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Abstract

A self-affine tile in R™ is a set T of positive Lebesgue measure satisfying A(T) =
Ugep (T +d), where A is an expanding n X n real matrix with |det(A)| = m an integer,
and D = {dy,...,dn} C R™ a set of m digits. Self-affine tiles arise in many contexts,
including radix expansions, fractal geometry, and the construction of compactly sup-
ported orthonormal wavelet bases of L?(R"). They are also studied as interesting tiles.
In this article we survey the fundamental properties of self-affine tiles. We examine
necessary and sufficient conditions for digit sets D to give rise to self-affine tiles. A
special class of self-affine tiles is the integeral self-affine tiles, in which A is an integer
matrix and D C Z™. We study the tiling properties and the measures of integeral self-
affine tiles. We also compute the Hausdorff dimensions of the boundaries of integeral
self-affine tiles.

1 Introduction

Let A be an expanding matrix in M, (R), that is, one with all eigenvalues |\;| > 1, and
suppose that |det(A)| = m for some integer m > 1. Let D = {d;,ds,...,d,} C R" be a
finite set of vectors. A result of Hutchinson [27] states that there exists a unique nonempty
compact set T':= T'(A, D) such that

T = GA*l(Terj). (1.1)
j=1

More precisely, T' is the attractor of the iterated function system {¢;(z) = A 'z + A~1d; :
1 <j <m}. In fact, T is given explicitly by

oo
T = {Z A~%d, : each dy € D} . (1.2)
k=1

For most pairs (A, D) the set T'(A,D) has Lebesgue measure u(7) = 0. If T(A,D) has
positive Lebesgue measure we call T'(A, D) a self-affine tile.
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The name “self-affine tile” refers to the fact that
m
AT)=J(T+d;)=T+D; (1.3)
j=1

geometrically it means that the affinely dilated set A (T') is perfectly tiled by the m translates
T+dj of T. A simple example of a self-affine tile is the unit square T = [0, 1]?, which satisfies

A(T) =T 4D for . D:HSHE)H?H”}

Self-affine tiles have been studied as “exotic” tiles and as tiles giving interesting tilings
of R™ ([1], [2] [11], [12], [13] [22], [24], [29], [34], [37], [52]). Furthermore, they arise in many
other contexts, particularly in fractal geometry ([14], [15], [16], [51]), compactly supported
wavelet bases ([23], [33], [36]), radix expansions ([19]), and in Markov partitions ([28]). The
current interests in self-affine tiles come largely from these applications.

Most of the studies on self-affine tiles employ one or both of the two approaches: al-
gebraic and Fourier analytic. It is rather easy to see the role of algebraic methods. For
example, given an expanding matrix A and a digit set D, by iterating (1.3) we obtain
AK(T) =T + Da  where

k—1
Day = {Z Ald; : each dy, € D} . (1.4)

J=0

As we shall see, many properties of T'(A, D) depend fundamentally on the algebraic prop-
erties of Dp j. Of course, this is but one of the many instances where algebraic methods
can be employed.

But harmonic analysis can be a powerful tool in the study of self-affine tiles as well. Let
T :=T(A,D) be a self-affine tile. The set-valued equation A(7) = T + D can be written
as

xr(z) =Y xr(Az —d). (1.5)
deD

Let mp(&) = ﬁ > gep €274E) . Taking the Fourier transform in (1.5) results in

7€) = mp(BLE)x7(B L), where B := AT (1.6)
This yields
xr(€) = ¢ [[ mp(B7¢), where ¢ := x7(0) = u(T). (1.7)
j=1

By analyzing mp (&) and the infinite product (1.7) a number of nontrivial results on the tile
T and its tilings can be proved ([7], [22], [29], [35], [37]).

We shall provide a glimpse of both approaches in this overview. The fundamental
question this paper addresses is this: for a given matrix A and digit set D, under what
conditions will T'(A, D) be a tile? We derive several necessary and sufficient conditions in
§2, and later in §4. In §3 we introduce integral self-affine tiles and prove some basic results



concerning their measures and tilings. Some of these results are then used in §5 to study
Haar-type wavelet bases. In §6 we show a method for finding the exact Hausdorff dimension
of the boundaries of self-affine tiles.

Due to the restriction on the length of the paper, We have limited the discussions of this
overview mostly to self-affine tiles as sets. In doing so we have made several conspicuous, and
perhaps unjustified, omissions. In particular, we have left out the study on self-replicating
tilings and on the topological properties of the tiles entirely. We apologize in advance for
our inability to include these results and shall refer the readers to [2], [28], [30], [34], [53]
for more details.

