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Abstract. A Borel measure µ in Rd is called a spectral measure if there exists a set Λ ⊂ Rd
such that the set of exponentials {exp(2πiλ · x) : λ ∈ Λ} forms an orthogonal basis for L2(µ).
In this paper we prove some properties of spectral measures. In particular, we prove results
that highlight the 3/2-rule.

1. Introduction

Spectral measures, first introduced by Jorgensen and Pedersen [JoPe98], are a natural ex-
tension of spectral sets. Let µ be a finite Borel measure in Rd. We say µ is a spectral measure
if there exists a set Λ ⊂ Rd such that the set of exponentials {exp(2πiλ · x) : λ ∈ Λ} forms an
orthogonal basis for L2(µ). In this case we call Λ a spectrum of µ, and (µ,Λ) a spectral pair.
It should be pointed out that a measure µ may have more than one spectrum, see e.g. Laba
and Wang [LabWa02]. Let Ω be a measurable set in Rd and µ = m|Ω, the restriction of the
d-dimensional Lebesgue measure m to Ω. We say Ω is a spectral set if µ is a spectral measure.

The main interest for studying spectral sets comes from its mysterious connection to tiling,
first formulated in a conjecture by B. Fuglede [Fug74], known today as the Fuglede Conjecture
or the Spectral Set Conjecture.

The Fuglede Conjecture. A measurable set Ω in Rd is a spectral set if and only if it tiles Rd
by translation.

The conjecture had baffled the mathematicians who studied spectral sets for years until very
recently, when Tao [Tao04] exhibited a spectral set in dimensions d ≥ 5 that is not a tile, and
Kolountzakis and Matolsci [KoMa04] exhibited tiles that are not spectral sets in dimensions
d ≥ 5. Despite the counterexamples, the connection between spectral sets and tiling is strongly
evident, especially in low dimensions, as indicated by earlier works, including the original work
of Fuglede [Fug74]. Many positive results have been established as well, see e.g. Lagarias and
Wang [LaWa97b], Pedersen and Wang [PeWa01], Laba [Lab01], and Iosevich, Katz and Tao
[IKT03]. Interestingly, there is even evidence showing a strong connection between tiling and
spectral measures, see [LabWa02] and Strichartz [Str00].
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The study of spectral measures so far has focused on self-similar measures. These measures
have the advantage that their Fourier transforms can be explicitly written down as an infinite
product, which allows us to compute their zeros. In this paper, we examine measures that are
not self-similar. Without knowing the set of zeros of their Fourier transforms, the characteri-
zation of spectral measures becomes difficult. Here we focus on some fundamental properties
of spectral measures. While the results in this paper are modest, they are rather general and
should offer some valuable guidance to future studies in this area.

A Borel measure in Rd is discrete if it is supported on a countable set. It is well known that
any Borel measure µ in Rd can be decomposed uniquely as µ = µc + µd where µd is a discrete
measure and µc has no “atoms,” i.e. µc({x}) = 0 for any singleton {x} in Rd. We say that µ
has no discrete part if µd = 0. We prove:

Theorem 1.1. Let µ be a spectral Borel measure in Rd. Then either µ is discrete, or it has no
discrete part.

Note that µ has a Lebesgue decomposition µ = µa + µs where µa is absolutely continuous
and µs is singular with respect to the Lebesgue measure m. It is not clear whether a spectral
measure in Rd is either absolutely continuous or purely singular. We conjecture that it is the
case.

Theorem 1.2. Let µ be a non-zero finite spectral Borel measure in Rd.

(1) Assume that µ is absolutely continuous. Then supp(µ) has positive and finite Lebesgue
measure. Moreover, if µ has a density function p(x) satisfying

(1.1) |p(ξ)| ≤ C(1 + |ξ|)−α, α > (d+ 1)/2,
(this holds e.g. when p(x) is smooth) then µ cannot be spectral.

(2) Suppose that µ is discrete, µ = a∈A paδa where A ⊂ Rd, δa is the point mass at a and
pa > 0. Then A is a finite set, and all pa are equal.

