∈T (Ω + q) = R for T = a−1Z. If this is the case then it follows from Lemma 6 that

G(Λ, g) is complete in L2(R), where g = χΩ and Λ = Γ × a−1Z. Furthermore Λ ⊂ L has

D+(Λ) = D+(Γ)D+(a−1Z) < ε and D−(Λ) = 0. g is compactly supported. This would

prove the theorem for L = Z × a−1Z.

To see the existence of N, p and δ, We first choose δ > 0 so that b := a(1− 2δ) > 1. Note

that b is the length of the interval [−aδ, a − aδ]. Observe that

⋃

q∈T

(Ω + q) =
1

N
[−δ, 1 − δ] +

{

0,
p

N
, . . . ,

(N − 1)p

N

}

+a−1Z.
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Hence

aN
⋃

q∈T

(Ω + q) = [−aδ, a − aδ] +
{

0, ap, . . . , (N − 1)ap
}

+ NZ.

By continued fraction approximation we may find integers An, Bn such that a = An

Bn
+ εn

with |εn| < 1
B2

n
, and Bn→∞ as n→∞ (if a ∈ Q then can obviously be achieved with εn = 0

for sufficiently large n. In this case do cannot make An and Bn coprime, but such is not

required in the proof). Now set p = Bn and choose N to be coprime to both Bn and An,

with n sufficiently large so that N
Bn

< 1
2(b − 1). Then

aN
⋃

q∈T

(Ω + q) = [−aδ, a − aδ] +
{

kAn + kBnεn : 0 ≤ k < N
}

+ NZ.

Note that
{

kAn : 0 ≤ k < N
}

+ NZ = Z as
{

kAn : 0 ≤ k < N
}

is a complete residue

system modulo N . Hence
{

kAn + kBnεn : 0 ≤ k < N
}

+ NZ is a small perturbation

of Z with distance between any two adjacent points no more that 1 + 2(N − 1)Bnεn < b.

Since the interval [−aδ, a − aδ] have length b, it follows that aN
⋃

q∈T (Ω + q) = R. Hence
⋃

q∈T (Ω + q) = R.

The proof can be extended to all separable lattices L = b1Z × b2Z with D(L) = |b1b2| <

1. This is easily obtained with a rescaling of the Gabor system in the previous case for

a = |b1b2|
−1, by letting g(x) = χb1Ω(x) and Λ = (b1Γ) × (b2Z). Then G(Λ, g) is complete

in L2(R), proving the theorem for L = b1Z × b2Z.

Finally, let L be any lattice in R × R with D(L) = a > 1. It is known that L is

symplectic, and there is a unitary transformation taking the elements of G(b(Z × Z), g) to

the elements of a Gabor system G(L, g̃), see Gröchenig [7], pp. 199-200. In particular the

unitary transformation takes the complete Gabor system G(Λ, g) for the previous case to a

new complete Gabor system G(Λ̃, g̃), with Λ̃ ⊂ L and D(Λ̃) < ε. This completes the proof

of the theorem.

Proof of Theorem 2. The proof follows easily from Theorem 1. For any a > 1 and

ε > 0 let L1 = Zd and T = (a−1Z) × Zd−1. Let Γ and Ω be as in (4). Set L = L1 × T ,

Λ = (Γ × Zd−1) × T and g(x) = χΩ×[0,1]d−1(x). Then G(Λ, g) is complete in L2(Rd).

Furthermore Λ ⊂ L and D(Λ) < ε.

It is not clear whether the result of Theorem 1 holds in the higher dimension, since not

all lattices are symplectic in higher dimensions.

To prove Theorem 3 we apply the Zak transform. For any f ∈ L2(Rd) the Zak transform

Z[f ] of f is

(5) Z[f ](x, y) :=
∑

α∈Zd

f(x + α)e(α · y), (x, y) ∈ Qd × Qd

where Qd = [0, 1]d, where e(t) := e2πit here and throughout the rest of the paper. It is

well known that the Zak transform Z is a unitary operator from L2(Rd) to L2(Qd × Qd).

Furthermore, for gλ,p(x) := e(λ · x)g(x− p) we have Z[gλ,p](x, y) = e(λ · x)e(p · y)Z[g](x, y).
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In this paper, we identify L2(Qd × Qd) with L2(Td × Td) in the obvious fashion. Hence Z

is a unitary operator from L2(Rd) to L2(Td × Td).

Lemma 7. Let Λ ⊆ Zd × Zd and g ∈ L2(Rd) such that G(Λ, g) is complete in L2(Rd).

Then for any nonzero f(x, y) ∈ L2(Td × Td) we have

(6) Z[g](x, y)f(x, y) 6=
∑

(λ,p)∈Λc

cλ,pe(λ · x)e(p · y)

for any cλ,p with
∑

(λ,p)∈Λc |cλ,p|
2 < ∞, where Λc := Zd ×Zd \ Λ. The converse is also true

if Λc is finite.

Proof. We prove that

Z[g](x, y)f(x, y) 6=
∑

(λ,p)∈Λc

cλ,pe(λ · x)e(p · y)

for any nonzero f ∈ L2(Td × Td) if G(Λ, g) is complete in L2(Rd). Assume it were false.

Then

Z[g](x, y)f(x, y) =
∑

(λ,p)∈Λc

cλ,pe(λ · x)e(p · y)

for some nonzero f ∈ L2(Td × Td). It follows that
∫

Td×Td

e(λ · x)e(p · y)Z[g](x, y)f(x, y) dxdy = 0

for all (λ, p) ∈ Λ. Hence f is orthogonal to Z[gλ,p] for all (λ, p) ∈ Λ. This means

{Z[gλ,p] : (λ, p) ∈ Λ} is incomplete in L2(Td × Td). But the Zak transform is a uni-

tary operator from L2(Rd) to L2(Td ×Td). This implies G(Λ, g) is incomplete in L2(Rd), a

contradiction.