We are greatly indebt to Professor Ka-Sing Lau and the mathematics department of
the Chinese University of Hong Kong for the kind invitation to visit. We would also like
to thank Jeff Lagarias, Ka-Sing Lau, Rick Kenyon, Sze-Man Ngai and Bob Strichartz for
encouraging and helpful discussions.

2 Conditions For A Tile

As mentioned in the introduction, for a given pair (A, D) where A € M, (R) is expanding
and D C R" has cardinality |D| = |det(A)|, the corresponding attractor T'(A, D) is usually
not a tile. A fundamental question is thus: under what condition(s) is T'(A, D) a tile? To
gain some insight into this question we first look at the following example.

Example 2.1. Let A = [3] and D = {0,1,4}. We show that T'=T(A, D) is not a tile by
showing that u(7T') = 0, where p denotes the Lebesgue measure. Note that

3 =T+D=T+{0,1,4}.
Hence

97 = 3T +3D
T + {0,1,4} + {0,3,12}
= T+{0,1,3,4,7,12,13,16}.

It follows by taking the Lebesgue measure that
Ou(T) = u(T +{0,1,3,4,7,12,13,16}) < 8u(T),

and hence p(7T") = 0. |
For integral A and D, the following theorem was established by Bandt [1]:

Theorem 2.1 Let A € M,(Z) be an expanding matriz and let D C Z™ be a set of complete
coset representatives of Z"/A(Z"™). Then T = T(A,D) has nonempty interior. Further-
more, T is the closure of its interior and p(0T) = 0.

Proof. We present a new proof here. We first show that p(7") > 0. Let Ty = [0,1]" and

Tpy=JA  (Tii+d), k>1 (2.1)
deD



It is easy to check, by induction on k, that the unions in (2.1) are measure-disjoint and
wu(Ty) = 1 for all k. Since Tp—T in the Haudorff metric (c.f. Hutchinson [27]), it follows
that p(T) > 1.

Now let m, : R"—T" be the canonical covering map, where T" := R"/Z" is the
n-torus. Then A, := 7, 0o Ao ! is a well defined endomorphism on T". Clearly,

A, (m,(T)) = mp(A(T)) = 7 (T + D) = 7, (T).

So m,(T) is invariant under A,. But A, is ergodic because A is expanding (c.f. Walters
[54]). Hence m,(T") = T"™. This means that

U (T'+a)=R"

aEZ™

To see that T° # 0, let J C Z™ be the smallest set such that T+ J 2 (0,1)". Suppose
that 7° = ). Fix an g € J. Then any x € (0,1)” N (T 4 «p) must belong to another 7'+
for some € J. Hence T+ (J \ {ao}) 2 (0,1)", contradicting the minimality assumption
of J. So T° # (). Now

A(T°) =T°+D.

By the uniqueness we must have T = T°.

Finally we prove that pu(0T) = 0. Let xy € T°. For sufficiently large k£ > 0 the interior
of A¥(T — z¢) will contain T'. But

A¥(T —zo) =T+ J', where 7' =D+ AD+---+ A 1D — Afy,

and the union 7'+ J' is measure-disjoint. Since JT is contained in the overlapps in the
union, it follows that pu(9T) = 0. |

For any A and digit set D we denote
Dag:=D+AD+---+ AFID.
Note that if 0 € D then Dp j C DA g4+1. In this case we denote

Da,oo = |J Paj, A(A,D):=(D—D)a
k=1

The above theorem is a special case of the following more general theorem, due to
Kenyon [29] and Lagarias and Wang [34]:

Theorem 2.2 Let A € M,(R) be an expanding matriz such that |det(A)] = m € Z.
Suppose that D C R™ has cardinality m, with 0 € D. Let T = T(A, D). Then the following
conditions are equivalent:

(a) T has positive Lebesgue measure.
(b) T has nonempty interior.

(c) T is the closure of its interior, and its boundary 0T has Lebesgue measure zero.



(d) For eachk > 1 allmF expansions in Dk are distinct, and Da  is uniformly discrete.

Although not difficult, the proof is rather tedious. A proof can be found in Lagarias
and Wang [34].

One other question we naturally ask is how does a self-affine tile T'(A, D) tile R". We
show below that 7T tiles by translation.

Theorem 2.3 Let A € M,(R) be an expanding matriz and D C R™ with |D| = | det(A)].
Suppose that T = T(A,D) has nonempty interior. Then there exists a set of translations
J C A(A,D) such that T + J is a tiling of R™.

