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ABSTRACT. A subset Q of R? with finite positive Lebesgue measure is called a spectral
set if there exists a subset A C R such that £5 := {em"()"m) TAE A} form an orthogonal
basis of L?(Q). The set A is called a spectrum of the set Q. The Spectral Set Conjecture
states that Q is a spectral set if and only if Q tiles R? by translation. In this paper we
prove the Spectral Set Conjecture for a class of sets @ C R. Specifically we show that a
spectral set possessing a spectrum that is a strongly periodic set must tile R by translates

of a strongly periodic set depending only on the spectrum, and vice versa.

1. INTRODUCTION

Let  be a (Lebesgue) measurable subset of R with finite positive measure. For ¢ € R let
Q+t:={z+1t:z € Q} denote the translate of Q by t. We say that Q tiles R by translation
if there exists a subset 7 C R so that R = (J,c7 (2 +1) = Rand (Q+1) N (Q+ 1) is a set
of measure zero whenever ¢, € T are distinct. In the affirmative case T is called a tiling
set for Q, and (Q,7T) is called a tiling pair. Similarly, we say that € tiles the non-negative
half line R* = [0,00) if there exists a subset 7 C R such that J,c (2 +¢) = R and
(Q4+t)N(Q+1¢) is a set of measure zero whenever ¢,¢' € T are distinct. Sets that tile the
real line by translation have been studied recently, e.g., [Od178], [LW9T7], [LW96].

For A € R we introduce the functions
ex(z) == e?™  recR

We say that €2 is a spectral set if there exists a subset A C R so that the functions £ :=
{ex : A € A} form an orthogonal basis for L2 (f2), the Hilbert space of complex valued

square integrable functions on € with the inner product
(1.9):= | T@g(o) de

If the functions in £ form an orthogonal basis for L2 (£2), then we call (2, A) a spectral pair
and A a spectrum for 2. Spectral sets have recently been studied in various contexts, e.g.,

[Fug74], [JP92], [JP94], [Ped96], [LWI7], [JP9S].
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One of the main open questions concerning spectral sets is the following Spectral Set

Conjecture, first proposed by Fuglede [Fug74]:

Spectral Set Conjecture. Let Q be a measurable subset of R? with finite positive Lebesque

measure. Then Q is a spectral set if and only if Q tiles R® by translation.

In this paper we study the one dimensional case of the Spectral Set Conjecture. A special
class of sets we study consists of tiles that tile the non-negative half line R™ by translation.

We prove:

Theorem 1.1. Let Q be a subset of R with finite positive Lebesgue measure. Suppose that
Q tiles RT by translation. Then Q tiles R by translation and is a spectral set.

Let N := {1,2,3,...} be the set of natural numbers and Z* := {0,1,2,... } be the set
of non-negative integers. For any n € N let Z;} := {0,1,... ,n — 1}. For any A, B C Z we
write

A+B:={a+b:ac Abe B}

for the Minkowski sum of A and B. We will write A @ B if each element in A + B has a
unique decomposition of the form ¢ + b with a € A and b € B.

Definition 1.2. We call A C Z™" a direct summand of Z; if there exists a B C Z™ such
that A® B = Z;}. We call a subset T of R a strongly periodic set if there exist an n € N
and a direct summand A C Z1 of Z;} such that T = «(A & nZ) for some non-zero a € R.

In [LW97] it was shown that certain tiles that tile R by translation are spectral sets that
possess the so-called universal spectra, in the sense that the spectra depend only on the
tiling sets, not the tiles. Our main theorem below strengthens this notion by providing a
large new class of tiles that possess universal spectra. It shows that a tile that tiles R by the
translates of a strongly periodic set must have a universal spectrum that is also a strongly
periodic set. More importantly, the theorem also gives rise to the notion of universal tiling
set, which can be viewed as the dual of universal spectrum. We show that a spectral set
that possesses a spectrum that is a strongly periodic set must have a univeral tiling set

depending only on the spectrum.

Theorem 1.3. Let Q2 be a subset of R with finite positive measure. Suppose that there
exists a strongly periodic set A C R such that (Q,A) is a spectral pair. Then there exists
a strongly periodic set T C R depending only on A such that Q tiles R by translates of T .
Conversely, suppose that there exists a strongly periodic set T C R such that § tiles R by
translates of T. Then there exists a strongly periodic set A C R depending only on T such
that (2, A) is a spectral pair.
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The strongly periodic sets A and T in Theorem 1.3 are duals of each other, and for each
given one the other is constructed explicitly in §4. In fact we prove a stronger version
of Theorem 1.3 there. For the rest of the paper, in §2 we state a result on the structure
of strongly periodic sets, first shown in [deB56]. In §3 we classify tiles that tile RT by

translation. The classification is used to prove Theorem 1.1.

