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NONNEGATIVE RADIX REPRESENTATIONS FOR
THE ORTHANT R}

JEFFREY C. LAGARIAS AND YANG WANG

ABSTRACT. Let A be a nonnegative real matrix which is expanding, i.e. with
all eigenvalues |A| > 1, and suppose that |det(A4)| is an integer. Let D consist
of exactly | det(A)| nonnegative vectors in R™. We classify all pairs (4, D) such
that every z in the orthant R” has at least one radix expansion in base A
using digits in D. The matrix A must be a diagonal matrix times a permutation
matrix. In addition A must be similar to an integer matrix, but need not be
an integer matrix. In all cases the digit set D can be diagonally scaled to lie
in Z™. The proofs generalize a method of Odlyzko, previously used to classify
the one—dimensional case.

1. INTRODUCTION

For radix expansions to base b, the standard digit set D = {0,1,...,b — 1} has
the property that every real number x has at least one radix expansion of the form

(1.1) r==% Y dib™, k€Zandall dj €D.
j=—k
We call digit sets with this property feasible for base b, following Odlyzko [12].
Knuth [8] raised the question of describing, for base 10, all feasible digit sets D of
size 10. There are indeed feasible digit sets for base 10 other than the standard one,
for example, the non-standard digit set D = {0,1,2,3,4,50,51,52,53, 54}. More
generally, one can ask the same question for an arbitrary integer base b with |b| > 2,
see Matula [11].
An important object in studying feasibility of a digit set is the set

(1.2) T(A, D) = {i A7id;: alldj €D }
7=0

which 1s a compact set that satisfies the set—valued functional equation

(1.3) AT = | J(T+d).

deD
If (b, D) is feasible then (1.1) gives

R = i(D bjT(b,D)),
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and this shows that 7'(b, D) must have positive Lebesgue measure. In terms of T' a
necessary and sufficient condition for feasibility of a pair (b, D) is that T contains
an open interval which has 0 in its closure. This criterion i1s not easy to check,
however.

It is easy to see that if |D| < |b| then D cannot be feasible, for (1.3) implies that
the Lebesgue measure of T(b,D) is 0. On the other hand, when |D| > |b| there
are many feasible digit sets, and the task of classifying them seems intractable.
The most interesting case occurs for feasible digit sets with |D| = |b|, which we
call minimal feasible. In this case the representations of real numbers (1.1) using
a minimal feasible digit set D are essentially irredundant. More precisely, for a
feasible digit set each real # has only finitely many expansions (1.1), and aside from
a set of Lebesgue measure zero, each & has a constant number of representations,
this number being 1 or 2, depending on D. If 0 lies in the interior of T'(A, D) this
number is 2, and it is 1 otherwise. However even the problem of classifying all
the minimal feasible digit sets appears difficult, and it currently remains an open
problem.

In 1978 Odlyzko gave a complete classification for the special case of nonnegative
minimal feasible pairs (b, D). Let Ry := {z : > 0} and Z4 := RT NZ. Odlyzko
[12] proved the following:

Theorem 1.1 (Odlyzko 1978). Let b € Z, with b > 2. Suppose that &, 0 < i <k,
are subsets of {0,1,...,b— 1} such that

(1.4) Eo+&+- - +&=1{0,1,...,b—1},
(1.5) €l - |Ex] - -~ [Ex] = b,

(1.6) 1e&.

Then for any o > 0 the digit sel

(1.7) D=a& +ably + -+ ab" &

1s minemal feasible for base b. Conversely, if D s minimal feasible for base b and
consists of b nonnegative elements, then D is of the form (1.7) for some o > 0 and

some subsets £, &1, ..., & of {0,1,...,b—1} satisfying (1.4)-(1.6).

Odlyzko’s proof showed that 7'(b, D) is then a finite union of intervals of length
a. In [9] we observed that for & > 2 a converse result holds, that if |D| = b and
T(b,D) is a finite union of intervals, then for some translate D' = D + # the pair
(b,D’) is nonnegative feasible.

An important feature of Odlyzko’s proof is that it reduces the classification
problem to a problem of factoring cyclotomic polynomials into zero—one polynomial
factors. All possible zero—one factorizations were determined earlier by Carlitz and
Moser [3].

This paper formulates and proves an n—dimensional generalization of Theo-
rem 1.1. Let A € M,(R) be an expanding matrix and P C R". We say the
digit set D is feasible for base A, or simply (A, D) s feasible, if every x € R” can
be represented in the form
(1.8) X:Q(Z A—J’dj), keZandalld; €D,

j=—k
where @ is of the form @ = diag(+1,+1,...,+1). We say that (4,D) is nonneg-
atiwe if A 1s a nonnegative matrix and D consists of nonnegative vectors.
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As in the one—dimensional case, associated to any pair (A, D) is the compact set

(1.9) T(A,D) = {i A7id; : alld; €D }

7=0

It satisfies the set—valued functional equation

(1.10) A = | +a),

and is the attractor of the iterated function system {¢; : 1 < i < |D]|} given by
gDZ'(X) = A_l(X + dl), d; € D.
The feasibility condition (1.8) implies that

(1.11) R" = U Q(DAj(T(A,D))),

Q=diag(+£1,...,£1)

which shows that T'= T(A, D) has positive Lebesgue measure. Now (1.10) implies
that there are no feasible sets D with |D] < |det(A)|. We say that D is minimal
feasible if |D| = | det(A)[; this is the case we consider in this paper. When (A, D)
i1s minimal feasible then 7' is a self-affine tile in the terminology of Lagarias and
Wang [9], [10].

Our object in this paper is to classify those nonnegative (A4,D) in R" such that
D is a nonnegative minimal feasible digit set. The overall structure of the proofs
follow Odlyzko’s approach. However some new phenomena appear in dimensions
n > 2, and there are necessarily extra complications in the proofs. A key feature
of the proofs is a determination of the structure of the associated tile T'(A, D).