Proof. The fundamental idea here is to repeatedly inflate the tile T" at some interior point.
Since T # (), by (1.2) there exists an interior point zy € T that has a finite radix expansion

N
Ty = ZA_jd;f, each d; € D.
j=1

Let T =T — x5 and D := Da, y — AVzg. Then 0 € D and AN(T) = T + D. Tterations
yield that for all £ > 1, . o

ANK(T) =T + Dpw . (2.2)
Because 0 is in the interior of T, any ball B;.(0) will be covered by~AN k(T) for sufficiently
large k. Furthermore, Dan j, € Dpn p4q because 0 € D. Hence T' tiles R™ by translates

of J = @sz’oo, which implies that 7" tiles R" by translates of J. Now clearly we have
J C A(A, D), proving the theorem. |

An immediate corollary of Theorem 2.3 is that if A € M, (Z) and D C Z", then we
may find a J C Z" such that T'(A,D) + J is a tiling of R", provided that T'(A, D) has
nonempty interior.

3 Integral Self-Affine Tiles

A particular class of self-affine tiles is the so-called integral self-affine tiles, where A € M,,(Z)
and D € Z". The integrality allows us to establish many more properties about the tile
T(A,D). In some applications, such as orthonormal wavelet bases, one encounters only
integral self-affine tiles. Moreover a large class of self-affine tiles, including all self-affine
tiles in the one dimension, are affinely equivalent to integral self-affine tiles, see Kenyon
[29], and Lagarias and Wang [34].

Let A be an expanding matrix in M, (Z) and D C Z" with |D| = | det(A)|. Associated
to the pair (A, D) is the smallest A-invariant sublattice of Z™ containing the difference set
D — D, which we denote by Z[A,D]. If 0 € D then

Z[A,D] = Z[D,A(D),..., A" 1(D)]. (3.1)
This follows from the Hamilton-Cayley Theorem that A™ € Z[AY, Al ... A" 1].

We call a digit set D primitive (with respect to A) if Z[A,D] = Z", and we also call
the associated tile T'(A, D) a primitive tile. Most of the questions we consider here can be
reduced to the case of primitive tiles.



Lemma 3.1 Let A be an expanding matriz in M,(Z) and D C Z™ with |D| = |det(A)|.
Suppose that 0 € D and Z[A, D] = B(Z") for some B € M,,(Z). Then there is an expanding
matriz A € M,(Z) and a primitive digit set D C Z™ with respect to A, |D| = |det(A)],
such that

T(A,D) = B(T(A,D)). (3.2)

Proof. Since Z[A,D] = B(Z") is A-invariant, AB(Z") C B(Z"). Hence AB = BA for
some A € M, (Z). A is expanding because A = ]~3_~1AB.NN0vg D C B(Z"), so D = B(D)
for some D C Z". Let T :=T(A, D). It satisfies A(T) =T + D, so

A(B(T)) = BA(T) = B(T + D) = B(T) + D.

The uniqueness yields B(T') = 7. |

Theorem 3.2 Let A € M,(Z) be expanding and D C Z" with |D| = |det(A)|. Then
k= u(T(A,D)) € Z. Furthermore, T(A,D)+Z" is a perfect covering of R™ of multiplicity
k.

Proof. As before let 7, : R"—T" be the canonical covering map. The integer matrix A
induces an endormorphism A, : T"—T" defined by A, := 1,0 Ao, . Let v: T"—Z
denote the function v(z) := |7, }(z) NT| where T := T(A, D). Since T is compact, there
exists a finite k € Z such that

k=max{l € Z: v(z) > for almost all z € T"}.

Now there exist disjoint (up to measure zero sets) fundamental domains Fy, Fs, ..., Fj of
the lattice Z" such that each F; C T. Denote F' = U§:1Fj and Q@ =T \ F. We show that
Q, := m, () is invariant under A,.

To see this, note that

k
AL(S) =m0 AQ) = m (T +D)\ | AE)). (33)
j=1

Let zp € T™ \ Q.. Then zj is covered exactly k times under ,, : T—T"; so it is covered
exactly k|D| times under 7, : T'+ D—T". However, z; is also covered |kdet(A)| = k|D|
times under UleA(Fj) times because each Fj is a fundamental domain of Z" and A €
M, (Z). So zy ¢ A.(2) by (3.3). This yields A(2,) C Q.. By the ergodicty of A, the
set {2, have measure zero or is all of T". But the latter is ruled out by the definition of k.
Therefore p(2) = 0, and v(z) = k for almost all z € T™. This proves u(7) = k € Z and
T + Z" is a perfect covering of R"™ of multiplicity k. [ |

As we will see in §4, a Haar-type orthonormal wavelet basis can be constructed from
an integral self-affine tile T'(A, D) with u(7T'(A,D) = 1. In this case T'(A, D) tiles R" by
Z™-translations. The following is a necessary condition for it to hold.

Theorem 3.3 Let A € M, (Z) be expanding and D C Z" with |D| = |det(A)|. Suppose
that (T (A, D)) = 1. Then D is primitive and is a complete set of coset representatives of
Z"/A(Z").



