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Abstract. In this paper we study scaling functions of a given regularity for ar-

bitrary dilation factor q. We classify symmetric scaling functions and study the

smoothness of some of them. We also introduce a new class of continuous symmet-

ric scaling functions, the \Batman" functions, that have very small support. Their

smoothness is established.

1. Introduction

Compactly supported wavelet functions are typically constructed from multiresolu-

tion analyses whose scaling functions are compactly supported, see [6] or [15]. It is an

important problem to construct scaling functions (and hence wavelets) that possess

desirable properties. These properties usually include high regularity, symmetry and

small supports.

Recall that a multiresolution analysis with dilation factor q, where q 2 Z and

jqj > 1, is a sequence of nested subspaces of L2(R)

� � � � V�2 � V�1 � V0 � V1 � V2 � � � � (1.1)

such that

Vj = span

�
f(qjx� k) : k 2 Z

�
(1.2)

for some f(x) 2 L2(R), and

[
j2Z

Vj = L2(R): (1.3)

The function f(x) is called the scaling function of the multiresolution analysis.

We shall mostly deal with multiresolution analyses whose scaling functions f(x)

are compactly supported and their integer translates are orthogonal in L2(R). Any
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such multiresolution analysis will allow us to construct an orthonormal wavelet basis

for L2(R).

Let f(x) 2 L2(R) be a compactly supported scaling function of a multiresolution

analysis with dilation q. Then
R
R
f(x) dx 6= 0 and f(x) satis�es a dilation equation

(see [7])

f(x) =
X
k2Z

ckf(qx� k);
X
k2Z

ck = q (1.4)

where ck are real and ck 6= 0 for only �nitely many k 2 Z. Suppose that f(x � k),

k 2 Z are orthogonal in L2(R). Then the coe�cients fckg must satisfy

X
k2Z

ckck+qj = jqj�j; 8j 2 Z; (1.5)

where �j = 1 if j = 0 and �j = 0 otherwise. The converse is not true though. For the

integer translates of f(x) to be orthogonal, there are additional conditions besides

(1.5), see [11]. Often those conditions are overlooked in the study of wavelets.

Orthogonal scaling functions for dilation q = 2 have been explicitly constructed

by Daubechies [6]. For any given regularity, Daubechies has constructed the minimal

support orthogonal scaling function and has studied the smoothness of those scaling

functions using Fourier analytic methods. Construction of minimal support as well

as non-minimal support orthogonal scaling functions for an arbitrary dilation q has

been presented by Heller [12]. Heller's constructions of minimal support orthogonal

scaling functions are explicit, but not completely rigorous, see x3.
In applications, it is often desirable to use scaling functions that are symmetric.

Construction of symmetric scaling functions for arbitrary dilation jqj > 2 is the main

concern of this paper. It is already shown by Daubechies [6] that, when q = 2, the only

symmetric orthogonal scaling function is the Haar function. However when jqj > 2,

symmetric orthogonal scaling functions with arbitrary regularity do exist. They were

constructed for q = 3 by Chui and Lian [2].

The contents of this paper are arranged as follows: In x2 we introduce the de�nitions
and the basic results on scaling functions. We classify the scaling functions for a given

dilation and regularity. In x3 we derive an explicit formula for all scaling sequences,
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making rigorous the previous work by Heller. In x4 we give explicit construction of

symmetric orthogonal scaling functions for any arbitray dilation jqj > 2. We establish

necessary and su�cient conditions for scaling functions to be symmetric, based on

the modulus of symbols. And �nally in x5 we discuss a new family of symmetric

orthogonal scaling functions (the \Batman" functions) and �nd their smoothness by

using the joint spectral radius of matrices.

We are greatly in debt to Chris Heil for valuable discussions and generous assistance

with regard to references. We also thank Je� Geronimo and George Donovan for

helpful discussions. Our study was motivated by a conversation we had with Jian-Ao

Lian in Pittsburg, and we would like to express our gratitude to Dr. Lian.

2. Basic Results

Let Sq(R) denote the set of all real sequences c = fck : k 2 Zg such that
P

k2Zck =

jqj and ck = 0 for all but �nitely many k 2 Z, where jqj > 1 is an integer. It is known

that for each c = fckg 2 Sq(R) there exists a unique compactly supported �c(x) (in

the sense of tempered distribution) satisfying

�c(x) =
X
k2Z

ck�c(qx� k); for almost all x 2 R and �̂c(0) = 1:
(2.1)

Moreover, any compactly supported solution �(x) (in the sense of tempered distribu-

tion) of the dilation equation (2.1) must be a scalar multiple of �c(x), see Daubechies

and Lagarias [8]. We call �c(x) the re�nement function corresponding to c.