The exponent (d+1)/2 in (1.1) may be a natural threshold, as well known stationary phase
estimates show that the Fourier transform of a characteristic function of a convex body whose
boundary is smooth and has nonvanishing Gaussian curvature has exactly this rate of decay.
It may well be true that the density of a spectral measure should be constant on its support,
but proving this may require new methods.

Finally we establish two results that highlight the 3/2-rule.

Theorem 1.3. Let µ = N−1
j=0 pjδaj be a discrete spectral measure in R, where {aj} ⊂ Z,

N ≥ 1. Assume that maxj aj −minj aj < 3N/2− 1. Then {aj} (mod N) = {0, 1, . . . , N − 1}.

We point out that if {aj : 0 ≤ j < N} (mod N) = {0, 1, . . . , N − 1} then µ = N−1
j=0 δaj is a

spectral measure, with a spectrum Λ = {j/N : 0 ≤ j < N}.
Theorem 1.4. Let µ be an absolutely continuous spectral measure in R with supp(µ) = Ω. Let
m(Ω) = a and diam(Ω) = ∆. Suppose that ∆ < 3a/2. Then Ω tiles R by translation by the
lattice aZ, and µ has density p(x) = cχΩ for some c > 0. In particular if Ω is an interval then
p(x) = cχΩ for some c > 0.
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These theorems will be proved in the rest of the paper. The proof of the last two theorems
depends on a combinatorial result concerning the cardinality and asymptotic density of A−A
for a given set A in R, which we prove in §2.

2. A Combinatorial Result

In this section we establish a combinatorial result that is the key to our theorems related to
the 3/2-rule. First we introduce the asymptotic density of a set. Let A ⊆ Rd. The lower and
upper asymptotic density of A are given respectively by

D−(A) = lim inf
N→∞

#(A ∩ [−N,N ]d)
2dNd

, D+(A) = lim sup
N→∞

#(A ∩ [−N,N ]d)
2dNd

.

If D−(A) = D+(A) then we denote them by D(A).

Lemma 2.1. For any A,B ⊆ Rd we have D−(A ∩ B) ≥ D−(A) +D−(B) −D+(A ∪ B) and
D+(A ∩B) ≥ D−(A) +D−(B)−D−(A ∪B).
Proof. Let ν be the counting measure in Rd. Then

D−(A) +D−(B) = lim inf
N→∞

1

2dNd
[−N,N ]d

χAdν + lim inf
N→∞

1

2dNd
[−N,N ]d

χBdν

≤ lim inf
N→∞

1

2dNd
[−N,N ]d

(χA + χB)dν

= lim inf
N→∞

1

2dNd
[−N,N ]d

(χA∪B + χA∩B)dν

≤ lim sup
N→∞

1

2dNd
[−N,N ]d

χA∪Bdν + lim inf
N→∞

1

2dNd
[−N,N ]d

χA∩Bdν

= D+(A ∪B) +D−(A ∩B).
This proves the first inequality. Note that in the last inequality above one can switch the
positions of the liminf and limsup. Making the switch yields the second inequality of the
lemma.

For any A ∈ Rd we denote A−A = {a−a : a, a ∈ A}. Our next result concerns the density
of A−A. Part (1) of it is a refinement of an argument in [Lab01].
Proposition 2.2. (1) Let G be an abelian group and A ⊆ G with |A| = N . Suppose that

|A−A| < 3N/2. Then A−A is a subgroup of G.
(2) Let A ⊂ Rd. Assume that D+(A−A) < 3/2D−(A). Then A−A is a group.

Proof. (1) We prove that A − A is closed under subtraction, which implies that A − A is a
subgroup of G. For any x, y ∈ A−A we show that there exist a, b, c in A such that x = a− c
and y = b− c. To see this denote Bx := (A− x)∩A and By := (A− y)∩A. Write x = a1 − a2
where a1, a2 ∈ A. We observe that (A − x) ∪ A = (A − {a1, a2}) + a2. Hence its cardinality
cannot exceed the cardinality of A−A, which is less than 3N/2. It follows that

|Bx| = |A− x|+ |A|− |(A− x) ∪A| > N +N − 3N
2
=
N

2
.



4 I. LABA AND Y. WANG

Similarly |By| > N/2. Since Bx ∪By ⊆ A, we have
|Bx ∩By| > N/2 +N/2−N > 0.