Proof. We project T := T (A, D) onto the n-torus T" by m,. By Theorem 2.3 there exists
a J C Z" such that T+ J is a tiling of R™. Since u(T") =1, J = Z". Hence 7, (T) = T"™.
Now A(T) =T + D yields

T" = m,(T) = |J (T + wn(Afld)), where T, := m, (A ~1(T)).
deD

Since the measure of T, is at most 1/|D|, all m,(A~'d) must be distinct in T™. This shows
that D must be a complet set of coset representatives of Z"/A(Z").
The primitiveness of D follows directly from Lemma 3.1. |

The converse of Theorem 3.3 is true in the one dimension (§4) but is false for n > 2.

a=loa ) 2={le L )

Then D is a primitive complete set of coset representatives of Z? /A (Z?). However, u(T(A, D))
has Lebesgue measure 3, see [37].

In the above example the tile T(A, D) tiles R? by lattice translates, using the lattice
3Z ® Z. In general we have:

Theorem 3.4 Let A € M, (Z) be expanding and D be a complete set of coset representatives
of Z"/A(Z"™). Then there exists a full rank lattice L C Z™ such that T(A,D) tiles R™ by
L-translations.

For the proof of Theorem 3.4 we refer the readers to Conz, Herve and Raugi [7] or
Lagarias and Wang [37].

4 Digit Sets of Integral Self-Affine Tiles

Although Theorem 2.2 (d) provides a necessary and sufficient condition for T'(A, D) to be
a tile, the condition itself is rather difficult to verify. In this section we explicitly classify
integral digit sets D that result in tiles for certain types of expanding matrices A € M,,(Z).

Theorem 4.1 Let p be a prime and D C Z be a primitive digit set with |D| = |p|. Then
T(A,D) is a tile if and only if D is a complete set of residues (mod p).

Proof. The sufficency is already established. We prove the necessity. Without loss of
generality we assume that 0 € D and d > 0 for all d € D. Let fp(z) denote the charac-
teristic polynomial fp(z) := |7}| > deD 2%, We prove that there exists a k& > 1 such that the

k
cyclotomic polynomial F(2) := zj’f*;il divides fp(z).

Let mp(€) := fp(e??™). Note that the characteristic function of T := T'(A, D) satisfies

xr(z) =Y xr(pz —d). (4.1)
deD



Taking the Fourier transform yields X7 = mp(p~'¢)xr(p~'€). By iteration,
xr(&) =c[[ mo(p™7¢),  where ¢ = xp(0) = u(T). (4.2)
j=1

The convergence of the infinite product (4.2) is well known. By Theorem 3.2, T+ Z is a
perfect covering of R of multiplicity u(7") € Z, so xr(l) = 0 for all nonzero integer I. In
particular X7 (1) = 0. By (4.2) there exists some integer k¥ > 1 such that mp(p™*) = 0.
Hence fp(e2™ ") = 0, proving that Fi(z)|fp(z) and hence (/" — 1)|fp(2)(2#" " —1).

Observe that if two integers satisfy j1 = j» (mod p¥) then 2! = 272 (mod (27" — 1)).
Because

fp(z)(z”ki1 —-1) = Z 24— Z 22=0 (mod (zlf’lC —1)),

deD+pk—1 deD

and because a nonzero polynomial of degree less than p¥ can never be divisible by P — 1,
we must have
D +p* ! (mod p*) = D (mod p*). (4.3)

pF1 € D+ pF 1 so d = p*! (mod p¥) for some d € D. Similarly now 2p*~1 € D +
pF~1 (mod p*), so 2pF~! € D (mod p¥). This argument yields

D={0p" 2" .. (p—1pF '} (mod p").

But D is primitive, so ged{d : d € D} = 1. Therefore k£ = 1 and D is a complete set of
residues (mod p). [ |

The above theorem was due to Kenyon [29]. The same argument can be used to prove
the following generalization, a proof of which can be found in Lagarias and Wang [35].

Theorem 4.2 Let A € M,,(Z) be expanding such that |det(A)| = p is a prime and pZ"™ €
A%(Z"). Let D C Z™ with |D| = |det(A)| be primitive. Then T(A,D) is a tile if and only
if D is a set of complete coset representatives of Z™/A(Z").

It should be pointed out that the classification of digit sets for a given matrix A is in
general very difficult, even in the integral case. This is evident from the fact that even
for A = [6] in the one dimension it is not completely known what digit sets D result in
self-affine tiles. The only other cases in which all digit sets resulting in self-affine tiles are
classified are A = 21 for n = 2 ([29]) and A = [p¥] for n = 1, where p is a prime ([35]).