More precisely, let R%} := {[z1,.. L xn]t o all #; > 0} denote the nonnegative
orthant in R” and let Z%} := R} NZ". It is clear that a nonnegative pair (4, D) is
feasible if and only if all x € R/ have at least one radix expansion

(1.12) x= Y A7d;, k€Zandalld; €D.
j=—k
Our first main result asserts that, unlike the one-dimensional case, there are

substantial restrictions on the nonnegative matrices A that possess a nonnegative
minimal feasible digit set. We show:

Theorem 1.2. Let A € M,(R) be a nonnegative and expanding matriz with
| det(A)| = b that has a nonnegative feasible digit set with |D| =b. Then

(1.13) A=BP,

m which B 1s a positive diagonal matriz and P s a permutation matriz. Fur-
thermore if B = diag(by,...,b,) and the permutation o associated to P has cyclic
decomposition ¢ = 7179 - - - T then

(1.14) b= [ i€z for1<j<k
iETj

with all b > 2. Conversely, for every such A there exists a nonnegative minimal
feasible digit set D.
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Theorem 1.2 is derived as a consequence of the stronger Theorem 5.2 proved in
Section b.

The matrix A in (1.13) is always expanding, but B need not always be expanding,
see Example 5.1 in Section 5.

In Section 2 we establish the necessary condition A = BP in Theorem 1.2, which
implies that A* must be a diagonal matrix for some k& > 1. To proceed we study
the special case of diagonal matrices B and obtain:

Theorem 1.3. Let B = diag(by,...,b,) be an expanding diagonal matriz, and
let D C RY be a nonnegative mimimal feasible digit set for base B. Then there

exist nonnegative one—dimensional digit sets D1, ..., D, C R, each D; is minimal
feasible for base b;, such that

(1.15) D=Dy xDyx- - xD,.

In particular,

(1.16) T(A,D)=T(b1,D1) x - x T(bn, Dy).

This result combines with Odlyzko’s classification of one—dimensional nonnega-
tive digit sets to give a complete classification for nonnegative diagonal matrices.
We establish Theorem 1.3 in several steps. First, in Section 3 we show that with a
suitable scale change in D we reduce to the case that D C Z", and, more impor-
tantly, then show that T'(A4,D) is a finite union of lattice n—cubes (Theorem 3.2).
Once this is done, the problem is transformed to questions concerning factoriza-
tions of multivariate polynomials with zero—one coefficients into factors of a similar
form. For this we prove a multivariate generalization of the criterion of Odlyzko
(Theorem 4.1).

Finally, in Section 5 we consider the case of general nonnegative A of the form
(1.13). Using the fact that if (A, D) is a nonnegative minimal feasible digit set, we
observe in Section 2 that so is (Ak,DAyk) where

k-1
Day = {ZAjdj . each d; € D}.
i=0

We may choose A* diagonal and then Theorem 1.3 applies to (Ak,DAyk). We
exploit this fact to classify general (A, D) in Theorem 5.2. At the same time we
deduce the necessary condition (1.14) and complete the proof of Theorem 1.2 as a
corollary.

The assumption of nonnegativity is crucial to all the results of this paper. With-
out this restriction there are minimal feasible digit set whose associated region
T(A,D) has a fractal boundary, or where T(A, D) consists of infinitely many con-
nected components. Some examples can be found in Barnsley [2], Gilbert [4] and
Vince [13]. For minimal feasible digit sets the region T(A, D) tiles R”, such tiles
are studied in [1], [4], [5], [7], [9], [10], [13].

We thank A.M. Odlyzko for helpful discussions.

2. NONNEGATIVE FEASIBLE PAIRS: (GENERAL PROPERTIES

In this section we assume the feasibility of (A4, D), so that |D| > | det(A)|. Tter-
ating the functional equation (1.10) yields

(2.1) AMTy= |J (T+4)

deD4s m
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where
m—1

(2.2) Dam = {Z Ajdj : each dj; € D}.
7=0

Then for arbitrary digit sets we have:

Lemma 2.1. For any m > 1, the pair (A, D) is feasible if and only if the pair
(A™,Da ) is feasible.

Proof. The lemma follows directly from

{i A7id;: keZ,alldjeD) = { i ATMd; k€2, all dj € Dap ).
j=—k =k

O

Next, we assume nonnegativity and show:

Lemma 2.2. Suppose that (A, D) is nonnegative and feasible. Then 0 € D.
Proof. 1f 0 ¢ D then 0 cannot have a radix expansion, i.e., forallk € Z and d; € D
0+ i ATId;.

j=—k
This contradicts the feasibility of (A, D). O

The orthant—covering property (1.12) puts a significant restriction on the possible
form of A, which forms the necessary condition (1.13) in Theorem 1.3.

Lemma 2.3. Suppose that (A, D) is nonnegative and feasible. Then A = BP where
B is a nonnegative diagonal matriz and P s a permutation matriz. In particular
A™ s a diagonal matrix for some m > 0.

Proof. Since (A, D) is nonnegative and feasible,

R = {’ikA—fdj - keZ ald; eD}.
=

So A(R}) = R} and A must map the z;—axis to some z;—axis for each 1 <1 < n.
Hence A = BP for some diagonal B and permutation matrix P.
If o is a permutation, its associated permutation matrix P, has

(Pa)i,a(i) =1
and we let ¢ act on diagonal matrices by
0(B)ii = Bo(i),oi)-
Then for any diagonal matrix B
BP, = P,(c=}(B)).

Using this we conclude that (BP,)* = B'P% for some diagonal matrix B’, which
implies that A" is a diagonal matrix. O
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Note that in Lemma 2.3 A must always be an expanding matrix for feasible digit
sets to exist, but, the matrix B in Lemma 2.3 is not necessarily expanding, see
Example 5.1 in Section 5.

Lemma 2.1 and Lemma 2.3 reduce the study of nonnegative feasible pairs (A4, D)
to those for diagonal matrices, except that we must resolve which digit sets on A™
are of the form Dy ,, for some digit set D on A. We accomplish this in Section 5
for nonnegative minimal feasible digit sets, after first classifying the allowable form
of Da,m when A™ is diagonal in Section 4.