De�nition 2.1. The symbol of c = fck : k 2 Zg 2 Sq(R) is the trigonometric

polynomial Mc(!) = 1
q

P
k2Zcke

ik!. A sequence c = fck : k 2 Zg in Sq(R) is a

q-scaling sequence if

X
k2Z

ckck+qj =

(
jqj if j = 0,
0 if j 6= 0:

(2.2)

The following proposition summarizes the basic properties of symbols and q-scaling

sequences.
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Proposition 2.1. (i) c 2 Sq(R) is a q-scaling sequence if and only if

q�1X
k=0

���Mc(! + 2�k
q
)
���2 = 1; all ! 2 R. (2.3)

(ii) Suppose that c = fck : k 2 Zg is a q-scaling sequence. Then
P

j2Zck+qj = 1 for

all k 2 Z.

Proof. (i) is well-known, and a proof can be found in Gr�ochenig [11] (ii) is proved in

Chui and Lian [2].

We de�ne two elementary transformations on Sq(R), the translation �m for a given

m 2 Z and the reection . They are de�ned as

�m(fckg) = fck�mg; and (fckg) = fc�kg:

The re�nement functions respectively satisfy

�(c)(x) = �c(�x); ��m(c)(x) = �c(x +
m
q�1

); m 2 Z: (2.4)

We also de�ne the convolution of b = fbkg and c = fckg of Sq(R) by b � c :=

f1
q

P
i bick�i : k 2 Zg. Please note the extra factor 1

q
. Now it is easy to check that

b � c 2 Sq(R) and Mb�c(!) = Mb(!)Mc(!).

De�nition 2.2. We say that b; c 2 Sq(R) are equivalent, and denote it by b � c, if

c = �m(b) or c = �m � (b) for some m 2 Z.

Theorem 2.2. Let b; c 2 Sq(R). Then jMb(!)j2 = jMc(!)j2 if and only if there

exist a; e; e0 2 Sq(R) where e � e0 such that

b = a � e; c = a � e0: (2.5)

Proof. Suppose (2.5) holds. Then Me0(!) = eim!Me(!) if e
0 = �m(e) and Me0(!) =

eim!Me(�!) if e0 = �m � (e). In either case jMb(!)j2 = jMc(!)j2.
Conversely, suppose that jMb(!)j2 = jMc(!)j2. Without loss of generality we will

assume that b0 6= 0 and bi = 0 for all i < 0, for if it isn't so, we'll consider an

equvalent (shifted) sequence with this property. We will assume the same for c. We

make the substitution z = ei!, let B(z) = Mb(!) and C(z) = Mc(!), and de�ne

~B(z) = zmB(1=z), where m = deg(B). Now the assumption reads B(z) ~B(z) =
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C(z) ~C(z). Notice that B(z) and C(z) must have the same degree and hence the

same number of zeros (counted with their multiplicity). Let A(z) = gcd(B(z); C(z)).

Then B(z) = A(z)E(z) and C(z) = A(z)E 0(z) for some E(z); E 0(z) 2 R[z]. By

assumption, A(z)E(z) ~A(z) ~E(z) = A(z)E 0(z) ~A(z) ~E 0(z) and since gcd(E(z); E 0(z)) =

1 we obtain that E 0(z) = ~E(z). Now (2.5) follows immediately by letting Ma(!) =

A(ei!), Me(!) = E(ei!), Me0(!) = E 0(ei!), and observing that E 0(z) = ~E(z) implies

e0 � e.

Theorem 2.2 essentially implies that to classify q-scaling sequences we need only to

classify the square of the modulus of their symbols.

The following theorem is due to Mallat [15], who proves it for q = 2. However, his

proof generalizes easily to all jqj > 1.

Theorem 2.3. Let c 2 Sq(R) be a q-scaling sequence. Then �c(x) 2 L2(R).

Remark. We call �c(x) the scaling function corresponding to c.

3. Scaling Sequences of Arbitrary Regularity

In this section we shall classify all q-scaling sequences for any given regularity r � 1.

A sequence c 2 Sq(R) is r-regular, or having regularity r, if Mc(!) = Hr
q (!)P (!) for

some trigonometic polynomial P (!), where Hq(!) := 1
jqj

Pq�1
k=0 e

ik!. Hq(!) is the

symbol of the Haar sequence h = fhkg with hk = 1 for 0 � h < jqj and hk = 0

otherwise. Proposition 2.1 (ii) shows that every q-scaling sequence is at least 1-

regular.