So far we have discussed mostly digit sets that are complete set of coset representatives
of Z"/A(Z™). Naturally one may ask whether there are other types of digit sets D that
also give self-affine tiles. Here is a simple example:

Example 4.1. Let A = [4] and D = {0,1,8,9}. Clearly D is primitive and is not a
complete set of residues (mod 4). But one may check directly that T'(A, D) = [0, 1]U[2, 3].
|

Example 4.1 is an example of a class of digit sets called product form digit sets. Suppose
that 0 € € is a set of complete coset representatives of Z"/A(Z"), and suppose that it has
a factorization

T
E=&E+&E+ - +&, where0€& and €] =[] I&l. (4.4)

=1



A digit set D has the product-form if
D= Af1(gl)+Af2(52)_|_...+Afr(5r) (4.5)

for some integers 0 < f1 < fo <--- < fy.

Theorem 4.3 Let A € M, (Z) be expanding and D is the product-form digit set defined in
(4.5). Then T(A,D) is a measure-disjoint union of translates of T(A,E), and

r

w(T(A, D)) = w(T(A, ) [T €I (4.6)
=1

Proof. Let A;} := {Zf;& Ajei,j all €55 € &} with A; o = {0}. We prove that T'(A,D) =
T(A,€) + A where

A= -Al,fl + .A27f2 +---+ Ar,fr-
T(A,D) = {37 A7Jd; : all d; € D} from (1.2), and by assumption d; = Y7_, Afie;
where €ij € &i. So

o . o0 . r
YA = Y AT Aliey
j=1 j=1 i=0

r o0

i
= Z(Z A_jAfieiyj + Z A_jAfiei,j)

i=0 j=fi J=1

0o T r fi '
= ZA_] (Z ei,j_,_fi) ZZAfi_]ei,j- (4.7)
=0 i—0

i=0 j=1

Since Y ;_ge;jyf € E and Y1, E;’Zl Afi*jei,j € A, we have 3777, Ald; € T(AE) + A;
hence T(A,D) CT(A,€) + A.

Conversely, one verifies that any element in T'(A, £)+.4 must be in T'(A, D) be reversing
(4.7) (we omit the details here), yielding T'(A,€) + A C T'(A, D). Therefore, T(A,D) =
T(AE) + A.

We still need to show that the translates of T(A, ) in T'(A, £) + A are measure-disjoint.
For any m > 1 we have
A™(T(A,€)) =T(A,E) +Eam, (4.8)

where Eacm = {31, AFey : alle, € £}, Since each & C & and 0 € €, A C Eam
whenever m > f.. But the translates of T'(A,€) in (4.8) are measure-disjoint, it follows
that the translates of T'(A, &) in T'(A, £) + A must be measure-disjoint.

Finally, all expansions Y ;_, ngol Ale; j where e;; € & in A are distinct because

E=&+---+ & is adirect sum by (4.4). The measure-disjointness of T'(A,E) + A yields
(4.6). |

The digit set D = {0,1,8,9} in Example 4.1 is a product-form digit set, with & =
{0,1,2,3} = {0,1} + {0,2} and D = {0,1} + 4{0,2}. There are integral self-affine tiles
whose digit sets are not product-form digit sets, see [35]. One simple such example is
A =[4], D =1{0,1,8,25}. Can you prove that T'(A,D) is a tile?



5 Haar-Type Wavelet Bases of L*(R")

Let 91(z),. .., (z) € L*(R™) and A € M,(Z) be expanding. Suppose that
{|det(A)|%¢i(Amx —a): a€Z"1<i<r, me€ Z}

is an orthonormal basis of L2(R™). Then we call this basis a wawvelet basis of L>(R"), and
P1(x), ..., (z) wavelets. The simpliest wavelet is the wavelet basis of L?(R) constructed
by A. Haar [25], which has A = [2] and consists of a single wavelet

1 0<z<1/2
P(xz)=<¢ -1 1/2<z<1
0 otherwise.

A popular way to construct wavelet bases is by multiresolution analysis. We shall not
discuss the details here; a comprehensive discussion can be found in Daubechies [9]. Let
A € M, (Z) be expanding. A scaling function (of a multiresolution analysis), from which a
wavelet basis can be constructed, is a function ¢(x) € L*(R™) such that

(i) ¢(x) satisfies a dilation equation

d(z) = Z cap(Az — ). (5.1)

aEZ™
(ii) {é(zr —a): a € Z"} is an orthonormal set in L2(R"), and [g. ¢(z) dz # 0.