Now let c ∈ Bx ∩By. So c ∈ A, and furthermore, c = a− x = b− y for some a, b ∈ A. Thus
x− y = a− b ∈ A−A, proving that A−A is closed under subtraction.
(2) We prove that A − A is closed under subtraction almost verbatim as in (1). Without
loss of generality we assume that D−(A) = 1 and D+(A − A) < 3/2. For any x, y ∈ A − A
we show that there exist a, b, c in A such that x = a − c and y = b − c. Again denote
Bx := (A − x) ∩ A and By := (A − y) ∩ A. Write x = a1 − a2 where a1, a2 ∈ A. We observe
that (A− x)∪A = (A− {a1, a2}) + a2. Hence D+((A− x)∪A) < 3/2. It follows from Lemma
2.1 that

D−(Bx) ≥ D−(A− x) +D−(A)−D+((A− x) ∪A) > 1

2
.

Similarly D−(By) > 1/2. Since Bx ∪By ⊆ A, again by Lemma 2.1
D+(Bx ∩By) ≥ D−(Bx) +D−(By)−D−(A) > 0.

Hence Bx ∩By is nonempty.
Now let c ∈ Bx ∩By. So c ∈ A, and furthermore, c = a− x = b− y for some a, b ∈ A. Thus

x− y = a− b ∈ A−A, proving that A−A is closed under subtraction.

3. Proof of Theorems

Throughout this section we shall let eλ(x) := exp(2πiλ · x) and f, g µ = Rd fḡdµ. We
also use L2(Ω) to denote the L2 space with respect to the Lebesgue measure on Ω, and write
f, g = Rd fḡdx.

Proof of Theorem 1.1.Without loss of generality we assume that µ is a probability measure,
i.e. µ(Rd) = 1. Let µ = µc+µd where µd is the discrete part of µ. We prove that either µc = 0
or µd = 0. Assume otherwise. Let µd({x0}) = p > 0. Consider the function f = χ{x0}. Clearly
f ∈ L2(µ). Let Λ be a spectrum for µ. Note that

f(x), eλ(x) =
Rd
f(x)eλ(−x) dµ(x) = pf(x0)eλ(−x0).

It follows from Parseval’s equality that

(3.1) f 2
L2(µ) =

λ∈Λ
| f(x), eλ(x) µ|2 =

λ∈Λ
p2 <∞.

Hence Λ is a finite set. But if so then L2(µ) is finite dimensional, which is not the case since
µc = 0. This is a contradiction.

To prove our next theorem we will be using some well known results on the density of sampling
and interpolations of band-limited functions. Let

B(Ω) := f : f ∈ L2(Ω) .
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We say that Λ ⊆ Rd is a sampling of B(Ω) if there exists a constant C > 0 such that for
every f ∈ L2(Ω) we have

λ∈Λ
| f, eλ |2 ≥ C f 2

2.

We say that Λ ⊆ Rd is an interpolation of B(Ω) if for every {cλ} ∈ l2(Λ) there exists an
f ∈ L2(Ω) such that cλ = f, eλ . A theorem of H. Landau [Lan67] states that D−(Λ) ≥ m(Ω)
for a sampling Λ of B(Ω), and D+(Λ) ≤ m(Ω) for an interpolation Λ of B(Ω).

Proof of Theorem 1.2. We first prove part (2). Let µ = a∈A paδa where A is a finite or

countable set in Rd, pa > 0 for all a ∈ A. Without loss of generality we assume µ is a probability
measure, i.e. a∈A pa = 1. Let Λ be a spectrum of µ. Fix a a0 ∈ A and let f = χ{a0}. By
(3.1) we have

λ∈Λ
p2a = f 2

L2(µ) = pa.

Thus pa ·#Λ = 1. This proves part (2) of the theorem.
Now we prove part (1). It is clear that Ω = supp(µ) has positive Lebesgue measure. We

prove that the measure is also finite. Let p(x) be the density function of µ and Λ be a spectrum
for µ. For each N > 0 define

ΩN := x : x ∈ Ω ∩ [−N,N ]d, 1
N
≤ p(x) ≤ N .