Next, we suppose that (A, D) is a nonnegative minimal feasible pair, and we
deduce some facts concerning 7' = T(A, D). The relation (1.12) implies

(2.3) Ry = [J A™(T(4, D)),

so T has positive Lebesgue measure p(7') > 0. Now D4 ,, has cardinality
(2.4) [Dam| <[P =|det(A)|™,

and taking the Lebesgue measure of both sides of (2.1), using u(7) > 0 implies
that |Dyg | = |det(A)|™ and the measure-disjointness property

(25) /,L((T—Fdl)ﬂ(T—Fdz)) IOifdl,dQEDAym, d17£d2.
Lemma 2.2 now shows that 0 € D, so we have
(2.6) D=Da1CDPa2CDsaszC -
Now set
(27) DA,oo = U DA,m~
m=1

In view of (2.6) the measure—disjointness property extends to

(28) /,L((T—|— dl) N (T + dz)) =0 for dl, d,; € DA,ooa d; ;é ds.
Furthermore the relation (2.3) now becomes
(2.9) R = |J (1+a).

d€D 4,00

By measure—disjointness this says that the orthant R’} is perfectly tiled with copies
of T', centered at points of D4 . (This is actually a self-replicating tiling of R”
in the sense of Kenyon [6], [7].) For this reason we call T(A, D) the tile associated
to D.

3. DIAGONAL CASE: STRUCTURE OF TILE

Suppose that B is a nonnegative diagonal matrix that is expanding. There is
then considerable freedom to rescale the digit set D. For any positive real factors
$1,82, ..., 8y set S = diag(s1, s2,...,8,) and define

(3.1)
S(D) = {d' = Sd = [s1dy, $9ds, ..., sndn]T : d = [dy,do,...,do]T € D},

If (B, D) is feasible, then so is (B, S(D)) and vice versa, since
(3.2) T(B,8(D)) = S(T(B,D)).

This equality is a consequence of (1.9) because S commutes with B.
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Lemma 3.1. Let B = diag(by, bo, ..., b,) and suppose that (B, D) is nonnegative
and minimal feasible. For any subset I C {1,2,...,n} let Dy denote the subsel of
the digit set D consisting of all digits d whose j—th coordinate d; =0 for all j & 1.
Then

(3.3) 0, = [
i€l
In particular all b; are integers. If By := diag(b; : ¢ € I) and Dy is re-interpreted as

a set of vectors in RU! by dropping coordinates outside I, then (Br,Dy) is minimal
feasible in RUI.

Proof. We use the radix expansion (1.12) confined to the I-face of R}, which is
(3.4) Ri = {[xl,xz, ozt all z;>0and z; =01if j & I}.

Since B is diagonal, all x € Rﬂ_ can be represented by a radix expansion (1.12)
using digits in Py. Thus [, Bk (T(BI, DI)) covers Rl_lfl, hence (By, Dy) is feasible
in RY. Also T'(By,Dy) has positive |I|-dimensional Lebesgue measure, which forces

Dr| > det(By) = [] b:.
i€l

To show that equality occurs, we consider all |D;|* representatives
E—1
DL, ={Y_Bd;: alld;eD;}.
j=0
Then for any f = [f1,..., f,]T € Déyk, its i—th coordinate f; for 7 € I satisfies
E—1
|fil = ‘Z bld;
j=0

in which ¢' = maxqep |d|w is a constant. So there can be at most HieI(C’bf) =

< CbF

Cl[l(Hz’eI b;)* different elements in ngyk. By choosing k sufficiently large we obtain
|Dr| < Tlies bi- This proves (3.4). The fact that b; € Z follows by choosing I = {i}
and, the feasibility of (Br, D) follows from the feasibility of (B, D). O

Theorem 3.2. Suppose that B = diag(by, ..., b,) with all b; > 1, and that D is a
nonnegative digit set. Then (B, D) is minimal feasible if and only if |D| = | det(B)|
and there exist positive scaling factors s1,sa,...,8, with S = diag(sy, sa,...,5n)
such that the scaled digit set D* = S(D) has the following two properties:
(i) D* C Z", and furthermore D* contains all 2" zero-one vectors. (A zero—one
vector is a vector whose entries are all 0 or 1.)
(i) T(B, D) is a finite union of lattice cubes, i.e. there evists a finite set & C Z7}
containing 0 such that

(3.5) 7(B,D*) = [ J(f+[0,1]").
fe&
Moreover, (£ — &) N (D*B,oo - D*B,oo) ={0}.
For any such (B, D) the scaling factors S for which (1), (ii) hold are unique.
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Proof. First we show that properties (i), (ii) are sufficient. According to (ii),
[0,1]" C T(B,D*). Now (3.2) gives

[0,s7 x -+ x [0,s;1] CT(B,D),

whence

RT C | B™([0,57"x -+ x[0,57']) € | B™(T(B,D)).
m=1 m=1
This shows that D 1s feasible, and it is minimal by hypothesis.

Conversely, suppose (B,D) is minimal feasible. We prove the existence and
uniqueness of S such that (i), (ii) hold by induction on the dimension n. The base
case n = 1 was established by Odlyzko ([12], Lemma 5, and his equation (3.3)).
The assertion

(=& N (Pp o — Ppoo) = {0}
is a consequence of the measure—disjointness property (2.8).

Suppose the theorem is true for dimensions up to n — 1. We consider the
sets I; = {1,2,...,n}\ {i} and apply the induction hypothesis on each of the
(n — 1)-dimensional orthants Ri’ bounding R}, to (By,,Dr,), which we may do
by Lemma 3.1. In each case we get unique scaling factors (5(12), ce E;gl), .. .,5%))
where §§Z> is omitted, and these rescale the attractors T(By,, Dy,) so that each is a

finite union of disjoint (n — 1)~dimensional unit cubes. Furthermore they must be
NG
J J
i,k # j. So we have a unique set of scaling factors (s1, sa,...,8,), 8 = sgk) for any
k # 4, such that D* = S(D) contains 0 and all zero-one vectors except possibly

consistent with each other where they are both defined, 1.e., whenever

e1+es+---4e,=[1,1,..., 17

Also, the induction hypothesis implies that any digit d € D* containing a zero
entry necessarily lies in Z". We do not yet know that D* C Z”, however.
We proceed by a series of claims.