Let 
(C ) denote the space of all trigonometric polynomials of complex coe�cients,


(C ) = C [ei! ; e�i!]. De�ne the transfer operator Cq;r : 
(C ) �! 
(C ) by

Cq;r[f(!)] =
q�1X
k=0

���Hq(! + 2�k
q
)
���2rf(! + 2�k

q
): (3.1)

By Proposition 2.1, Q(!) = Hr
q (!)P (!) is the symbol of a q-scaling sequence if and

only if

Cq;r
h
jP (!)j2

i
= 1; P (0) = 1: (3.2)
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Lemma 3.1. Let g(!) 2 
(C ). Then Cq;r[g(!)] = 0 if and only if

g(!) = (1� cos!)r
X
n6=qk

cne
in! (3.3)

where cn = 0 for all but �nitely many n.

Proof. By Cq;r[g(!)] = 0,

jHq(!)j2rg(!) = �
q�1X
k=1

���Hq(! + 2�k
q
)
���2rg(! + 2�k

q
): (3.4)

Note that jei! � eiaj2 = 2� 2 cos(! � a). So

jHq(!)j2 =
q�1Y
j=1

����ei! � ei
2�j

q

����2 = 2q�1
q�1Y
j=1

�
1� cos(! � 2�j

q
)
�
: (3.5)

As a result, (1 � cos!)r is a factor of
���Hq(! + 2�k

q
)
���2r for all 1 � k � q � 1. So

(1� cos!)r must be a factor of g(!),

g(!) = (1� cos!)rg1(!):

Write g1(!) 2 
(C ) as g1(!) =
P

n2Zcne
in! where cn = 0 for all but �nitely many n.

Notice that

jHq(!)j2 = 1

q2

�����e
iq! � 1

ei! � 1

�����
2

=
1� cos q!

q2(1� cos!)
: (3.6)

Hence

jHq(!)j2rg(!) = 1

q2r
(1� cos q!)r

X
n2Z

cne
in!: (3.7)

Applying (3.7) to Cq;r[g(!)] = 0, using the fact that (1�cos q(!+ 2�k
q
))r = (1�cos q!)r,

q�1X
k=0

1

q2r
(1� cos q!)r

X
n2Z

cne
in(!+ 2�k

q
) = 0 for all !.

As a result,

q�1X
k=0

X
n2Z

cne
in(!+ 2�k

q
) = 0 for all !. (3.8)

The above is equivalent to cn = 0 for all n � 0 (mod q), because

q�1X
k=0

ein(!+
2�k
q

) =

(
0 n 6= qk;

qein! n = qk:
(3.9)

This proves the lemma.
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Lemma 3.2. For any r � 1 there exists a unique gr(!) 2 
(C ) in the form of

gr(!) =
Pr�1

n=0(an + bn sin!)(1� cos!)n where an; bn 2 C such that Cq;r[gr(!)] = 1.

Proof. First, we show that there exists a g(!) 2 
(C ) satisfying Cq;r[g(!)] = 1. For

all 0 � k � q � 1 write
���Hq(! + 2�k

q
)
���2r = hk(e

i!) with each hk(z) 2 C [z; 1
z
], where

C [z; 1
z
] :=

n
z�mf(z) : f(z) 2 C [z]; m 2 N

o
:

Now each hk(z) = z�N~hk(z) for some ~hk(z) 2 C [z], and we choose ~hk(z) so that

~hk(0) 6= 0 for at least one of the 0 � k � q�1. Then ~h0(z); : : : ; ~hq�1(z) are relatively

prime because they have no common root. Since C [z] is a principal ideal domain,

there exist f0(z); : : : ; fq�1(z) 2 C [z] such that

q�1X
k=0

~hk(z)fk(z) = zN ; or
q�1X
k=0

hk(z)fk(z) = 1:

Let uk(!) = fk(e
i!). Then

q�1X
k=0

���Hq(! + 2�k
q
)
���2ruk(!) = 1 for all !: (3.10)

We now de�ne g(!) = 1
q

Pq�1
k=0 uk(! � 2�k

q
). Then for all !,

q�1X
k=0

���Hq(! + 2�k
q
)
���2rg(! + 2�k

q
)

=
1

q

q�1X
k=0

���Hq(! + 2�k
q
)
���2rPq�1

j=0 uj(! + 2�k
q
� 2�j

q
)