2. STRUCTURE OF STRONGLY PERIODIC SETS

In this section we classify subsets A, B of Z* satisfying A ® B = Z; for some n € N.
The classification is based on a theorem of de Bruijn [deB56] establishing the structure of
subsets of ZT that tile Z* by translation. To formulate the result we first introduce some
notation regarding divisibility. For r, s € Z we use 7 | s to mean that r divides s; for r € Z

and A C Z we use r | A to mean that r divides every a € A.

Proposition 2.1 (de Bruijn). Let A, B C Z" such that A@B=7Z" and A#7Z", B#Z".
Then there exists an integer r > 1 such that v | A or r | B. Furthermore, if v | B and
B = rB then there exists an A C Z%1 such that

A:Z;"@rg, and A®B=1"
Proof. A proof can be found in de Bruijn [deB56]. For the sake of self-containment we give
a short proof here.

Without loss of generality we assume 1 € A. Let r be the smallest non-zero member of
B. For each m € N let A,, C A and B,,, C B be the minimal subsets so that

Zr C Ay + B
It follows immediately from the minimality and the uniqueness in A ® B that

Am=ANZE Bn =BNZ.

mrnr?

Observe that Z?;m—l

A1 \ A CZF + mr, Bpmii \ B C ZF + mr.

)T\Z,‘;T =Z; +mr. So

We show by induction on m that there are subsets C,, and D,, of Z™ such that

Ap =7 +7rCp, By, = rDyy,.

Let Cy := {0} and D; := {0}. Then A; = Z,} +rC; and By = rD; as required. Suppose
that C,,, D,, € ZT have been constructed so that A,, = Zﬂ' + rC,, and B, = rDy,.
If ZE;H_I)T C A, + By, then A,,,1 = A, and By,11 = B,,, and so it suffices to set
Cm+1 = Cn and Dyyy1 := Dy, to complete the proof.
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Now suppose that Z{mﬂ)r ¢ A+ B Let j € ZF. If j+mr € Ay, + By, = Z; +

r(Cpm + Dy,) then m € Cp, + Dy, and therefore Z;} + mr C A, + By, contradicting
ZE;H_I)T ¢ A, + By,. Hence,
(Z} +mr)N (Ay + Bp) = 0.
It follows that mr € Ay, or mr € Bpq1.
If mr € By,41, then A, 1 = Ay, and By, 11 = B,,U{rm}. Hence we may set Cy,+1 := Cp,

and Dyt := Dy, U {m}.

Assume that mr € A,,.1. Let j € Z;}. We have shown above that j +mr ¢ A, + By,
soj+mr =a+bforae€ Api1 \ An, b € Bypp ora € Ay, b € Bpyr \ By If
b € Byy1 \ Bp then (m + 1)r —b € Z}. Thus mr +r = ((m + 1)r — b) + b constitute
two different decompositions of the same element in A @ B, a contradiction. This yields
a € Ami1 \ Ap- If b # 0 then By, = 7Dy, and Bp,11 \ By C Z;7 + mr implies that b > r.
Soj+mr =a+b>mr+r > j+ mr, again a contradiction. So b = 0 and therefore

j+mr=aé€ Apyy1. It follows that
Apmy1 = A U (ZF +mr).
The inductions steps are now complete by setting Cp, 11 := Cp, U {m} and Dy, 1 := Dy,.

Finally, the proposition follows by letting A := Up— Crm and B= Upo—1 Dm. O

Proposition 2.1 immediately leads to the following classification of strongly periodic sets.

Corollary 2.2. Let A, B C Z" such that A® B =7} and A# 7}, B # Z}. Then there
exists an v > 1 such that r | n and either r | A or r | B. Furthermore, if v | B and B = rB
then there exists an A C Z+ so that

A:fo@rg, and A®B=1}.