Claim 1. T = T(B,D*) contains the unit cube [0, 1]".

Suppose not. If all nonzero digits d € D* have some coordinate at least 1,
then all |B*d|., > 1 since B is diagonal. Thus the only expansion (1.12) having
x € (0,1)" would have k < 0, so [0,1]" C T. Hence there must be some digit
7z = [z1,...,2,]7 € D* with 0 < z; < 1 for all i. (If some z; = 0 then we know
z € Z".) For each 1 < ¢ < n we denote

wi= min L5 f=(h, LT}

feD*\Z"

So 0 < w; < 1 for all i. This implies that for any 0 # d € D*, all B*d with k > 0
either give vectors outside the unit cube or else have the i—th coordinate at least
w;, hence T must contain the slab

Si = [0,1)"71 x [0, w;] x [0,1]" ",
SO

CJSZ'QT.

i=1
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Now ey € D* and we compare T'+es with T4z where z € D* with all its coordinates
0 < z; < 1. We get a contradiction by showing that

(3.6) ﬂ((T—l—z)ﬁ(T—l—ez)) >0,

contradicting the measure—disjointness property (2.8). To show (3.6) we need only
to observe that

TH4ezD S +ex=[0,1]x[1,14ws] x[0,1]"2

T+z2S5+2z=[z1,w + 2] X [z2,20+ 1] X -+ X [zn, 20 + 1].
Since 0 < z;, w; < 1 for all 72, both T'+ z and T + e contain the small cube
[21,1,...,1]T 4+ £[0, 1] for some sufficiently small €, which establishes (3.6). Thus
Claim 1 follows.

Claim 2. e :=ej; +es+---+e, =[1,1,...,1]T € D*.
Suppose not. Now, [0,1]" C T, so B(T) D [0,2]". Using the self-affine property

(3.7) B(T)= |J (T+4q)

deD*
and the property that T+ d and 7" are measure—disjoint for all d € D*, there must
be a small cube

(3.8) e+¢[0,1]" C T.

To see this, note that at least one T'4d covers e+£[0, 1]* when ¢ is sufficiently small.
For this to happen, d = [dy, ..., d,]" must satisfy d; < 1+ ¢ for all i. Now none of
the translated tiles T+d, 0 # d € D* contains any interior point of e 4 ¢[0, 1]”, for
if they did then T would overlap some d 4+ T', contradicting measure—disjointness.
Hence (3.8) holds.

Now we obtain a contradiction using the self-affine property (3.7). The tile T
contains [0, 1]?, so T must contain all (n — 1)-dimensional faces of the unit cube
[0, 1], for if not T' would overlap at least one translated tile T'+d for some zero—one
digit 0 # d € D*. So the boundary of B(T') contains all (n — 1)-dimensional faces
of [0,b1] x -+ x [0,b,]. But the tile 7" has the unit cube with at least a small cube
e+ ¢[0, 1] attached to it, and | Jgcp. (T + d) can never produce the “upper” flat
face [0,b1] x - - x [0, bp—1] X {bs }, because the projecting piece ruins it. Thus B(T)
cannot be tiled by translates of 7', a contradiction that proves Claim 2.

Claim 3. T 1s a finite union of lattice cubes and D* C Z".

We assign a total ordering to Z7} = Z" MR with the property that if |g|; < |g|1
then g < g’ in the ordering, where |x|; := Y ", |2;| for any x € R". (There are
many such orderings, and all we need is one of them.) We prove the following
hypothesis by induction on g € 27 :

(1) p(T' N (g+1[0,1)")) > 0 implies g +[0,1)" C 7.

(i) P*N(g+1[0,1)") C Z".

For g = 0, the smallest element in Z7} with respect to the ordering, the hypothesis
is clearly true: we have [0,1)" C T and [0, 1)"ND* = {0}, forif 0 #d € [0, 1)"ND*
we would have /J(T Nn(d+ T)) > 0 which contradicts measure—disjointness.

Suppose that the induction hypothesis is true for all g’ < g. To prove it for g
we argue by contradiction. So suppose that the hypothesis is false for g, so either

p(TN(g+[0,1)") > 0but g+1[0,1)* £ T, or D*N(g+[0,1)*) ¢ Z".
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If T2 g+ [0,1)" but there exists ad € D* N (g + [0,1)") with d ¢ Z", then
again u(TN(d+T)) > 0, a contradiction. So

(3.9) p(T'N(g+[0,1)") >0and g+1[0,1)" £ 7.

Notice that (Jgepx (7' 4 d) covers g +[0,1)" (in measure—disjoint fashion). So
B,
there exists at least one 0 # d € P}, such that

(3.10)
p((T+d)N(g+[0,1)")) > 0, or equivalently u(7 N (g —d+[0,1)")) > 0.

This gives rise to two cases: d € Z" and d € Z".

Ifd € 2", then g—d € Z" and (3.10) impliesg—d € Z}. So g—d < g and hence
T2 g—d+[0,1)", which together with (3.9) contradicts measure—disjointness.

Now suppose that d € Z"*. Let d = do+ -+ + B*d;, where all d; € D* and
dp #0. If k£ > 1 then clearly d — d; € Z7} and |d — d;|; > 1 for all d;. So each
d; € gi +10,1)" for some g; < g and hence g; € Z". But this implies d € Z", a
contradiction. Therefore k¥ = 0 and d € D*. Furthermore d € g + [0, 1)" because
if not then there would be a g’ < g such that d € g’ +[0,1)", which again would
give d € Z" and hence a contradiction. We now show that this contradicts the
measure—disjointness condition. Notice that any 0 # d € DEJ satisfying (3.10)
must lie in g + [0, 1)”, so there exists exactly one such 0 #d € Dy ;. Hence

TU(T+d)2g+[0,1)"
Let £ be the unique vector in d 4+ [0, 1)* N Z". So f — g is a zero—one vector,
f — g € D*. Since [0,1]" C T' it follows that
(T +d)N (T +E—g) >0,

a contradiction. So we have proved our hypothesis (i) and (ii), and Claim 3 follows.