=
1

q

q�1X
l=0

q�1X
j=0

���Hq(! + 2�l
q
+ 2�j

q
)
���2ruj(! + 2�l

q
)

=
1

q

q�1X
l=0

q�1X
j=0

���Hq(�l +
2�j

q
)
���2ruj(�l)

=
1

q

q�1X
l=0

1 = 1;

where �l = !+ 2�l
q
. This proves the existence of a g(!) 2 
(C ) such that Cq;r[g(!)] = 1.
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Now, we write g(!) as

g(!) =
r�1X
n=0

(an + bn sin!)(1� cos!)n + (1� cos!)r
NX

n=�N

cne
in!

=: gr(!) + (1� cos!)r
NX

n=�N

cne
in!:

Then it follows from (3.6) and (3.9) that

1 = Cq;r[g(!)] = Cq;r[gr(!)] + (1� cos q!)r
X
j

cqje
iqj!: (3.11)

But if cqj 6= 0 for some j � 0 then (3.11) is not possible, for as a trigonometric

polynomial the order of (1 � cos q!)r
P

j cqje
iqj! is at least qr while the order ofPq�1

k=0 jHq(!+
2�k
q
)j2rgr(!+ 2�k

q
) is at most qr� 1. Therefore cqj = dqj = 0, and hence

Cq;r[gr(!)] = 1.

Finally, suppose there is another ~gr(!) =
Pr�1

n=0(a
0
n+ b0n sin!)(1� cos!)n satisfying

Cq;r[~gr(!)] = 1 and ~gr(!) 6= gr(!). Then Cq;r
h
~gr(!) � gr(!)

i
= 0. Contradicting

Lemma 3.1.

We can actually write down the explicit expression for gr(!). First we note that

�
1� cos(! � 2�j

q
)
� �

1� cos(! � 2�(q�j)
q

)
�
= (cos! � cos 2�j

q
)2:

(3.12)

Hence by (3.5),

jHq(!)j2 =
8><
>:

2q�1q�2
Qq1

j=1(cos! � cos 2�j

q
)2 q = 2q1 + 1;

2q�1q�2(1 + cos!)
Qq1

j=1(cos! � cos 2�j

q
)2 q = 2q1 + 2:

(3.13)

Now again by (3.5),

jHq(! + 2�k
q
)j2r = O

�
(1� cos!)r

�

for 1 � k � q � 1. Therefore by (3.11) jHq(!)j2rgr(!) = 1 + O ((1� cos!)r), or

equivalently

gr(!) = jHq(!)j�2r +O
�
(1� cos!)r

�
: (3.14)
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So gr(!) is given by the �rst r terms of the power series expansion jHq(!)j�2r =P1
n=0 pn(1� cos!)n, namely,

gr(!) =
r�1X
n=0

pn(1� cos!)n: (3.15)

Remark. In Heller [12] the existence of gr(!) as a polynomial of 1� cos! of degree

less than r is not proven. The explicit formula for pn is derived by assuming this is

the case.

Theorem 3.3. Let A(!) 2 
(C ). Then A(!) = jMc(!)j2 for some q{scaling se-

quence c of regularity at least r if and only if A(!) � 0 for all ! 2 R and A(!) =

jHq(!)j2rg(!) for some

g(!) = gr(!) + (1� cos!)r
X
n6=qk

cn cos n!; (3.16)

where gr(!) =
Pr�1

n=0 pn(1� cos!)n is give by

pn =
q2r

2r(q�1)

X
k1+���+kq1=n

q1Y
j=1

�
kj+2r�1
2r�1

�
(1� cos

2�kj
q
)�kj�2r (3.17)

for q = 2q1 + 1, and

pn =
q2r

2r(q�1)

X
k0+k1���+kq1=n

�
k0+r�1
r�1

� q1Y
j=1

�
kj+2r�1
2r�1

�
(1� cos

2�kj
q
)�kj�2r

(3.18)

for q = 2q1 + 2.

Proof. We only need to show that pn in (3.16) are indeed given by (3.17) and (3.18).