We prove that Λ is a sampling for B(ΩN ). For any f ∈ L2(ΩN ) set f̃(x) = f(x)/p(x) for x ∈ ΩN
and f̃(x) = 0 otherwise. Then

Rd
|f̃ |2 dµ =

ΩN

|f(x)|2p−1(x) dx ≤ N
ΩN

|f(x)|2 dx <∞.

Hence f̃ ∈ L2(µ). We have

Rd
|f̃ |2dµ =

λ∈Λ
| f̃ , eλ |2 =

λ∈Λ ΩN

f(x)eλ(x) dx
2
.

It follows from the inequality

Rd
|f̃ |2dµ ≥ 1

N ΩN

|f(x)|2 dx

that Λ is a sampling for B(ΩN ).
Now the theorem of Landau [Lan67] yields D−(Λ) ≥ m(ΩN ), which implies

(3.2) D−(Λ) ≥ m(Ω)
by letting N →∞. If m(Ω) =∞, it follows that for any ε > 0 there exist λ1, λ2 ∈ Λ such that
|λ1−λ2| < ε. However by choosing ε sufficiently small we have Rd eλ1−λ2 dµ = 0, contradicting
the orthogonality of {eλ : λ ∈ Λ}. Therefore Ω must have finite Lebesgue measure.
We note for future reference that the last paragraph implies that

(3.3) |λ− λ | ≥ ε > 0 if λ,λ ∈ Λ, λ = λ .
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We now prove the second claim in (2). If Λ is a spectrum for µ, then for any f ∈ L2(µ) we
must have

f 2
L2(µ) =

λ∈Λ
| f, eλ µ|2.

In particular, setting f(x) = eξ(x) we get

(3.4) 1 = eξ
2
L2(µ) =

λ∈Λ
| eξ−λ(x)p(x)dx|2 =

λ∈Λ
|p(ξ − λ)|2.

Next, we claim that this and the assumption (1.1) imply that

(3.5) D+(Λ) ≤ p −22 .

Assuming (3.5), we complete the proof of the theorem as follows. By Cauchy-Schwartz, we have

(3.6) 1 =
Ω
p(x)dx ≤ ( p2(x)dx)1/2 · (

Ω
1)1/2 = m(Ω)1/2 p 2.

Combining this with (3.2) and (3.5), we get

m(Ω) ≤ D−(Λ) ≤ D+(Λ) ≤ p −22 ≤ m(Ω).
Thus all inequalities above must in fact be equalities. In particular, we must have an equality
in (3.6), which is possible if and only if p(x) is a constant function on Ω.

It remains to prove (3.5). Let N be a large number and let QN = [−N,N ]d, then from (3.4)
we have

(2N)d =
λ∈Λ QN

|p(ξ − λ)|2dξ

=
λ∈Λ∩QN Rd

|p(ξ − λ)|2dξ

−
λ∈Λ∩QN Rd\QN

|p(ξ − λ)|2dξ

+

λ∈Λ\QN QN

|p(ξ − λ)|2dξ

=: I − II + III.
Hence

#(Λ ∩QN ) · p 2
2 = I = (2N)

d + II − III ≤ (2N)d + II,
and (3.5) will follow if we show that II = o(Nd), which we now proceed to do. Consider those
λ ∈ Λ ∩ QN with dist (λ, ∂QN ) ≤ logN . By (3.3), the number of such λ is O(Nd−1 logN),
hence

(3.7)

λ∈Λ∩QN :dist (λ,∂QN )≤logN Rd\QN
|p(ξ − λ)|2dξ = O(Nd−1 logN).
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Now, consider those λ ∈ Λ ∩ QN with dist (λ, ∂QN ) ∈ [2j logN, 2j+1 logN), where j is a
nonnegative integer. By (3.3) again, the number of such λ is O(2j logN ·Nd−1). For each such
λ, we have

Rd\QN
|p(ξ − λ)|2dξ ≤ C

ξ|≥2j logN
|ξ|−2αdξ ≤ C(2j logN)d−2α,

by (1.1). Thus the total contribution for a fixed j is bounded by

O(2j logN ·Nd−1 · (2j logN)d−2α) = O(Nd−1(logN)d−2α+1 · 2j(d−2α+1)).
Summing over j, we bound II by

O(Nd−1 logN) +O(Nd−1(logN)d−2α+1 ·
∞

j=0

2j(d−2α+1)) = O(Nd−1 logN),

since the series is convergent if α > (d + 1)/2. This completes the proof of (3.5) and of the
theorem.