Finally, we prove that (£ — &) N (Dj o, — Pj o) = {0}. Suppose not, then
there exist f1,fs € £ and g1,g € D*B,oo such that f; —fs = g1 — g2 # 0. So
f; + g» = f5 4+ g1 and hence

p((T+g1) N (T + g2)) > 0.
This contradicts the measure—disjointness property (2.8). O

4. DIAGONAL CASE: ZERO—ONE POLYNOMIALS

Let B = diag(by,...,b,) be an expanding nonnegative diagonal matrix. We
now show that the criterion of Theorem 3.2 for (B,D) to be nonnegative and
minimal feasible can be reformulated in terms of polynomial factorizations of zero—
one polynomials. Let X" be a finite subset of Z7} := Z" N R/} and assign to it the
generating polynomaual

(4.1) px(z) =px(z1,...,2n) = sz,

dex
in which z9 := zfl ng ---z%= Such a polynomial is just a zero—one polynomial, i.e.
px(z) € L]z, ..., zy] with all coefficients zero or one.
According to Theorem 3.2 we have
(4.2) T(B,D*) = | J(E+[0,1]")

fe&
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for some finite & C Z7} such that (£ — &) N (Dg ., — Pj o) = {0}. Set

(4.3) BI{[gl,gz, gt 0§m<bz}.

Now the functional equation (3.7) can be encoded using (4.2) as the polynomial
function identity

(4.4) pe(2”)pi(2) = pe (2)pp+(2),
where zP = (zlfl, oy 2im).

More generally, one can consider the polynomial factorization identity
(4.5) f(2")g(2) = f(z)h(z),

where f(z), g(z), h(z) are all zero—one polynomials.

Classifying all solutions of (4.5) seems an interesting problem. It includes many
solutions other than those coming from minimal feasible digit sets. For example,
special cases of this identity arise from integer self-affine tiles T(B, D) (as defined
in [10]) that are unions of lattice cubes; these include examples for which (B, D) is
not feasible, with [0,1]” € T(B, D).

Here we will only prove a result that classifies all solutions to (4.5) that sat-
isfy some stringent side conditions, which however cover all cases (4.4). Let D =
diag(dy,da,...,dy) be a diagonal matrix in which all d; are integers with d; > 1,
and let f(z) = dex agz8 be a polynomial. We define

(4.6) o) = Y ayee

geX

where
! ag, lfg:[glaagn]T with all gl<dla
0, otherwise.

Theorem 4.1. Let D = diag(dy,...,dy) in which all d; > 1 are integers. Suppose
f(z), g(z), h(z) are all zero—one polynomials with f(0) = g(0) = h(0) = 1 satisfying
(4.7) f(27)g(2) = f(2)h(z).

Suppose further that

(i) [g]lp(2z) = g(z) and g(z) has no factors of multiplicity greater than 1.
(ii) For any £ € Z7}, any zero-one vector d # 0, and any integer m > 0, the
coefficient of either z°" % or 22" E+d) 45 0 in f(z).

Then there exist zero-one polynomials go(z), g1(2), ..., gm(2z) such that
(4.8) 9(z) = go(2)g1(2) - - gm(2),

(4.9) h(z) = gO(Z)'gl(ZD) g (2”),

(4.10) f@) = [II]aE").

i=15=0

Remark. (1). Tt is possible that some of the ¢;(z) = 1. (2). The rather strange-
looking hypothesis (ii) actually encodes a non-overlapping property that the set £
in (4.3) possesses.

We will derive this theorem recursively from the following lemma.
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Lemma 4.2. Assume that f(z), g(z), h(z) are zero—one polynomials satisfying

(4.11) f(z7)g(z) = f(z)h(z)
and all the other hypothesis of Theorem 4.1. Then
(4.12) 9(z) = [f]p(2)[h]p(2),
and

(4.13) fz) = [flp(@)fi(z7),
(4.14) h(z) = [h]p(z)hi(z7),

where f1(z) and hi(z) are zero—one polynomials.

Proof. We write
flz) = ao(z)sz” + al(z)sz1 4+t (z)szk,
hz) = bo(z)zDh” + bl(z)zDh1 4+ .+ bk(z)zDh’ ,
where all a;(z) and b;(z) satisfy

[a:]p(2) = ai(z) # 0, [bjln(z) = b;(2) # 0,
and f; = hg = 0 and the {f;} (resp. {h;}) are all distinct nonnegative vectors.
Note also that

(4.15) ao(z) = [flp(2), bo(z) = lg]p(2).
We first show that
ao(z)bo(z) = g(2),
which is (4.12). Since f(z) = 1 + {other terms}, (4.11) yields

9(z) = [f(z")g(2)]p = [f(2)h(2)]p = [a0(2)bo(2)]p.
Thus if ag(z)bo(z) # g(z), then ag(z)bo(z) contains some monomial z8+P¢ having
e£0and g=1[g1, ,9n]" with g; < d; for all i. Also since deg, (ao(z)bo(z)) <
2(d; — 1) the vector e must be a zero-one vector. Therefore, again from (4.11),
since g(z) = [¢(z)]p by (i), the only monomial in f(z”) that can produce such a
monomial in f(z”)g(z) is z”¢. Thus z° must be a monomial in f(z). But e is a
nontrivial zero—one vector, and this contradicts (ii), taking f =0, d = e, m = 0.
We next prove that for all 1 <i <k and 1 < j </,

(4.16) ai(z) = ao(z), b;(z) = bo(z).
We arrange the vectors {f;,h; : 0 < i < k, 0 < j < {} into a sequence
{t1, t2, ..., tgqito} in such a way that if |t;[1 < [t;|1 then we necessarily have

i < j. (Here |t|; denotes the sum of the coordinates of t, its [*-norm.) We prove
(4.16) by establishing the following hypothesis, by induction on m: if t,, = f;
(resp. tm = hy) then a;(z) = ao(z) (resp. b;(z) = bo(z)).

