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Abstract. A subset 
 of Rd with �nite positive Lebesgue measure is called a spectral

set if there exists a subset � � R such that E� :=
n
ei2�h�;xi : � 2 �

o
form an orthogonal

basis of L2(
). The set � is called a spectrum of the set 
. The Spectral Set Conjecture

states that 
 is a spectral set if and only if 
 tiles Rd by translation. In this paper we

prove the Spectral Set Conjecture for a class of sets 
 � R. Speci�cally we show that a

spectral set possessing a spectrum that is a strongly periodic set must tile R by translates

of a strongly periodic set depending only on the spectrum, and vice versa.

1. Introduction

Let 
 be a (Lebesgue) measurable subset of R with �nite positive measure. For t 2 R let


+ t := fx+ t : x 2 
g denote the translate of 
 by t. We say that 
 tiles R by translation

if there exists a subset T � R so that R =
S
t2T (
 + t) = R and (
 + t) \ (
 + t0) is a set

of measure zero whenever t; t0 2 T are distinct. In the a�rmative case T is called a tiling

set for 
, and (
;T ) is called a tiling pair. Similarly, we say that 
 tiles the non-negative

half line R+ = [0;1) if there exists a subset T � R such that
S
t2T (
 + t) = R+ and

(
 + t) \ (
 + t0) is a set of measure zero whenever t; t0 2 T are distinct. Sets that tile the

real line by translation have been studied recently, e.g., [Odl78], [LW97], [LW96].

For � 2 R we introduce the functions

e�(x) := ei2��x; x 2 R:

We say that 
 is a spectral set if there exists a subset � � R so that the functions E� :=

fe� : � 2 �g form an orthogonal basis for L2 (
), the Hilbert space of complex valued

square integrable functions on 
 with the inner product

hf; gi :=

Z



f(x)g(x) dx:

If the functions in E� form an orthogonal basis for L2 (
), then we call (
;�) a spectral pair

and � a spectrum for 
. Spectral sets have recently been studied in various contexts, e.g.,

[Fug74], [JP92], [JP94], [Ped96], [LW97], [JP98].
1
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One of the main open questions concerning spectral sets is the following Spectral Set

Conjecture, �rst proposed by Fuglede [Fug74]:

Spectral Set Conjecture. Let 
 be a measurable subset of Rd with �nite positive Lebesgue

measure. Then 
 is a spectral set if and only if 
 tiles Rd by translation.

In this paper we study the one dimensional case of the Spectral Set Conjecture. A special

class of sets we study consists of tiles that tile the non-negative half line R+ by translation.

We prove:

Theorem 1.1. Let 
 be a subset of R with �nite positive Lebesgue measure. Suppose that


 tiles R+ by translation. Then 
 tiles R by translation and is a spectral set.

Let N := f1; 2; 3; : : : g be the set of natural numbers and Z+ := f0; 1; 2; : : : g be the set

of non-negative integers. For any n 2 N let Z+n := f0; 1; : : : ; n� 1g. For any A, B � Z we

write

A+B := fa+ b : a 2 A; b 2 Bg

for the Minkowski sum of A and B. We will write A � B if each element in A + B has a

unique decomposition of the form a+ b with a 2 A and b 2 B.

De�nition 1.2. We call A � Z+ a direct summand of Z+n if there exists a B � Z+ such

that A � B = Z+n . We call a subset T of R a strongly periodic set if there exist an n 2 N

and a direct summand A � Z+ of Z+n such that T = �(A� nZ) for some non-zero � 2 R.

In [LW97] it was shown that certain tiles that tile R by translation are spectral sets that

possess the so-called universal spectra, in the sense that the spectra depend only on the

tiling sets, not the tiles. Our main theorem below strengthens this notion by providing a

large new class of tiles that possess universal spectra. It shows that a tile that tiles R by the

translates of a strongly periodic set must have a universal spectrum that is also a strongly

periodic set. More importantly, the theorem also gives rise to the notion of universal tiling

set, which can be viewed as the dual of universal spectrum. We show that a spectral set

that possesses a spectrum that is a strongly periodic set must have a univeral tiling set

depending only on the spectrum.