We use the fact that for any m � 1

(1� !)�m =
1X
n=0

�
n+m�1
m�1

�
!n:

Hence for a 6= 1,

(! � a)�m = (1� a)�m(1� 1�!
1�a

)�m = (1� a)�m
P1

n=0

�
n+m�1
m�1

�
(1� a)�n(1� !)n:

It follows that

(cos! � cos 2�j

q
)�2r

= (1� cos 2�j

q
)�2r

P1
n=0

�
n+2r�1
2r�1

�
(1� cos 2�j

q
)�n(1� cos!)n:
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Similarly,

(1 + cos!)�r = 2�r
1X
n=0

�
n+r�1
r�1

�
2�n(1� cos!)n: (3.19)

Now for q = 2q1 + 1, (3.13) gives

jHq(!)j�2r =
q2r

2r(q�1)

q1Y
j=1

(cos! � cos 2�j

q
)�2r

=
q2r

2r(q�1)

q1Y
j=1

1X
n=0

�
n+2r�1
2r�1

�
(1� cos

2�kj
q
)�n�2r(1� cos!)n;

which yields (3.17). For q = 2q1+2, (3.18) is proved similarly, only this time there is

an extra factor (1 + cos!)r and (3.19) needs to be used.

Finally suppose that g(!) � 0 satis�es (3.16). Then

q�1X
k=0

���Hq(! + 2�k
q
)
���2rg(! + 2�k

q
) = 1 for all !:

Moreover, by the Riesz Lemma (see [7], pp. 172), there exists a trigonometric poly-

nomial B(!) =
P

n cne
in! such that jB(!)j2 = jHq(!)j2rg(!). Clearly, B(0) = 1. So

B(!) =Mc(!) for some q{scaling sequence c of regularity at least r.

We observe that pn � 0 for all n and p0 = 1. Therefore gr(!) > 0 and hence there

exists a q{scaling sequence c such that jMc(!)j2 = jHq(!)j2rgr(!).

Corollary 3.4. Let c 2 Sq(R) such that

jMc(!)j2 = jHq(!)j2rgr(!):

Then all integer translates �c(! � k); k 2 Z; are orthogonal in L2(R).

Proof. Suppose the corollary is false. Then there exists a !0 2 (0; 2�) with the

property that qN!0 � !0 (mod 2�) for some N 2 N such that Mc(!0 +
2�k
q
) = 0 for

all 1 � k � q � 1, see [11]. But since gr(!) > 0, Mc(!) = 0 if and only if Hq(!) = 0,

which leads to ! = 2�j

q
for j 6= qj 0. So for any 1 � k � q � 1, !0 +

2�k
q

= 2�j

q

for some j 6= qj 0. But if so then qN!0 6� !0 (mod 2�) for any N 2 N. This is a

contradiction.
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4. Symmetric Scaling Functions

We call c 2 Sq(R) symmetric if c = �m � (c) for some m 2 Z. A function f(x) is

called symmetric if f(x) = f(a� x) for some a 2 R.

Lemma 4.1. Let c 2 Sq(R). Then c is symmetric if and only if �c(x) is.

Proof. We prove the lemma for q > 0. For q < 0 the proof is similar

Suppose that c is symmetric. Then c = �m � (c) for some m 2 Z. Therefore

�c(x) = ��m�(c)(x) = �c(
m
q�1

� x);

and so �c(x) is symmetric.

Conversley, suppose that �c(x) is symmetric and �c(x) = �c(a � x). Without

loss of generality we let c = fck : k 2 Zg such that ck = 0 for all k 62 [0; m] while

c0cm 6= 0. Then �c(x) is supported exactly on [0; m
q�1

]. Now this means a = m
q�1

.

Hence �c(x) = ��m�(c)(x). We argue that c = �m � (c). Note that
�̂c(!) =Mc

�
!

q

�
�̂c

�
!

q

�
; �̂�m�(c)(!) =M�m�(c)

�
!

q

�
�̂�m�(c)

�
!

q

�
:

Therefore

Mc

�
!

q

�
=M�m�(c)

�
!

q

�

for all ! 2 R, which gives c = �m � (c).

Theorem 4.2. (i) Suppose that c 2 Sq(R) is symmetric. Let jMc(!)j2 = P (cos!)

where P (z) 2 R[z]. Then

P (z) = g2(z) or P (z) =

�
1 + z

2

�
g2(z) (4.1)

for some g(z) 2 R[z], g(1) = 1.

(ii) Conversely, for any P (z) = g2(z) or P (z) = (1+z

2
)g2(z) where g(z) 2 R[z] and

g(1) = 1, there exists up to equivalence a unique symmetric c 2 Sq(R) such that

jMc(!)j2 = P (cos!).