Proof. Suppose that 1 € A. Applying Proposition 2.1 to A & (B @ nZ™') = Z* yields an
r>1and aset A sothat A =7 @&rAand r | (B@®nZ'). Since 0 € B and 0 € Z7 it
follows that r | n and r | B. Finally, Z @®r(A+B) = A®B = Z; implies A@ B =7%. O

Corollary 2.3. Let A, B C Z" such that A® B = Z,}. Assume that 1 € A. Then there
exists a unique finite sequence dy = 1,dy,...,dg_1,dp =n in N with r; :=d;/d;_; € N and
ri > 1 for 1 < j <k such that

(2.1) A=doZ &7} @ -,

(2.2) B = dIZ,f; D ng;; D
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Proof. Since 1 € A, the proof of Proposition 2.1 yields A = Zf{l ® riA and B = r B where
r1 = min{b : b € B,b # 0}, and A® B = 7% . The proof is completed by applying
1

Corollary 2.2 iteratively to A® B = 7% . Note that the uniqueness follows from the fact

71

that ri = dy/do = min{b: b€ B,b# 0}, ro = dy/dy = {a : a € A,a # 0}, etc. O

Corollary 2.4. Suppose that A, B C Z" such that A® B = Z™, and that B is finite. Then

B is a direct summand of 7} for some n € N.

Proof. By the same argument for Corollary 2.3 B must have the form (2.1) or (2.2), de-
pending on whether 1 € B. So B must be a direct summand of Z; for some n € N. O

Call a polynomial a 0—1 polynomial if each of its coefficients is either 0 or 1. We associate
each finite A C Z* with the following 0 — 1 polynomial

A(z) := Z z°,
acA
called the characteristic polynomial of A. Clearly every 0—1 polynomial is the characteristic
polynomial of the set of exponents corresponding to its non-zero coefficients. If A, B, C C
Z* are finite, then A ® B = C if and only if A(z)B(z) = C(x). We call a 0 — 1 polynomial
c-irreducible if A(z) # Ay1(z)Az(x) for any 0 — 1 polynomials A;(z) # 1, As(z) # 1. The
following result was first stated in [CM66] (simple examples, however, show that Lemma 1
in [CM66] is false).

=L into c-irreducible 0 — 1 poly-

Theorem 2.5. Let n > 1. Then every factorization of

nomials has the form

" —1
r—1 Ey (2) Fp, (27 ) Fpy (271P?) - - - Fp, (2”727 PR1),
-1

where Fy, () := , all p; are primes (not necessarily distinct) and n = pips - - - pi.

z—1
Proof. This is a direct consequence of Corollary 2.3, by observing that

+ — 7+ +
Zplpz-"pk - Zm 69plsz Dp1-- 'pkfIZpk-

Note that each term in the factorization is c-irreducible, because it contains a prime number

of terms.

O
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3. TiLING THE NON-NEGATIVE REAL LINE

Let Q C R be a tile with finite and positive Lebesgue measure that tiles R™ by translates
of T. In this case we will write 2 @7 = R*. In this section we derive the structure of tiles
2 C R that tile RT by translation.

Theorem 3.1. Let Q C R with finite positive Lebesque measure. Suppose that Q0 tiles RT
(and hence R) by translation. Then there exists an affine map o(x) = ax + b such that

‘P(Q) = [0’ 1] +B

for some finite subset B C Z™" with 0 € B. Furthermore, B is a direct summand of Z;} for

some n € N.

Proof. In this proof, all set relations involving the tile {2 will be interpreted as up to measure

zero sets.

Let 7 C R such that Q&7 = R"T. We first examine the special case T = {0, 1,#2,t3,... }
where ¢; > 1 for all j > 2. In this special case we prove that Q = [0,1]+ B for some B C Z"
and 0 € B. Let 7, = TN[0,n — 1] and Q, = QN [0,n]. We claim that 7, C Z* and
Q, =[0,1] + By, for some B, C Z*, by induction on n.

Since t; > 1, we must have [0,1] C €. So the claim is clearly true for n = 1. Assume
that the claim is true for all n < k. We show that the claim is also true for n = k. We
divide the proof into two cases: Q;_; C Q and Q;_; = Q. Suppose that Q;_; C Q.
Then QN (k—1,k] # 0. If Q4 # [0,1]+ By, for any B, C Z*, then QN (k—1,k] C (k—1,k].
Hence there exists a t € T such that (2 +¢) N (k—1,k] # 0. Note that t € Tx_1, sot € Z™T.
It follows that

PCcoOnNk—-1—-t,k—t]C (k—1—tk—t],

contradicting the inductive hypothesis. So Q = [0,1] + By, for some By C Z*. The
assumption that Qx_; C Qj now implies that By = Bx_1 U {k — 1}, so Ty = Tx—1. This
proves the claim for n = k in the first case. Suppose that Qx_; = Q. Then Q) = [0, 1]+ By,
with By = Bi_1. Therefore T = Tx—1 U {k — 1}. This completes the induction steps and

proves the claim. So we have shown that B,7 C Z™, and clearly 0 € B.