Theorem 1.3. Let 
 be a subset of R with �nite positive measure. Suppose that there

exists a strongly periodic set � � R such that (
;�) is a spectral pair. Then there exists

a strongly periodic set T � R depending only on � such that 
 tiles R by translates of T .

Conversely, suppose that there exists a strongly periodic set T � R such that 
 tiles R by

translates of T . Then there exists a strongly periodic set � � R depending only on T such

that (
;�) is a spectral pair.
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The strongly periodic sets � and T in Theorem 1.3 are duals of each other, and for each

given one the other is constructed explicitly in x4. In fact we prove a stronger version

of Theorem 1.3 there. For the rest of the paper, in x2 we state a result on the structure

of strongly periodic sets, �rst shown in [deB56]. In x3 we classify tiles that tile R+ by

translation. The classi�cation is used to prove Theorem 1.1.

2. Structure of Strongly Periodic Sets

In this section we classify subsets A, B of Z+ satisfying A � B = Z+n for some n 2 N.

The classi�cation is based on a theorem of de Bruijn [deB56] establishing the structure of

subsets of Z+ that tile Z+ by translation. To formulate the result we �rst introduce some

notation regarding divisibility. For r; s 2 Z we use r j s to mean that r divides s; for r 2 Z

and A � Z we use r j A to mean that r divides every a 2 A.

Proposition 2.1 (de Bruijn). Let A;B � Z+ such that A�B = Z+ and A 6= Z+, B 6= Z+.

Then there exists an integer r > 1 such that r j A or r j B. Furthermore, if r j B and

B = r eB then there exists an eA � Z+ such that

A = Z+r � r eA; and eA� eB = Z+:

Proof. A proof can be found in de Bruijn [deB56]. For the sake of self-containment we give

a short proof here.

Without loss of generality we assume 1 2 A. Let r be the smallest non-zero member of

B. For each m 2 N let Am � A and Bm � B be the minimal subsets so that

Z+mr � Am +Bm:

It follows immediately from the minimality and the uniqueness in A�B that

Am = A \ Z+mr; Bm = B \ Z+mr:

Observe that Z+
(m+1)r

n Z+mr = Z+r +mr. So

Am+1 nAm � Z+r +mr; Bm+1 nBm � Z+r +mr:

We show by induction on m that there are subsets Cm and Dm of Z+ such that

Am = Z+r + rCm; Bm = rDm:

Let C1 := f0g and D1 := f0g. Then A1 = Z+r + rC1 and B1 = rD1 as required. Suppose

that Cm, Dm � Z+ have been constructed so that Am = Z+r + rCm and Bm = rDm.

If Z+
(m+1)r

� Am + Bm, then Am+1 = Am and Bm+1 = Bm, and so it su�ces to set

Cm+1 := Cm and Dm+1 := Dm to complete the proof.
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Now suppose that Z+
(m+1)r

* Am + Bm. Let j 2 Z+r . If j +mr 2 Am + Bm = Z+r +

r(Cm + Dm) then m 2 Cm + Dm and therefore Z+r + mr � Am + Bm, contradicting

Z+
(m+1)r

* Am +Bm. Hence,

(Z+r +mr) \ (Am +Bm) = ;:

It follows that mr 2 Am+1 or mr 2 Bm+1.

Ifmr 2 Bm+1, then Am+1 = Am and Bm+1 = Bm[frmg. Hence we may set Cm+1 := Cm

and Dm+1 := Dm [ fmg.

Assume that mr 2 Am+1. Let j 2 Z+r . We have shown above that j +mr =2 Am + Bm,

so j + mr = a + b for a 2 Am+1 n Am, b 2 Bm+1 or a 2 Am, b 2 Bm+1 n Bm. If

b 2 Bm+1 n Bm then (m + 1)r � b 2 Z+r . Thus mr + r = ((m + 1)r � b) + b constitute

two di�erent decompositions of the same element in A � B, a contradiction. This yields

a 2 Am+1 n Am. If b 6= 0 then Bm = rDm and Bm+1 n Bm � Z+r +mr implies that b � r.