The hypothesis is clearly true for m = 1, since ty 1s either fy or hg.

Suppose that the hypothesis is true for m’ < m. Now, t,,, = f; forsome 0 < i < k
or t,, = hy for some 0 < j < 1. If't,,, = f;, then we consider the term ai(z)bo(z)zPt
in the expansion of f(z)h(z). We first observe that a;(z)by(z) must be a zero—
one polynomial because f(z)h(z) = f(z”)g(z) is. Next we observe that because
bo(0) = 1, all terms in a;(z)zPY" are also terms in f(z)h(z) = f(z”)g(z). Hence
zP%i is a term in f(z?) and so z'i is a term in f(z). We claim that g(z) — a;(z)bo(z)
must also be a zero—one polynomial. If not, then from (4.11) there is a term z8+2f
in a;(z)bo(z), where f # 0 is a zero—one vector while g = [g1, -, gn]? satisfy



NONNEGATIVE RADIX REPRESENTATIONS FOR THE ORTHANT R} 111

gi < d; for all i. Tt follows from (4.11) that zPE+) is a term in f(z”), so 2% is
a term in f(z). But 2! is also a term in f(z). This is a contradiction. Therefore,
both a;(z)bg(z) and ¢(z) — a;(z)by(z) are zero—one polynomials.

Now suppose that a;(z) # ag(z). Then g(z) — a;(z)bo(z) # 0. So in order for
(4.11) to hold there must be some 7' # 4, j # 0 such that Df; + Dh; = Df;,
fio + hy = £ If ¢ > 0 and j/ > 0, then both f;; and hj are ahead of f; in
the sequence {t;}. So ai/(z) = ao(z) and bj/(z) = bo(z). But this would give
a;(z)b;/(z) = g(z) and hence a;(z)by(z) = 0, which is a contradiction. Therefore
i' = 0 (since j' # 0), and so £ + hy; = h;, = 1;. It follows that

9(2) = ai(z)bo(2) + ao(z)b;:(2).

But ¢(z) = ag(z)bo(z) and ¢(z) has no factors with multiplicity greater than 1, so
ap(z) and bg(z) must be relatively prime. On the other hand,

ai(2)bo(2) = g(2) — ao(2)bj (2) = ao(z)(bo(z) — b;/(2)).
Hence ag(z)|a;(z), so by the nonnegativity bo(z)a;(z) = g(z) and thus a;(z) = ao(z),
contradicting our assumption.
In the case of t,, = hy, b;(z) = bo(z) is proved in the identical fashion. Thus
(4.16) is proved.
Finally (4.15) and (4.16) combine to prove (4.13) and (4.14). O
Proof of Theorem 4.1. Let go(z) = [h]p(z) and ¢*(z) = [flp(z) = 9(2)/g0(2).

Then from Lemma 4.2 we have

0" (z2) f1(z”" ) go(2)g" (2) = go(2)h1 (27 )g* (2) f1 (27).
This gives g*(z2)f1(zP") = h1(z”) f1(2”) and hence
(4.17) F1(22)g" () = hi(2) f1 (2).

Tt is clear that fi(z), g*(z), hi(z) also satisfy the assumptions of Lemma4.2. Hence
we may repeat the above process by setting ¢1(z) = [h1]p(z) etc. This process
eventually gives us (4.8)-(4.10). O

We now go back to our digit sets £, B, and D*, which satisfy (4.4). Now all the
hypotheses of Theorem 4.1 are satisfied for f(z), g(z), h(z) equal to pe(z), ps(z),
pp=(2), respectively. For (i) clearly holds for pg(z) and property (ii) holds as a
consequence of Theorem 3.2: D* contains all zero—one vectors and (S_S)Q(DE,OO —

D% o) = {0}. Thus Theorem 4.1 shows there exist finite subsets By, Bi, ..., By,
of Z7} such that
(4.18) ps(z) = ps,(2)ps,(2) - ps,.(2),
(4.19) po(2) = poo(z)ps, (27) - ps, (277),
(4.20) pe(z) = [][]]ps.(z").
i=15=0

Using these formulae, we classify all nonnegative and minimal feasible pairs (B, D)
when B 1s a diagonal matrix.

Theorem 4.3. Suppose that B = diag(by,b,...,b,), with allb; > 1 and D C R}.
Then (B, D) is minimal feasible if and only if b; € Z for all 1 < i < n and D is the
Cartesian product of one-dimensional digit sets Dy, Da, ..., Dy, t.e.
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(4.21) D =Dy xDyx---xD,,

where (b;, D;) are minimal feasible for all 1 < i < n.

Proof. We first prove the “only if” part of the theorem. Suppose that (B, D) is
nonnegative and minimal feasible. Then by Theorem 3.2 there exists a unique
diagonal matrix S = diag(si,s2,...,5,), s; > 0, such that D* = S(D) C Z}
contains all zero—one vectors, and by the discussion above (4.18)—(4.20) hold. Now

B= {[gl,g2,~~~,gn]T 2 0 S gi < bz for all Z}a

SO
n

(4~22) PB(Z) = H Qi(zi)

i=1
where ¢;(z) =1+ 2z + 22 + -+ zf’_l is a polynomial in z; alone. Now set

ii(zi) = g.c.d(qi(z), ps,(2)),
noting that ¢; ;(z) divides ¢;(#;) so is a polynomial in z; alone. It is determined
up to a multiplicative constant factor, and since pg(0) = 1, (4.18) shows that all
pp;(0) = 1, hence ¢; ;(0) # 0 so we may normalize it by requiring ¢; ;(0) = 1. Now
(4.18) and (4.22) together imply that

(4.23) ps,(z) = co H pij(zi)

for some constants ¢g, and taking z = 0 shows ¢; = 1. Now (4.23) implies that
each ¢; ;(2;) is a zero-one polynomial, because pg,(z) is, and each of the ¢; ;(2;)
depends on z; only. We now substitute the expression (4.23) into (4.19) and obtain

m n . n m .
b b

(4.24) po-(2) = [[ [Twes =) = TT(TT w:).