A Haar-type wavelet basis is a one constructed from a scaling function of the form ¢(z) =
exa(z) for some compact set @ C R™ and constant ¢. Grochenig and Madych [23] estab-
lished the following relation between Haar-type wavelet bases and self-affine tiles:

Theorem 5.1 Let A € M, (Z) be ezpanding and Q& C R™ be compact. Then the following
are equivalent:

(a)  ¢(z) = cxalz) is a scaling function with respect to A for some constant c.

(b)  There ezists a set of complete coset representatives of Z" |/ A(Z"™) such that A(2) =
Q4D up to a measure zero set, and p(2) = 1.

Proof. (a)=-(b). By assumption ¢(z) satisfies some dilation equation

d(z) = Z caP(Az — ). (5.2)

acZn

The orthonormality of {¢(z—«) : o € Z"} implies that Q+«, o € Z", are measure-disjoint.
By letting y = Az and rewritting (5.2) as

XA(Q)(y) = Z caXa+aly), (5.3)
aEZ"

10



it yields ¢, =0 or ¢, = 1.

Let D = {a : ¢o = 1}. Integrating (5.3) yields |D| = |det(A)|, and the measure-
disjointness of © + « in (5.3) implies that

AQ)=JQ+d=0+D (5.4)
deD

up to a measure zero set.

To show that p(2) = 1, let 7, : R"—T" be the canonical covering map and A, :=
o Ao, By (5.4), Au(m,(R)) = m,(Q) up to a measure zero set. It follows from the
ergodicity of A, that m,(2) = T™ up to a measure zero set. Hence p(£2) > 1. But u(Q2) <1
because Q + «, a € Z", are measure-disjoint. Therefore p(Q2) = 1.

(b)=>(a). By the ergodicity argument above, 2 + Z" is a covering of R" up to a measure
zero set. Since p(Q2) = 1, all Q@ + a, a € Z", are measure-disjoint. Hence ¢(z) := xa(z)
satisfies ¢p(z) = Y 4ep P(Ax — d) and {p(z — ) : @ € Z"} is an orthonormal system in
L*(R™). So ¢(z) = xa(z) is a scaling function. |

Remark. It can be shown that if a compact set € satisfies A(Q2) = Q+ D up to a measure
zero set, then Q@ D T'(A, D) and Q = T(A, D) up to a measure zero set. We omit the proof
here.

Naturally we would like to know when will x4(T(A,D)) = 1 for any given A and D.
Theorem 3.3 states that D must be a primitive set of complete coset representatives of
Z"/A(Z™). A counterexample is given in §3 to show that the converse of the theorem is
false for n > 2. The converse, however, is true in the one dimension.

Theorem 5.2 Let q € Z, |q| > 1 and D be a complete set of residues (mod q). Suppose
that D is primitive. Then u(T([q], D)) = 1.

Proof. We present the following Fourier analytic proof, due to Grochenig and Haas [22].
The technique here is valuable for studying other type of scaling functions as well.

Without loss of generality we assume that 0 € D. The primitiveness of D is equivalent
to ged{d: d € D} =1.

Let mp(&) := ﬁ Y deD ef?md€  Key to the proof is the following linear transition operator
lg|—1 . 9 .
Co(1)(&) = Y mola™ €+ )| Fla' (€ +1) (5.5)
=0
defined on the space of Z-periodic functions. Let
gp(€) = Y (T N (T +k))e™ (5.6)
keZ

where T := T'([q], D). One easily checks (see Grochenig [21]), using the assumption that D
is a complete set of residues (mod q), that

Cp(1)=1, Cpnl(gp) = gp. (5.7)
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Assume that (7") > 1. Then gp(€) is not a constant, hence the set

Zpi={¢: 90(6) = miggn(n) |

is a nonempty discrete Z-periodic set, and Zp NZ = P by (5.6). Fix an & € Zp. By (5.7)

|Q| 1
gp(&) = Y |mo(a™ & + D) gp(a™ & +1))- (5.8)

=0
But z'Q' Yimo(g (& + 1) = 1 by Cp(1) = 1, so gp(q (& +1)) gp(€0) whenever
mp(q' (& +1)) # 0. In particular there exists an I; such that & := (fg + 1) € Zp.

Note that g&; = & (mod 1).

Now let Zp := Zp (mod 1). So for any Eo € Zp there exists a El € Zp such that
qg¢1 = &. But Zp is finite. Hence the map £ — ¢£ is a permutation on Zp.