So j + mr = a + b � mr + r > j + mr, again a contradiction. So b = 0 and therefore

j +mr = a 2 Am+1. It follows that

Am+1 = Am [ (Z+r +mr):

The inductions steps are now complete by setting Cm+1 := Cm [ fmg and Dm+1 := Dm.

Finally, the proposition follows by letting eA :=
S
1

m=1 Cm and eB =
S
1

m=1Dm.

Proposition 2.1 immediately leads to the following classi�cation of strongly periodic sets.

Corollary 2.2. Let A, B � Z+ such that A� B = Z+n and A 6= Z+n , B 6= Z+n . Then there

exists an r > 1 such that r j n and either r j A or r j B. Furthermore, if r j B and B = r eB
then there exists an eA � Z+ so that

A = Z+r � r eA; and eA� eB = Z+n
r

:

Proof. Suppose that 1 2 A. Applying Proposition 2.1 to A � (B � nZ+) = Z+ yields an

r > 1 and a set eA so that A = Z+r � r eA and r j (B � nZ+). Since 0 2 B and 0 2 Z+ it

follows that r j n and r j B. Finally, Z+r �r( eA+ eB) = A�B = Z+n implies eA� eB = Z+n
r

.

Corollary 2.3. Let A, B � Z+ such that A � B = Z+n . Assume that 1 2 A. Then there

exists a unique �nite sequence d0 = 1; d1; : : : ; dk�1; dk = n in N with rj := dj=dj�1 2 N and

rj > 1 for 1 � j � k such that

A = d0Z
+
r1
� d2Z

+
r3
� � � � ;(2.1)

B = d1Z
+
r2
� d3Z

+
r4
� � � � :(2.2)
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Proof. Since 1 2 A, the proof of Proposition 2.1 yields A = Z+r1 � r1 eA and B = r1 eB where

r1 = minfb : b 2 B; b 6= 0g, and eA � eB = Z+n
r1

. The proof is completed by applying

Corollary 2.2 iteratively to eA � eB = Z+n
r1

. Note that the uniqueness follows from the fact

that r1 = d1=d0 = minfb : b 2 B; b 6= 0g, r2 = d2=d1 = fa : a 2 eA; a 6= 0g, etc.

Corollary 2.4. Suppose that A;B � Z+ such that A�B = Z+, and that B is �nite. Then

B is a direct summand of Z+n for some n 2 N.

Proof. By the same argument for Corollary 2.3 B must have the form (2.1) or (2.2), de-

pending on whether 1 2 B. So B must be a direct summand of Z+n for some n 2 N.

Call a polynomial a 0�1 polynomial if each of its coe�cients is either 0 or 1. We associate

each �nite A � Z+ with the following 0� 1 polynomial

A(x) :=
X
a2A

xa;

called the characteristic polynomial of A. Clearly every 0�1 polynomial is the characteristic

polynomial of the set of exponents corresponding to its non-zero coe�cients. If A, B, C �

Z+ are �nite, then A�B = C if and only if A(x)B(x) = C(x). We call a 0� 1 polynomial

c-irreducible if A(x) 6= A1(x)A2(x) for any 0 � 1 polynomials A1(x) 6� 1, A2(x) 6� 1. The

following result was �rst stated in [CM66] (simple examples, however, show that Lemma 1

in [CM66] is false).

Theorem 2.5. Let n > 1. Then every factorization of xn�1
x�1

into c-irreducible 0 � 1 poly-

nomials has the form

xn � 1

x� 1
= Fp1(x)Fp2(x

p1)Fp3(x
p1p2) � � �Fpk(x

p1p2���pk�1);

where Fm(x) :=
xm�1
x�1 , all pj are primes (not necessarily distinct) and n = p1p2 � � � pk.