It remains to show that B is a direct summand of Z;} for some n € N. Observe that
B @& T =Z%. Therefore B is a direct summand of Z;' for some n € N by Corollary 2.4.

In general, suppose that € tiles R by translates of 7 where the elements in 7 are
to <tp <ty <---. Let p(x) (z —to) and #;; = ¢(¢;). Then

_ 1
— ti—to

0(Q) ®{0,1,t),t5,...} =R".
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Hence p(Q2) = [0,1] + B for some B C Z* with 0 € B. O

4. PROOFS OF MAIN THEOREMS

To prove our main theorems we first introduce some notation. For any finite set A C Z
we denote fa(€) := A (e"?¢) where A(z) is the characteristic (Laurent) polynomial of A.
We will use Z4 to denote the set of zeros of f4. For a subset 2 C R with positive and finite

measure we will use Zq to denote the set of zeros of Xq ().

Observe that for any finite A C Z, £ € Z4 implies £ +m € Z4 for all m € Z. So
Z4 =7 & X for some finite X C R. If in addition A is a direct summand of Z; for some
n €N, then nZ,4 C Z.

Lemma 4.1. Let A C Z* be a direct summand of 7} for some n € N. Then there exists a

direct summand A* of 7" with the same cardinality such that

(4.1) A—ACnZ4eU{0}, A" — A" CnzZaU{0).

Proof. We procced by induction on n. For n = 1,2 it is easy to check that the lemma holds.
Assume that the lemma holds for all n < k, where k > 3. We show that it holds for n = k.

Case 1. 1¢A.

Then A = rA; for some r > 1, r | k and direct summand A; of Z; By the hypothesis
there exists a direct summand A} of Z] such that (4.1) holds for A, ;1’{ and n = k/r. Now
fa(€) = fa,(r) yields Z4 = £24,. Set A* = Aj. Clearly A* is a direct summand of Z;"

because it is a direct summand of Z7, and we have

k
A—A=r(A1—A)) Cr—Za; U{0} = kZ4- U{0},

and

k
A" — A" = AT — AT C ~ 24, U{0} = k2, U {0}.
T

Case 2. 1e A

Then A = Z} ® rA; for some r > 1, r | k and direct summand A4; of Z}. By the
hypothesis there exists a direct summand A} of Z','_; such that (4.1) holds for fil, A} and
n==k/r. Set A* = AT ® %Z,Jf A* is a direct summar,nd of Z;" because A* & Bf = Z; where
Al @ Bf = Z%' We have

Fa(€) = f+ () fa,(r6),  far(€) = fas () fy+ (E€).
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It follows from Z,+ = 17\ Z that

1
(4.2) Zy=~(ZUZa)\Z, ZA*:ZA»{LJ%(%Z\Z).

Let m = a + %j and m = a' + %j' be two distinct elements in A*, where a,a’ € A} and

4,7’ € Z;F. If a = a' then

k

m—m'==(j—j) €k (LZ\Z) CkZa.

r
Ifa#a thena—a €22, Hence a —a' + %1 € £2,, for all I € Z. Since m —m/ ¢ kZ,
we have

m—m' € EZ,y \kZ CkZa.

Hence A* — A* C kZ4 U {0}.

Now let m = j +ra, m' = j' + ra’ be two distinct elements in A, where a,a’ € A; and
4,3 € Z;t. If 5 = j' then a # o', and by the hypothesis a — a’ € %ZAI. Som—m' =
r(a—a') € kZy:. If j # j' then j —j' € rZ, so

" (LZ\Z) C Z4-.

m—m':j—j'-i—r(a—a')EZ\rZ:E

Hence A — A C Z4-.

We have now completed the induction steps and proven the lemma. O

We will call two direct summand A and A* satisfying (4.1) a conjugate pair, and A*
a conjugate of A. The proof of Lemma 4.1 leads to an explicit construction of conjugate
pairs. Let A C Z* be a direct summand of Z;}. Then by Corollary 2.3 there exists a
unique sequence rg, 71, ..., 2k+1 in N with H?E}l ri=mn,r; > 1for 0 <j <2k+1and
r0,T2k+1 > 1, such that

k m
(4.3) A= @dng;;jH, where d,, := H T
3=0 3=0

Define the map 9, on the set of direct summand of Z by

k
n
4.4 I (A) = —7t .
(4.4) (4) 6290 Ty e

Then 9, (A) is exactly the conjugate set A* constructed inductively in the proof of Lemma 4.1.