Back to (5.8). There exists no ly # I; in the sum such that & := ¢~ (& +12) € Zp
because otherwise ¢&1 = ¢€2 (mod 1) while {; # & (mod 1), contradicting the fact that
€ — € is a permutation on Zp. Hence mp(q~'(&o +1)) = 0 for all 0 <1 < |g| — 1, 1 # 1.
This means

2
[m (g™ (G + )| Imo(&)* = 1. (5.9)
Because 0 € D, (5.9) is possible only if ¢27%1 = 1, and hence d¢, € Z for all d € D. But
&1 ¢ Z, it follows that ged{d : d € D} > 1, a contradiction. [ |

Theorem 5.2 generalizes to higher dimensions only in special cases. One such case is
when A € M,,(Z) is irreducible, which means that the characteristic polynomial of A is
irreducible in Q[z].

Theorem 5.3 Let A € M, (Z) be an expanding irreducible matriz, and D be a primitive
set of complete coset representatives of Z"/A(Z"). Then u(T(A,D)) =

A proof can be found in [37]. It uses a deep result of Cerveau, Conze, and Raugi [6]
characterizing the set of zeros of certain trigonometric polynomials. In the case of reducible
A, u(T(A,D)) > 1 only when the digit set has the so called quasi-product form, see [37].

Another interesting question is: For a given expanding A € M,,(Z), is it always possible
to construct Haar-type wavelet basis? In other words, is it always possible to find a digit set
D such that u(T'(A,D)) = 17 The answer is clearly affirmative in the one dimension as a
result of Theorem 5.2. The answer is known to be affirmative in dimensions n = 2, 3 ([22],
[33], [36], [37]). In dimension n, Haar-type wavelet bases exist if |det(A)| > n. But what
if |det(A)| < n, for example, |det(A)| = 27 The question becomes intriguing, because in
this case the digit set D consists of only two digits. Since we may assume that 0 € D, we
have in reality the freedom to choose for only one digit. If the dimension is large, it is not
clear we can always choose this digit so that D is primitive, i.e. Z[A,D] = Z". Although
no counterexample has been found yet, it is almost certain that they exist. This problem
has a surprising connection to algebraic number theory, see Lagarias and Wang [36].
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Figure 1: The Fractal Red Cross

6 Boundaries of Self-Affine Tiles

An important problem in fractal geometry is to find the Hausdorff dimension of a fractal
set. Since a tile by definition has positive Lebesgue measure, its Hausdorff dimension is
simply the dimension of the space in which it resides. A more interesting problem is to find
the Hausdorff dimension of the boundary of a self-affine tile.

Getting the exact Hausdorff dimension of a fractal set is tricky in general. This had been
the case for the boundaries of self-affine tiles. Boundaries of several well known tiles, such
as the Gosper Flake (Gardner [18]) or the Fractal Red Cross (Strichartz [50]), were studied
and their exact Hausdorff dimension derived. We illustrate how the Hausdorff dimensions
of the boundaries of some self-affine tiles can be computed by the example of the Fractal
Red Cross (Figure 1) in [50], which is the self-affine tile 7" := T'(A, D) with

S aE R (B AR

By Figure 1, the boundary of A(T') consists of 12 pieces, each congruent to a quarter of
the boundary of T'. Note that there are 5 x 4 quarter boundaries in the five translates of
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T in A(T), but 8 of them are overlaps that become part of the interior of A(T). So in
fact 0(A(T)) = A(OT) consists of 20 — 8 = 12 quarter boundaries of 7. Let H*® denote
the s-dimensional Hausdorff measure. Then H*(A(0T')) = 3H*(9T"). On the other hand,
H3(A(OT)) = 5%/?H(OT) by the scaling property of H*. For H*(9T) to be finite and
nonzero we must have 5°/2 = 3. So s = 2logs 3 is the dimension of 97".

The above method can be made rigorous. The drawback is that it depends fundamen-
tally on the visualization of the tiles, making it useful only on a case by case basis. For
many self-affine tiles, the method either does not work, or requires ingenuity to work.

In this section we outline a method for finding the exact Hausdorff dimension of the
boundaries of integral self-affine tiles. It employs the same basic idea, but requires no
visualization of the tiles and works in all cases where the expanding matrix A € M, (Z) is
similar to a similarity.

Let T := T(A, D) be an integral self-affine tile with x(7') = 1. Because T tiles R" by
Z"-translations and T is the closure of its interior,

= |J Tn(T+w). (6.1)
a€Zm\{0}

Denote B, := T N (T + «) for all @ € Z" \ {0}. Of course there are only finitely many
nonemtpy B,’s. Let Ko = {a € Z™\ {0} : B, # 0}. To find the Hausdorff dimension of 0T
we utilize the fact that {B, : « € Ko} form a self-similar system; more precisely,

A(B,) = A(T)NA(T +«)
= (T+D)Nn(T'+D+ Aw)

= U (Baata-a+d). (6.2)
d,d' €D
Now, label elements in Ky as Ko = {a1,@9,...,as} and define
Eiji={deD: Aa;+d —d e K for some d' € D}. (6.3)

Let B; := By, for 1 <i < J. Then we may rewrite (6.2) as

J
AB) =JBj+&,;), 1<i<J. (6.4)
Jj=1

Theorem 6.1 Let T := T(A,D) be an integral self-affine tile with (T'(A,D)) = 1. Sup-
pose that A s similar to a similarity. Then

dimp(9T) = dimp(T) = dimp (9T) = %, (6.5)

where M := [|&; j|l7x7 and p(M) is its specrtal radius.