Proof of Theorem 1.3. Since the translation of a spectral measure is again a spectral measure
with the same spectra, we may without loss of generality assume that 0 = a0 < a1 < a2 < · · · <
aN−1 =M . Also, because all pj are the same by Theorem 1.2 (2), we may assume that pj = 1

for all j and µ = N−1
j=0 δaj . Now let Λ be a spectrum of µ, |Λ| = N . Then all nonzero elements

of Λ− Λ are contained in the zero set of µ(ξ) = N−1
j=0 exp(2πiajξ). Note that if λ is a zero of

µ then so is λ+ k for any k ∈ Z. Hence we may view the zeros of µ as elements in the group T.
By assumption, M = aN−1 < 3N/2− 1, which implies that µ(ξ) has no more that 3N/2− 1

roots in T. Therefore the cardinality of Λ − Λ viewed as a subset of T is no more than
M + 1 < 3N/2. It follows from Lemma 2.2 that Λ − Λ is a subgroup of T. Hence viewed as
elements in T, Λ − Λ = {j/K : 0 ≤ j < K} for some positive integer K ≥ N . This means
µ(j/K) = 0 for all 1 ≤ j < K. Let q(z) = N−1

j=0 z
aj . It follows that all K-th roots of unity

= 1 are roots of q(z), and 1 + z + · · ·+ zK−1|q(z).
Now let aj ≡ bj (mod K) where 0 ≤ bj < K. Then zK − 1|zaj − zbj . Hence 1 + z +

· · · + zK−1| N−1
j=0 z

bj . But this is impossible if N < K. Thus we have K = N . Furthermore

{bj} = {0, 1, . . . , N − 1}. This proves the theorem.

Proof of Theorem 1.4. The direction ⇐ is obvious. We prove the ⇒ direction.

Let p(x) ∈ L2(R) be the density function of µ, and let Λ be a spectrum of µ. For any N > 0
denote

ΩN := x : x ∈ Ω, 1
N
≤ p(x) ≤ N .

The same argument from the proof of Theorem 1.2 shows Λ is a sampling for B(ΩN ). This
yields D−(Λ) ≥ m(Ω) = a, using the theorem of Landau [Lan67] and letting N →∞.
We next prove that Λ − Λ = bZ for some b > 0. First we show it is a group. Observe that

Λ− Λ is contained in the set
Zp := {ξ ∈ R : p(ξ) = 0} ∪ {0}.
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Since p is an entire function of exponential type with the diameter of suppp = Ω being less than
3
2a, it is well known [?] that

D+(Zp) ≤ diam (Ω) <
3

2
a.

This yields D+(Λ− Λ) < 3
2a. Proposition 2.2 now implies that Λ− Λ is a group. Since Λ− Λ

is discrete and the only discrete subgroups of R are cyclic groups, Λ− Λ = bZ for some b > 0.
Furthermore, Λ is “maximal” in the sense that one cannot add another element to it so that
Λ−Λ = bZ is not violated as a result of orthonormal basis. Thus Λ = bZ+λ0. Since a translate
of a spectrum is also a spectrum, we may assume that λ0 = 0.

It remains to prove that b = a−1. Notice that bZ \ {0} ⊆ Zp implies that
(3.8)

n∈Z
p(x− b−1n) ≡ c a.e. x ∈ R.

Hence p is bounded. We prove that Λ is an interpolation for B(Ω). For any {cλ} ∈ l2(Λ) there
exists an f ∈ L2(µ) such that R feλdµ = cλ for all λ ∈ Λ. Since p is bounded g = fp ∈ L2(Ω).
But Ω fpeλ dx = cλ. Therefore Λ is an interpolation for B(Ω). It follows from Landau’s
theorem that D+(Λ) ≤ a. Hence

D(Λ) = D+(Λ) = D−(Λ) = a.

Finally, (3.8) combines with m(Ω) = a to yield p = cχΩ, and Ω tiles by aZ.
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