Proof. We �rst prove (i). Suppose that c 2 Sq(R) is symmetric. Then c = �m � (c)
for some m 2 Z, Mc(!) = eim!Mc(�!). Hence

jMc(!)j2 =Mc(!) �Mc(�!) = e�im!M2
c
(!) =

�
e�i

m!

2 Mc(!)

�2
:
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Since jMc(!)j2 � 0 is real, the imaginary part of e�i
m!

2 Mc(!) must be 0.

Now, if m = 2k then

e�i
m!

2 Mc(!) = Re

�
e�ik!Mc(!)

�
= g(cos!)

for some g(z) 2 R[z]. Hence jMc(!)j2 = g2(cos!). If m = 2k + 1 then

e�i
m!

2 Mc(!) = Re

�
e�i

(2k+1)!

2 Mc(2 � !2 )
�
= ~g

�
cos !

2

�

for some ~g(z) 2 R[z]. Hence

jMc(!)j2 = ~g2
�
cos !

2

�
: (4.2)

But cos2(!
2
) = 1

2
(1 + cos!), so

~g(cos !

2
) = g1(cos!) + cos(!

2
) � g2(cos!) (4.3)

where g1(z); g2(z) 2 R[z]. However, by (4.2) jMc(!)j2 = ~g2(cos !

2
) = P (cos!). It

follows that either g1(z) = 0 or g2(z) = 0. Since g2(z) 6= 0, we must have g1(z) = 0.

So

jMc(!)j2 = cos2(!
2
) � g22(cos!) = 1

2
(1 + cos!) � g22(cos!);

proving (i).

We next prove (ii). The existence is quite straighforward. Suppose that P (z) =

g2(z). Then Mc(!) = g(cos!) de�nes a symmetric c 2 Sq(R) as Mc(�!) = Mc(!).

Suppose that P (z) = (1+z
2
) g2(z). Then

Mc(!) = ei
!

2 cos !

2
� g(cos!) = ei!+1

2
p
2
� g
�
ei!+e�i!

2

�
(4.4)

de�nes a symmetric c 2 Sq(R) because Mc(!) = ei!Mc(�!).
We show that the symmetric c 2 Sq(R) is unique up to equivalence by contradiction.

Assume that there is another symmetric c0 2 Sq(R) such that jMc0(!)j2 = P (cos!).

By Theorem 2.2, there exist a; e; e0 2 Sq(R) such that e is equivalent to e0 and

c = a � e; c0 = a � e0:

Therefore there exists some k 2 Z such that

Mc0(!) = eik!Ma(!)Me(!) or Mc0(!) = eik!Ma(!)Me(�!);
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depending on the equivalence relation of e and e0. In the �rst case we must have

c0 = �k(c), and so c and c0 are equivalent. In the second case, because c and c0 are

both symmetric,

Ma(!)Me(!) = eim1!Ma(�!)Me(�!); Ma(!)Me(�!) = eim2!Ma(�!)Me(!):

Hence M2
a
(!) = ei(m1+m2)!M2

a
(�!). This implies that

Ma(!) = �eim!Ma(�!)

where m = (m1 + m2)=2 is clearly an integer. But Ma(0) = 1, so Ma(!) =

eim!Ma(�!). The equivalence of c and c0 follows from

Mc0(!) = eik!Ma(!)Me(�!) = ei(k+m)!Mc(�!):

Remark. It is possible for a nonsymmetric c 2 Sq(R) to satisfy (4.1). A simple

example is to let c0 = 4q, c1 = �4q, c2 = q and all other ck = 0. Then c is

nonsymmetric, but nevertheless jMc(!)j2 = (5� 4 cos!)2.

Example 4.1. For regularity r = 1 and arbitrary q > 3, by Theorem 3.3 any scaling

sequences c satisfy jMc(!)j2 = jHq(!)j2g(!) where

g(!) = 1 + (1� cos!)
X
n6=qk

cn cos n!:

Choosing g(!) = 1+ (1� cos !)(c1 cos!+ c2 cos 2!), and applying (4.1) and (4.4) we

obtain two scaling sequences c1 and c2 given by

Mc1
(!) =

1

2
Hq(!)

�
� + (1� �)ei! + (1� �)ei2! + �ei3!

�
; (4.5)

Mc2
(!) =

1

2
Hq(!)

�
� + (1� �)ei! + (1� �)ei2! + �ei3!