We call the matrix M = [|; ;|] the substitution matriz of the boundary of T'.
To prove Theorem 6.1 we first observe that iterating (6.4) yields

J
AY(B) =B+&Y), 1<i<y, (6.6)
j=1
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where for all 1 <14,57 <1,

J

gi,]\g' = U (A(gi],\;gil) + gk,j)a gil,j = &ije (6.7)
k=1

Lemma 6.2 [|EZZ\; ] =M for all N > 1.

Proof. We prove the lemma by induction on N. The lemma is clearly true for N = 1.
Assume that it holds for NV — 1; we show that it also holds for V.

Observe that & ; C D and D is a complete set of coset representatives of Z"/A(Z").
Hence

AN +Eny| = 1N 1Ew 1 (6.8)
We shall establish that for all k # [,
(AENT + &) 0 (AN +65) = 0. (6.9)

This is clear if we can show that & ; N & ; = 0 because this will mean the two sets have
no elements in a same coset of Z"/A(Z"). Assume that d € & ; N & ;. Then there exist
di, ds € D such that

Aap+dy —d= Ao +dy —d = a.

So A(ay — aq) = do — dy, contradicting k # [. This proves (6.9).
It now follows from (6.7) and (6.8) that

J
Nf
N1 =D 1EN Mk 41,
k=1

proving the lemma. |

Proof of Theorem 6.1. Let X\ := p(M). Since M is a nonnegative matrix, there is a
nonnegative eignevector v associated to A. Without loss of generality we assume that vy > 0
and that A is a similarity. Let s := nlogp(M)/log|det(A)|. We divide the proof into three
parts.

(1) dimp(9T) > s.

Let C;(e) denote the least number of e-cubes needed to cover T;. Observe that

J
AN(B) = (B + &) 2 BL+ &1,
j=1
hence
B1 2 A™N(By) + ATN(EY). (6.10)
This means at least [E]"] | e y-cubes are needed to cover By, where ey := | det(A)|_%. Hence

Cilen) 2 [ED]-
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Now for any sufficiently small € > 0 there exists an IV > 0 such that ey11 < e <en. So

log Ci(e) _ logCilen) o nlog €1
—loge — —logent1 — (N +1)log|det(A)|

N
It is well known that limy_, 22281 = Jog \. This yields

dimgz(0T) > dimg(By) > s.

(I1) dimg(9T) < s.

Let 6y := max {2diam(B;) : 1 < j < J} and oy := |det(A)|_%. Observe that each B;
can be covered by a single dg-cube. The iteration

J
AY(B) =B +&Y), 1<i<yJ
j=1
yields
J
Ci(6n) <D 1EN|
7=1
Note that for each 1 <1 < J,
. log (Z}']:1 5ZNJ ) nlog A
lim sup < =s.
N—ro0 —logdn log | det(A)]

The same techniques employed in (I) immediately gives (II).
(III) dimg (0T) = s.

dimg (0T) = s follows easily from Falconer [16], Theorem 3.1 and 3.2. Details can be
found in [51]. |

Example 6.1 One of the best known self-affine tile is the Twin Dragon, which is given by

(2] ()

In this example, one can show ([51]) that ICyp = {e1, —e1, ez, —€2,€1 —€2,e9 — €1} and the
substitution matrix is

0 01 0 0 07
0001 0O
0 001 20
M = 0 01 00 2
10 0 00O
01000 0]
The characteristic polynomial is f(A) = (A3 — A2 — 2)(A\% + A? — 2). Hence by Theorem 6.1,

dimgy (0T) = 2logy Ao
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where )\ is the largest root of A> — A2 — 2.

In general, the set Ky for any given self-affine tile can be found via a “pruning algorithm,”

see [51]. One can also obtain a priori a set 1 D Ky by estimating the diameter of the

tile.

It turns out that the substitution matrix obtained using /C; will have the exactly same

spectral radius as the substitution matrix from K.

It should be pointed out that Duvall and Keesling [14] have recently computed the

exact Hausdorff dimension of the boundary of the well known Lévy Dragon, using a rather
different approach. The method in [14] can handle more general self-similar tiles, although
typically requires much larger matrices (in the case of the Lévy Dragon it is a 752 x 752

matrix).
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