j=1li=1 i=1 j=1

i

Next we observe that H;n:l goiyj(zf’) is a zero—one polynomial of z;, for ¢; ;(2;) is a
zero—one polynomial of degree at most b; — 1; it therefore is a generating polynomial
P> (z;) for some subset D C Z. Now (4.19) becomes

(4.25) pp-(2) = HPD:(Zi)

and hence
D" =D} xDy x - xDr.
Thus
D=SYD*) =Dy xDyx---xDy
where D; = 5;17);‘, and each (b;, D;) is nonnegative. Notice that
T(B,D) = T(bl,Dl) X T(bl,pz) X o X T(bl,pn),
and T(B,D) has Lebesgue measure equal to the product of the one-dimensional
Lebesgue measures of T(b;, D;). Thus the feasibility of (B, D) implies that of each
(bi, Dy), whence |D;| > b;. However
D1 |Dn| = | det(B)| = by - - - by,
and it follows that |D;| = b;, so each (b;,D;) is minimal feasible.
We now prove the “if” part of the theorem. If (;, D;) is nonnegative and minimal
feasible for all 1 <4 < n, then clearly every x € R’} has a radix expansion using
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base B and digits from D = Dy X D3 x --- X Dy,. Hence (B, D) must be feasible,
and nonnegativity and minimality are obvious. O

5. GENERAL CASE

The results of Section 2 showed that if (4, D) is nonnegative and feasible then
A = BP where B is a diagonal matrix and P is a permutation matrix. We now
classify all nonnegative minimal feasible pairs (4, D) for such A.

For any permutation o of {1, 2, ..., n}, let P, be the permutation matrix

(P :{ 1 ifj = o(i),

0 otherwise.
Consider the cyclic decomposition of o, ¢ = 772 - - - 7 into disjoint cycles, e.g.

1 2 3 45 6
(1,3,4)(2,5)(6) represents (3 5 4 1 2 6)'

Forany i € {1, 2, ..., n} write i € 7; = (j1,...,Ji) if some j,, = i.
Let A = BP, where B = diag(by,...b,). Now A splits up into blocks corre-
sponding to the cycle decomposition o = (71 )(m2) - - - (73) of . Set

(5.1) B, = diag(b{" 657, . b))

where by) =b;if j €7 and b;i) = 1 otherwise. Then

(5.2) A=BP, = (B, Pr,)(Br, Pr,) - (B, Pr,),

and the matrices B;, P;, all commute pairwise. For example, if A > 0 is arbitrary,
then

A= = diag(}, 3, 3) P 3)Pr2) = B(1,3)P1,3)B(2) Py,

e O O
o w o

A

0

0
aL%

where By 3) = diag(A ) and B(sy = diag(1,3,1).

Lemma 5.1. Let A = BP, where 7 is an n—cycle, i.e. a cycle of length n, and
B = diag(by,...,b,) with b = byby---b, € Z. Suppose that (A, D) is nonnegative
and minimal feasible. Then there exists an integer 1 < k < n such that all digits
d € D lie on the xi—axis, i.e. d = deg for somed € Ry for alld €D.

Proof. We first observe that A” = bI and since (bI,D4 ) is also nonnegative and
minimal feasible, by Theorem 4.3 the set

Dan=D+AMD)+ -+ A""1(D)

must be the Cartesian product of n one—dimensional minimal feasible digit sets.
So there must be exactly n(b — 1) nonzero digits in D4 , that lie on one of the
coordinate axes. Since the action of A is to permute coordinate axes, each of these
digits has the form A*d for a digit d € D lying on some coordinate axis and
0<k<n-—1. Now 0 € D so there are b — 1 nonzero digits d € D. Hence we
conclude that all digits d € D must lie on the n coordinate axes.

It remains to show that all d € D must lie on the same coordinate axis, i.e.
all d; = d;e; for some coordinate axis vector e; and some d; € R;. We argue by
contradiction. Suppose not, then for each 0 < k < n the set A*(D) includes vectors
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on at least two different coordinate axes. Now choose a d* € A*(D) with 0 < k < n
such that

(5.4) d*|, = min{|d|1 cdel) AJ’(D)}.

Suppose that d* = d*e,, and choose any d’ = d'e; € A*(D) such that { # m. Both
d*, d’ € D4, and d* is orthogonal to d’, while Theorem 4.3 shows that D4 ,, is a
Cartesian product of coordinate axes, hence d* + d' € Dy ,. Thus there exists a
representation

n—1
(5.5) d"en +d'e, = > Ald;, all d; € D.

7=0
Since each A7 d; lie on a coordinate axis, (5.4) implies that one of the terms on the
right—hand side of (5.5) must be d*. It is necessarily A*d; = d*, hence

de,= Y Ald;, alld; €D.
0<j<n,j#k
This contradicts the fact that all $” expansions in D4, must be distinct. Thus all
d € D must lie on the same coordinate axis. O

At last we can obtain the desired classification.

Theorem 5.2. Let A be an expanding nonnegative matriz and D C RYy. Then
(A, D) is minimal feasible if and only if the following conditions hold:
(i) A= BP, where B = diag(by,ba,...,b,) and P, is a permutation matriz. If
o has the cyclic decomposition ¢ = 1179 - - Ti, then
(5.6) b= [ b€z, 1<i<k,
1€T)
with each b5 > 2.
(ii) There exist one-dimensional digit sets D1, Da, ..., Dx C Ry, with |D;| = b7,
such that (b;,Dj) are nonnegative and minimal feasible for all 1 < j <k, and

(57) D :Dlell —|—D2e12 + ~~~—|—Dkelk
Jor coordinate vectors e, with l; € 7; for all 1 <j <'k.

Remark. This theorem immediately implies Theorem 1.2, since for every A satis-
fying (i), there clearly exists a set D satisfying (ii).