�
; (4.6)

where � = 1
2
�

p
6
4
and � = 1

2
+

p
6
4
. The scaling sequence c1 corresponds to the contin-

uous \Batman" scaling function (Figure 1), while c2 corresponds to a discontinuous

scaling function (Figure 2). For q = 3, the corresponding two wavelets (symmetric

and antisymmetric) are shown in Figure 3. We shall study the \Batman" function in

detail in x5.
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0.5 1 1.5 2 2.5

-0.25

0.25

0.5

0.75

1

1.25

Figure 1. The \Batman" scaling function of dilation q = 3 (Example 4.1)

Example 4.2. Consider scaling sequences for q = 5 and regularity r = 2. Choose

g(!) = 1 + 8(1� cos!) + (1� cos!)2
�
a1 cos! + a2 cos 2!

�
= 1 + 8z + z2 + (a1 + a2)z

2 � (a1 + 4a2)z
3 + 2a1z

4;

where z = 1�cos!. By Theorem 3.3 any c 2 S5(R) satisfying jMc(!)j2 = jHq(!)j4g(!)
is a scaling sequence. Solving for a1, a2 to complete the square for g(!) we obtain

two solutions,

g(!) = (1 + 4z � 4z2)2; or g(!) = (1 + 4z � 8
3
z2)2:

These lead to two symmetric scaling sequences

c1 = 1
5

n
�1; 0; 0; 2; 3; 6; 5; 6; 3; 2; 0; 0;�1

o
; (4.7)

c2 = 1
15

n
�2;�2; 1; 6; 9; 16; 19; 16; 9; 6; 1;�2;�2

o
: (4.8)
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-0.5
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1

1.5

Figure 2. The other (discontinuous) scaling function of dilation q = 3
(Example 4.1)

0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0.5

1

1.5

The corresponding scaling functions are shown in Figure 4 and Figure 5, respectively.

Both are continuous but only �c2
(x) is di�erentiable, see x5.

Example 4.3. As r grows, it becomes increasingly harder to �nd symmetric scal-

ing sequences by hand. Fortunately, Theorem 4.2 can be used in conjunction with
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0.5 1 1.5 2 2.5

-1

-0.5

0.5

Figure 3. Two \Batman" wavelets (long and short) for dilation q = 3

standard software tools such as Mathematica. Figure 6 shows two minimal support

symmetric scaling functions for q = 4 and r = 3. The polynomial P (z) (de�ned in

Theorem 4.2) has the form P (z) = 1
2
(1 + z)g2(z).

5. The \Batman" Scaling Function

In Example 4.1 (Figure 1) we have introduced the \Batman" scaling function (of

dilation q � 3), which is given by the q-scaling sequence

c = f�; 1
2
; 1� �; 1; : : : ; 1| {z }

q�3

; 1� �;
1

2
; �g (5.1)

where � = 1
2
�

p
6
4
. The corresponding re�nement equation is

f(x) = �f(qx) + 1
2
f(qx� 1) + (1� �)f(qx� 2) + f(qx� 3) + � � �

+f(qx� q + 1) + (1� �)f(qx� q) + 1
2
f(qx� q � 1) + �f(qx� q � 2):

Let �q(x) denote the \Batman" scaling function corresponding to the \Batman"

scaling sequence for dilation q given by (5.1). The support of �q(x) is precisely

[0; q+2
q�1

], which gives [0; 2:5] for q = 3 and [0; 2] for q = 4. In what follows, we show

that �q(x) are continuous for all q and determine the H�older exponent of �q(x) using



CONSTRUCTION OF COMPACTLY SUPPORTED SYMMETRIC SCALING FUNCTIONS 17

0.5 1 1.5 2 2.5 3

-0.25

0.25

0.5

0.75

1

1.25

Figure 4. Continuous scaling function of dilation 5, r = 2 (Example
4.2)

the joint spectral radius of matrices. Detailed discussions on the joint spectral radius

can be found in Daubechies and Lagarias [10], Berger and Wang [1], and Lagarias

and Wang [13].

Consider the general two-scale dilation equation

f(x) =
NX
n=0

cnf(qx� n) (5.2)

where c0cN 6= 0 and q � 2. If f(x) is a compactly supported solution to (5.2) then its

support is [0; N
q�1

]. The regularity of f(x) can be obtained by rewriting (5.2) into the

equivalent form of product of matrices. Let L = d N
q�1

e and v(x) be the L-dimensional

vector

v(x) = [f(x); f(x+ 1); : : : ; f(x+ L� 1)]T ; 0 � x � 1:

De�ne the L� L matrices Pk 2ML(R), 0 � k � q � 1,

Pk = [cq(i�1)�(j�1)+k]: (5.3)
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0.5 1 1.5 2 2.5 3