Conversely, let Λc be finite. Assume that G(Λ, g) is incomplete in L2(Rd). Then there

exists an f(x, y) ∈ L2(Td ×Td) such that
∫

Td×Td Z[gλ,p]f = 0 for all (λ, p) ∈ Λ. This means

Z[g](x, y)f(x, y) =
∑

(λ,p)∈Λc

cλ,pe(λ · x)e(p · y)

for some cλ,p, a contradiction. We remark that the assumption that Λc is finite is needed

because Z[gλ,p]f may not be in L2(Td × Td).

Proof of Theorem 3. We shall prove the theorem by contradiction. Assume that L \ Λ

does contain a (possibly translated) lattice. Since L is symplectic there exists a unitary

operator on L2(Rd) that maps G(L, g) to G(Zd ×Zd, g̃) for some g̃ ∈ L2(Rd). Furthermore

G(Λ, g) is mapped to G(Λ̃, g̃) with the property that Zd × Zd \ Λ̃ contains a (possibly

translated) lattice Γ and G(Λ̃, g̃) is complete in L2(Rd).

We show that there exists an f(z) ∈ L2(Td × Td) such that

Z[g](z)f(z) =
∑

(λ,p)∈Γ

cλ,pe((λ, p) · z).

This would be a contradiction, following from Lemma 7.
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Let us consider the case Γ is a lattice. Later we shall show that our proof is not affected

by a translation of Γ. Denote by Ω a fundamental domain in R2d of the dual lattice Γ∗ of

Γ, Γ∗ ⊇ Zd × Zd. Let γ1, γ2, · · · , γm be a complete set of coset representatives of the group

Γ∗/Zd ×Zd and set Ω̄j := Ω+γj (mod 1). Then {Ω̄j : 1 ≤ j ≤ m} is a partition of Td ×Td.

In addition, {e((λ, p) · z) : (λ, p) ∈ Γ} is an orthogonal basis of L2(Ω̄j) for each 1 ≤ j ≤ m.

It follows from the completeness of G(Zd × Zd, g̃) in L2(Rd) that Z[g̃](z) 6= 0 for almost

all z ∈ Td × Td, see [3]. Hence there exists an ε0 > 0 such that the set E = {z ∈

Td × Td : |Z[g̃](z)| ≤ ε0} has measure µ(E) ≤ 1
2m

. Define F ⊆ Ω by

F = {z ∈ Ω : z + γj (mod 1) ∈ E for some 1 ≤ j ≤ m}.

Clearly µ(F ) ≤ 1
2m

, so Ω \ F has Lebesgue measure at least 1
2m

. Let F̄j = F + γj (mod 1).

Then each F̄j ⊆ Ω̄j and µ(Ω̄j \ F̄j) ≥
1

2m
, and |Z[g̃](z)| > ε0 for all z ∈ Ω̄j \ F̄j .

Now set f(z) ∈ L2(Td × Td) as f(z) = 0 for z ∈
⋃m

j=1 F̄j , and f(z) = (Z[g̃](z))−1

otherwise. Then Z[g](z)f(z) = χΩ̄j\F̄j
(z) for z ∈ Ω̄j. But notice that for any (λ, p) ∈ Γ we

have e((λ, p) · (z + γi)) = e((λ, p) · (z + γj)) for all 1 ≤ i, j ≤ m and z ∈ Td ×Td. Therefore

χΩ̄j\F̄j
(z) =

∑

(λ,p)∈Γ

cλ,pe((λ, p) · z)

for some (cλ,p) ∈ l2(Γ) that is uniform for all 1 ≤ j ≤ m. This means

Z[g](z)f(z) =
∑

(λ,p)∈Γ

cλ,pe((λ, p) · z)

for z ∈ Td ×Td, which contradicts Lemma 7. Hence Zd ×Zd \ Λ̃ does not contain a lattice.

If the lattice Γ is translated, say Γ = Γ0 +β0, then the above proof goes through with Γ0

in place of Γ. In the end, we simply observe that
∑

(λ,p)∈Γ0

cλ,pe((λ, p) · z) = e(−β0 · z)
∑

(λ,p)∈Γ

c̃λ,pe((λ, p) · z).

Hence

Z[g](z)f(z)e(β0 · z) =
∑

(λ,p)∈Γ

c̃λ,pe((λ, p) · z),

resulting in a contradiction.

Example. Let g(x) = e−
1

x2 for x ∈ (0, 1) and g(x) = 0 elsewhere. We claim:

(i) For any finite subset of Λ ⊆ Z2 the Gabor system G (Z2\Λ, g) is complete in L2(R).

(ii) The Gabor system G (Z+×Z, g) is complete in L2(R). Observe that D−(Z+×Z) =

0.

Proof. Note that Z[g](x, y) = g(x) for (x, y) ∈ [0, 1]2. For any finite Λ ⊆ Z2 and f ∈

L2([0, 1]2) we have Z[g](x, y)f(x, y) = e−
1

x2 f(x, y) 6=
∑

(λ,p)∈Λ cλ,pe((λ, p) · (x, y)) since at

(x, y) = (0, 0) the function has a zero of infinite order. Hence by Lemma 7 the Gabor system

G (Z2 \ Λ, g) is complete in L2(R).
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For the second claim, we note that log |g(x)| is not in L2([0, 1]). By a theorem of Kol-

mogorov the system {g(x)e(nx) : n ∈ Z+} is complete in L2([0, 1]), see [1], page 213. This

implies the Gabor system G (Z+ × Z, g) is complete in L2(R).
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[7] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston 2001.
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