Proof. We first prove the “only if” part. Suppose that (A, D) is nonnegative and
minimal feasible. By Lemma 2.3
A=BP, =BP., P, - P,
For each 1 < j <k, set
R7/ = {[xl,xz,...,xn]T cxp=0ifig T

and R:_j =R NR]. Next set D™ := DNR". Consider the decomposition (5.2)
of A:

A=BP, = (BTIPTI)(BT2PT2) o '(BTkPTk)'
It follows from the nonnegativity of (4,D) and A(R7) = R that each x € R:_j
has a radix expansion using only digits in D7/. Notice that for any d € D"/ one has

Ad = (B, P;,)d.
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Thus (B, P;,,P™) when viewed as acting on R is a feasible pair, hence
(5.8) ¢j =DV | > |det(Br, Pr,)| = b;.

Let m > 1 such that A™ is a diagonal matrix, and recall the pair (A7, Dy ) is
minimal feasible using Lemma 2.1. Clearly

T __ Ty
Dam NRT = DBTjPijm,
hence

(59) |DA,m N RTj| = |D;j,.jP,-j,m| = |D;\J,m| = c;n'

But because A™ is diagonal, it follows from Theorem 4.3 that its digit set Dy , is
a direct sum of one—dimensional digit sets, hence in particular

(5.10)

Dam 2D} ++DP%n =P p, m+ +PE p

T Tk ,m?
which is a direct sum because all summands lie in mutually orthogonal subspaces.
This gives

[Daml = (0705 b5)" > efrel -,

using (5.9). Comparison with (5.8) then implies that

(5.11) bi=c; €%, 1<i<k
and clearly b7 > 1. Moreover, it now follows from (5.10) and (5.11) that
(512) DA,m = DB,.IP,.I,m +ot DgrkP,.k,m'

Now each (B;, Py;, D7) viewed as acting on R7 is a nonnegative minimal feasible
pair, using (5.11), and the hypothesis of Lemma 5.1 are satisfied for it. Hence
there exists an [; € 7; such that D™ = D;e;; where D; C R and each (b;,Dj) is a
nonnegative minimal feasible one—dimensional pair.
To establish (ii) it remains to show that (5.7) holds, i.e. D = D where
D=D" +D™ + -+ D

To prove this it suffices to show that P C D, because they have the same cardinality
b =257 ---b;. We consider the orthogonal projection operator m; : R” — R” and
examine the set 7;(D), with elements counted with multiplicity. If we show that
all elements of m;(D) lie in D™ = Dye; for 1 < i < k, then D C D. We will actually
show the stronger result:

(5.13) 7;(D) is D7 with all elements of multiplicity b/67.

Now R™ is an invariant subspace of A, and m; commutes with B;, and P;,. In
particular, using (5.12) and ignoring multiplicity,

(7i(P) 4,y = Ti(Dam)
= m(DY,, +DP%,+ - +DY,)
= DXm
m—1
(5.14) = {> wal: ana epn}.
j=0

If we count multiplicity, then (5.12) implies that
(5.15) (7i(D)), . ==mi(D)+ Ami(D) + - -+ A" 'my(D)
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is just DY . with all elements counted with multiplicity (5/67)™.

Now the first part of the proof of Lemma 5.1 applies to the set (5.15) to conclude
that every element of m;(D) lies on a coordinate axis.

To proceed, we determine the elements of D7 that lie on some coordinate axis.
Now 7; is a cycle of order ¢, say 7, = (r1,ra,..., %q) with vy = [;, say, and necessarily
q divides m. The decomposition (5.14) factorizes as

g-1 m/q 0

J at q©*
>3 arag)).
§=0 =0
where the inner sum involves only coordinate vectors along the axis e,, = ¢;,. In
particular (m;(P))a,m contains vectors on coordinate axis e,; with coefficients lying
in the sets

(5.16) S; = {%’(Di+Dib?+~~~+Di(b2‘)%—1)}

where ay = 1 and a; = by bpy - -bp,_, for 1 <j<g—1,and b = b, b, >21is
an integer.

Suppose now that 7;(D) contains some elements d # de,, for any d € R. Tt
then lies on some coordinate axis e, and necessarily has a coefficient from the set
(5.16). In particular any of its powers A’d that lie on the axis e,, have coefficients
in the set
Hence they can never appear in the expansion of any elements in (7;(D)) 4 m of the
form d'e,, with d’ € D;. Thus all representations of such vectors in the expression
(5.14) must be of the form

(5.17) d'e,, = d'e., + A(0) + -+ A*1(0).
However 0 must occur with its correct multiplicity 6/b7 in m;(D), in order to get
exactly (b/b6)" copies of 0 in (7;(D))4,m, since all terms in (5.14) are nonnegative.
Thus the number of representations of d’e,, on the right side of (5.17) is
(b/65)™~1 . (multiplicity of de,, in m;(D)).

This number is (b/6¥)™, hence d'e,, has multiplicity 6/b; in m;(D) for all &' € D;.
This count exhausts m;(D), and proves (5.13). Hence D = D, proving (ii).

We now finish the proof by proving the “if” part of the theorem. According to
Lemma 5.1, if we view B, P;, and D™ = D;e;; as lying on R’ then (B;, Py, D7)
are nonnegative and minimal feasible, and

T(A,D) = T(By, P, ,D™) X - - - x T(By, Pr,, D)

if the coordinates are suitably numbered. Hence (A, D) is feasible, and nonnega-
tivity and minimality are clear. O

Example 5.1. The matrix

0 0 A A0 0 0 0 1
A=]10 3 0 |:=BP,:=|0 3 0 010
200 00 % 1 00
given in (5.3) satisfies condition (i) of Theorem 5.2 for all A > 0. By Theorem 5.2

(A, D) is feasible for
D= {Oa 1a 8a 9}81 + {Oa 1a 2}82
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because {0,1,8,9} is feasible for base A - % =4 and {0, 1,2} is feasible for base 3.
We can see this more easily from A% = diag(4,9,4) and

Danr=10,1,8,9}e1+{0,1,...,8}es + 3 - {0, 1,8, 9} e,

which is a direct sum of three one-dimensional feasible digit sets. Note that

B

(o2 N1

10.

11.

12.

13.

= diag(A, 3, %) is an expanding matrix only for 1 < A < 4.
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