-0.2

0.2

0.4

0.6

0.8

1

1.2

Figure 5. \Smooth hat" di�erentiable scaling function of dilation 5,

r = 2 (Example 4.2)

Then (5.2) is equivalent to

v(x) = Pd1v(�qx); (5.4)

where x 2 [0; 1] has the base q expansion

x = 0:d1d2d3 � � � ; all 0 � dj � q � 1

and �qx is the fractional part of qx,

�qx � qx (mod 1): (5.5)

Iterating (5.4) we obtain

v(x) = Pd1Pd2 � � �Pdmv(�
m
q x): (5.6)

All Pk are column stochastic, i.e. the entries of each column sum up to one. Therefore,

the vector [1; 1; : : : ; 1] is a common left 1-eigenvector of all Pk. Hence by taking any
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Figure 6. Two scaling functions of dilation 4, r = 3 (Example 4.3)

nonsingular Q 2 ML(R) such that the �rst row of Q consists all 1's, all Pk can be

simultaneously block triangularized

QPkQ
�1 =

"
1 0
� Ak

#
; 0 � k � q � 1: (5.7)

Proposition 5.1. Suppose that the joint spectral radius �̂ = �̂(A0; A1; : : : ; Aq�1) <

1. Then the re�nement function satisfying (5.2) is continuous. Furthermore, let
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r = logq(1=�̂). Then f(x) 2 Cr�� but f(x) 62 Cr+� for all � > 0, and f(x) 2 Cr if and

only if the semigroup of matrices generated by Ak=�̂, 0 � k � q � 1, is bounded.

Proof. See Wang [16] or Collela and Heil [5].

Theorem 5.2. The \Batman" scaling function �q(x) is continuous, with H�older ex-

ponent logq(4=
p
6).

Proof. We �rst consider the case q � 4. We have L = d q+2
q�1

e = 2 and the q matrices

P0; : : : ; Pq�1 are all 2 by 2 matrices. Let Q =
h
1 1
0 1

i
. Then

QPkQ
�1 =

"
1 0
� Ak

#
:

All Ak are scalars. Now by (5.3)

Pk =

"
ck ck�1
cq+k cq+k�1

#
;

and it is straightforward to check that

�̂(A0; A1; : : : ; Aq�1) = max(jA0j; jA1j; : : : ; jAq�1j) =
p
6

4
:

The theorem follows immediately from Proposition 5.1.

In the case q = 3 the support of �3(x) is [0; 2:5] so L = 3 and the matrices Pk are

3 by 3. We have

QPkQ
�1 =

"
1 0
� Ak

#
by taking Q =

2
64 1 1 1
0 1 1
0 0 1

3
75 ;

where

A0 =

"
� 0

� 1
2
� �

#
; A1 =

"
1
2
� � �
0 �

#
; A2 =

"
1
2
� � 1

2
� �

0 0

#
:
(5.8)

Note that for each A = [aij] 2M2(R),

kAk1 = max
n
ja11j+ ja21j; ja12j+ ja22j

o
(5.9)

de�nes a matrix norm on M2(R). (k:k1 is actually the induced operator norm from

the L1-norm on R2 .) Since

2j�j =
p
6

2
� 1 <

1

2
� � =

p
6

4
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it follows that all kAkk1 = 1
2
� � =

p
6
4
. This forces �̂(A0; A1; A2) �

p
6
4

and the

semigroup generated by fAk=
p
6
4
g be bounded (cf. Berger and Wang [1], Lemma II).

However �̂(A0; A1; A2) �
p
6
4

because
p
6
4

is an eignevalue of A0. Therefore

�̂ = �̂(A0; A1; A2) =

p
6

4
; (5.10)

proving the theorem for q = 3.

The same technique can be applied to show that the \Smooth hat" scaling function

in Figure 5, corresponding to the 5-scaling sequence de�ned in (4.8), is di�erentiable.

Theorem 5.3. The symmetric scaling function �c(x) where

c = 1
15
f�2;�2; 1; 6; 9; 16; 19; 16; 9; 6; 1;�2;�2g

is di�erentiable.

To prove the above theorem we �rst obtain the �ve matrices Pk, 0 � k � 4. It is

then straightforward to check that they have a common left 1
5
-eigenvector [1;�2; 3] in

addition to the common left 1-eignevector [1; 1; 1]. The rest follows by simultaneously

triangularizing Pk and applying results in Daubechies and Lagarias [9]. We omit the

details here.
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