Lemma 4.2. Suppose that A C Z is a direct summand of Z;7. Then A and 9,(A) form
a conjugate pair, and 9,(9,(A)) = A. Furthermore, if A,B C Z" such that A® B = 7,
then ¥9,(A) ® 9,,(B) = Z;}
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Proof. The proof of Lemma 4.1 already implies that A, ¢,,(A) form an conjugate pair. It
is easy to see that 9, (9,(A)) = A by directly applying (4.3) and (4.4). Now, suppose that
A is given by (4.3) and B C Z™ satisfies A® B = Z.". Then there are several cases: ry = 1
orrg>1,and repy; =1 orropy > 1. If ro =1, 7oy > 1 then

k+1
(4.5) B=@dy 17/,  where rypppi=1.
j=1
So
k+1 n
(4.6) 9n(B) =P EZ’;'
j=1

It is now straightforward to check from (4.4) and (4.6) that 9,,(A) ® 9, (B) = Z,;. Other

cases can be checked similarly. O

Definition 4.3. Let A, T C R be strongly periodic sets. We say that T is a dual of A if
there exist a non-zero « € R and A, B C Z* with A® B =7 for some n € N such that

A=a(A®nZ), T=—(0.(B)®nZ).

no

By Lemma 4.2 if T is a dual of A then A is a dual of 7.

Lemma 4.4. Let Q C R satisfy p(Q) =n € N. Suppose that A = L& Z where L is a finite
subset of R such that A—A C ZqU{0}. Then (Q, A) is a spectral pair if and only if |L| = n.

Proof. See [Ped96], Theorem 1, or [LW97], Theorem 2.1. O

We shall establish the following result, which is a stronger version of our main theorem.

Theorem 4.5. Suppose that & C R has positive and finite Lebesgue measure. Let A, T C R
be strongly periodic sets such that T is a dual of A. Then (2, A) is a spectral pair if and
only if Q tiles R by translates of T.

Proof. Without loss of generality we may assume that A = L(A@nZ) and T = 9, (B) &nZ
for somen € Nand A,B C Z+ with A@ B=17.

(<) The set ' = Q@ I, (B) tiles R by translates of nZ, so it is a fundamental domain
of the lattice nZ. Hence

1
Zqr = Zo U Zﬁn(B) D) EZ\ {0}
Since 9, (A) & 9,(B) = Z;} we have

1
Zﬁn(A) U Zﬁn(B) = ZZi = EZ \ Z.
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Furthermore, Zy 4y N 2y, (p) = 0 because fy, 4)(£) f,(B)(§) has no multiple roots. Hence
Zq 2 Zy,(4) UZ\ {0}

Now, for any distinct A\, \’ € A we have A — X = %k—kj forsome ke A—A,j€Z. Ifk#0
then £ € Z, (4 by (4.1), which implies that A — X' = £ 4 j € Z, (1) C Zq. Otherwise
A=XN=35€Z\{0} C Zq. By Lemma 4.4 (2, A) is a spectral pair.

(=) Suppose that (€2, A) is a spectral pair. For any z € [0,1) let Dy := QN (Z+z). It
follows from [Ped96], Theorem 2, that

(4.7) 1D, =|Al,  Dy— D, CnZsU{0}

for almost all z € [0, 1). We show that (D, —x)+3,(B) is a complete residue system (mod n)
for every D, satisfying (4.7). Note that 9,(B) — 9,(B) C nZp U {0}, and observe that
k # m (mod n) for any k¥ € nZ4 and m € nZp. Thus for any ki, ky € D, — x and
my,my € 9,(B) we must have k; — ko Z mo — mq (mod n) unless ky = ko and my =
mg. Hence ki + my # k2 + mg (mod n). Since |D, — z| - [9,(B)| = n it follows that
(Dy — ) + 9,(B) = (D — ) ® 9,(B) contains n distinct residue classes (mod n), and

hence is a complete residue system (mod n). Therefore
D, +T =D, 0T =x+17Z

for almost all z € [0,1). This implies that €2 tiles R by translates of 7. O

Theorem 1.1 is a simple consequence of Theorem 3.1 and Theorem 4.5.
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