Proof. This is a direct consequence of Corollary 2.3, by observing that

Z+p1p2���pk = Z+p1 � p1Z
+
p2
� p1 � � � pk�1Zpk:

Note that each term in the factorization is c-irreducible, because it contains a prime number

of terms.
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3. Tiling the Non-Negative Real Line

Let 
 � R be a tile with �nite and positive Lebesgue measure that tiles R+ by translates

of T . In this case we will write 
�T = R+ . In this section we derive the structure of tiles


 � R that tile R+ by translation.

Theorem 3.1. Let 
 � R with �nite positive Lebesgue measure. Suppose that 
 tiles R+

(and hence R) by translation. Then there exists an a�ne map '(x) = ax+ b such that

'(
) = [0; 1] +B

for some �nite subset B � Z+ with 0 2 B. Furthermore, B is a direct summand of Z+n for

some n 2 N.

Proof. In this proof, all set relations involving the tile 
 will be interpreted as up to measure

zero sets.

Let T � R such that 
�T = R+ . We �rst examine the special case T = f0; 1; t2; t3; : : : g

where tj > 1 for all j � 2. In this special case we prove that 
 = [0; 1]+B for some B � Z+

and 0 2 B. Let Tn = T \ [0; n � 1] and 
n = 
 \ [0; n]. We claim that Tn � Z+ and


n = [0; 1] +Bn for some Bn � Z+, by induction on n.

Since tj > 1, we must have [0; 1] � 
. So the claim is clearly true for n = 1. Assume

that the claim is true for all n < k. We show that the claim is also true for n = k. We

divide the proof into two cases: 
k�1 ( 
k and 
k�1 = 
k. Suppose that 
k�1 ( 
k.

Then 
\ (k�1; k] 6= ;. If 
k 6= [0; 1]+Bk for any Bk � Z+, then 
\ (k�1; k] ( (k�1; k].

Hence there exists a t 2 T such that (
+ t)\ (k� 1; k] 6= ;. Note that t 2 Tk�1, so t 2 Z+.

It follows that

; ( 
 \ (k � 1� t; k � t] ( (k � 1� t; k � t];

contradicting the inductive hypothesis. So 
k = [0; 1] + Bk for some Bk � Z+. The

assumption that 
k�1 ( 
k now implies that Bk = Bk�1 [ fk � 1g, so Tk = Tk�1. This

proves the claim for n = k in the �rst case. Suppose that 
k�1 = 
k. Then 
k = [0; 1]+Bk

with Bk = Bk�1. Therefore Tk = Tk�1 [ fk � 1g. This completes the induction steps and

proves the claim. So we have shown that B;T � Z+, and clearly 0 2 B.

It remains to show that B is a direct summand of Z+n for some n 2 N. Observe that

B � T = Z+. Therefore B is a direct summand of Z+n for some n 2 N by Corollary 2.4.

In general, suppose that 
 tiles R+ by translates of T where the elements in T are

t0 < t1 < t2 < � � � . Let '(x) = 1
t1�t0

(x� t0) and t0j = '(tj). Then

'(
)� f0; 1; t02; t
0

3; : : : g = R+ :
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Hence '(
) = [0; 1] +B for some B � Z+ with 0 2 B.

4. Proofs of Main Theorems

To prove our main theorems we �rst introduce some notation. For any �nite set A � Z

we denote fA(�) := A
�
ei2��

�
where A(z) is the characteristic (Laurent) polynomial of A.

We will use ZA to denote the set of zeros of fA. For a subset 
 � R with positive and �nite

measure we will use Z
 to denote the set of zeros of b�
(�).
Observe that for any �nite A � Z, � 2 ZA implies � + m 2 ZA for all m 2 Z. So

ZA = Z�X for some �nite X � R. If in addition A is a direct summand of Z+n for some

n 2 N, then nZA � Z.

Lemma 4.1. Let A � Z+ be a direct summand of Z+n for some n 2 N. Then there exists a

direct summand A� of Z+n with the same cardinality such that

A�A � nZA� [ f0g; A�
�A�

� nZA [ f0g:(4.1)

Proof. We procced by induction on n. For n = 1; 2 it is easy to check that the lemma holds.

Assume that the lemma holds for all n < k, where k � 3. We show that it holds for n = k.

Case 1. 1 62 A.

Then A = rA1 for some r > 1, r j k and direct summand A1 of Z
+
k

r

. By the hypothesis

there exists a direct summand A�

1 of Z
+
k

r

such that (4.1) holds for A1, A
�

1 and n = k=r. Now

fA(�) = fA1
(r�) yields ZA = 1

r
ZA1

. Set A� = A�

1. Clearly A� is a direct summand of Z+k
because it is a direct summand of Z+

k

r

, and we have

A�A = r(A1 �A1) � r �
k

r
ZA�

1
[ f0g = kZA� [ f0g;

and

A�
�A� = A�

1 �A�

1 �
k

r
ZA1

[ f0g = kZA [ f0g:

Case 2. 1 2 A.

Then A = Z+r � rA1 for some r > 1, r j k and direct summand A1 of Z+
k

r

. By the

hypothesis there exists a direct summand A�

1 of Z+
k

r

such that (4.1) holds for A1, A
�

1 and

n = k=r. Set A� = A�

1�
k
r
Z+r . A

� is a direct summand of Z+k because A��B�

1 = Z+k where

A�

1 �B�

1 = Z k

r

. We have

fA(�) = f
Z
+
r
(�)fA1

(r�); fA�(�) = fA�

1
(�)f

Z
+
r

�
k
r
�
�
:
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It follows from Z
Z
+
r
= 1

r
Z n Z that

ZA =
1

r
(Z[ ZA1

) n Z; ZA� = ZA�

1
[
r

k

�
1
r
Z n Z

�
:(4.2)

Let m = a+ k
r
j and m = a0 + k

r
j0 be two distinct elements in A�, where a; a0 2 A�

1 and

j; j0 2 Z+r . If a = a0 then

m�m0 =
k

r
(j � j0) 2 k

�
1
r
Z n Z

�
� kZA:

If a 6= a0 then a� a0 2 k
r
ZA1

. Hence a� a0 + k
r
l 2 k

r
ZA1

for all l 2 Z. Since m�m0 62 kZ,

we have

m�m0
2 k

r
ZA1

n kZ� kZA:

Hence A� �A� � kZA [ f0g.

Now let m = j + ra, m0 = j0 + ra0 be two distinct elements in A, where a; a0 2 A1 and

j; j0 2 Z+r . If j = j0 then a 6= a0, and by the hypothesis a � a0 2 k
r
ZA�

1
. So m � m0 =

r(a� a0) 2 kZA�

1
. If j 6= j0 then j � j0 62 rZ, so

m�m0 = j � j0 + r(a� a0) 2 Z n rZ=
r

k

�
1
r
Z n Z

�
� ZA� :

Hence A�A � ZA� .

We have now completed the induction steps and proven the lemma.

We will call two direct summand A and A� satisfying (4.1) a conjugate pair, and A�

a conjugate of A. The proof of Lemma 4.1 leads to an explicit construction of conjugate

pairs. Let A � Z+ be a direct summand of Z+n . Then by Corollary 2.3 there exists a

unique sequence r0; r1; : : : ; r2k+1 in N with
Q2k+1

j=0 rj = n, rj > 1 for 0 < j < 2k + 1 and

r0; r2k+1 � 1, such that

A =

kM
j=0

d2jZ
+
r2j+1

; where dm :=

mY
j=0

rj :(4.3)

De�ne the map #n on the set of direct summand of Z+n by

#n(A) =

kM
j=0

n

d2j+1
Z+r2j+1:(4.4)

Then #n(A) is exactly the conjugate set A
� constructed inductively in the proof of Lemma 4.1.

Lemma 4.2. Suppose that A � Z+ is a direct summand of Z+n . Then A and #n(A) form

a conjugate pair, and #n(#n(A)) = A. Furthermore, if A;B � Z+ such that A � B = Z+n ,

then #n(A)� #n(B) = Z+n
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Proof. The proof of Lemma 4.1 already implies that A, #n(A) form an conjugate pair. It

is easy to see that #n(#n(A)) = A by directly applying (4.3) and (4.4). Now, suppose that

A is given by (4.3) and B � Z+ satis�es A�B = Z+n . Then there are several cases: r0 = 1

or r0 > 1, and r2k+1 = 1 or r2k+1 > 1. If r0 = 1, r2k+1 > 1 then

B =

k+1M
j=1

d2j�1Z
+
r2j
; where r2k+2 := 1:(4.5)

So

#n(B) =

k+1M
j=1

n

d2j
Z+r2j :(4.6)

It is now straightforward to check from (4.4) and (4.6) that #n(A) � #n(B) = Z+n . Other

cases can be checked similarly.

De�nition 4.3. Let �;T � R be strongly periodic sets. We say that T is a dual of � if

there exist a non-zero � 2 R and A;B � Z+ with A�B = Z+n for some n 2 N such that

� = �(A� nZ); T =
1

n�

�
#n(B)� nZ

�
:

By Lemma 4.2 if T is a dual of � then � is a dual of T .

Lemma 4.4. Let 
 � R satisfy �(
) = n 2 N. Suppose that � = L�Z where L is a �nite

subset of R such that ��� � Z
[f0g. Then (
;�) is a spectral pair if and only if jLj = n.

Proof. See [Ped96], Theorem 1, or [LW97], Theorem 2.1.

We shall establish the following result, which is a stronger version of our main theorem.

Theorem 4.5. Suppose that 
 � R has positive and �nite Lebesgue measure. Let �;T � R

be strongly periodic sets such that T is a dual of �. Then (
;�) is a spectral pair if and

only if 
 tiles R by translates of T .

Proof. Without loss of generality we may assume that � = 1
n
(A�nZ) and T = #n(B)�nZ

for some n 2 N and A;B � Z+ with A�B = Z+n .

(() The set 
0 = 
�#n(B) tiles R by translates of nZ, so it is a fundamental domain

of the lattice nZ. Hence

Z
0 = Z
 [Z#n(B) �
1

n
Z n f0g:

Since #n(A)� #n(B) = Z+n we have

Z#n(A) [ Z#n(B) = Z
Z
+
n
=

1

n
Z n Z:
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Furthermore, Z#n(A) \Z#n(B) = ; because f#n(A)(�)f#n(B)(�) has no multiple roots. Hence

Z
 � Z#n(A) [ Z n f0g:

Now, for any distinct �; �0 2 � we have ���0 = 1
n
k+ j for some k 2 A�A, j 2 Z. If k 6= 0

then k
n
2 Z#n(A) by (4.1), which implies that � � �0 = k

n
+ j 2 Z#n(A) � Z
. Otherwise

�� �0 = j 2 Z n f0g � Z
. By Lemma 4.4 (
;�) is a spectral pair.

()) Suppose that (
;�) is a spectral pair. For any x 2 [0; 1) let Dx := 
\ (Z+ x). It

follows from [Ped96], Theorem 2, that

jDxj = jAj; Dx �Dx � nZA [ f0g(4.7)

for almost all x 2 [0; 1). We show that (Dx�x)+#n(B) is a complete residue system (mod n)

for every Dx satisfying (4.7). Note that #n(B) � #n(B) � nZB [ f0g, and observe that

k 6� m (mod n) for any k 2 nZA and m 2 nZB. Thus for any k1; k2 2 Dx � x and

m1;m2 2 #n(B) we must have k1 � k2 6� m2 � m1 (mod n) unless k1 = k2 and m1 =

m2. Hence k1 + m1 6� k2 + m2 (mod n). Since jDx � xj � j#n(B)j = n it follows that

(Dx � x) + #n(B) = (Dx � x) � #n(B) contains n distinct residue classes (mod n), and

hence is a complete residue system (mod n). Therefore

Dx + T = Dx � T = x+ Z

for almost all x 2 [0; 1). This implies that 
 tiles R by translates of T .

Theorem 1.1 is a simple consequence of Theorem 3.1 and Theorem 4.5.
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