Self-Affine Tiles

Yang Wang*
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332

June 10, 1998

Abstract

A self-affine tile in \mathbf{R}^{n} is a set T of positive Lebesgue measure satisfying $\mathbf{A}(T)=$ $\cup_{d \in \mathcal{D}}(T+d)$, where \mathbf{A} is an expanding $n \times n$ real matrix with $|\operatorname{det}(\mathbf{A})|=m$ an integer, and $\mathcal{D}=\left\{d_{1}, \ldots, d_{m}\right\} \subset \mathbf{R}^{n}$ a set of m digits. Self-affine tiles arise in many contexts, including radix expansions, fractal geometry, and the construction of compactly supported orthonormal wavelet bases of $L^{2}\left(\mathbf{R}^{n}\right)$. They are also studied as interesting tiles. In this article we survey the fundamental properties of self-affine tiles. We examine necessary and sufficient conditions for digit sets \mathcal{D} to give rise to self-affine tiles. A special class of self-affine tiles is the integeral self-affine tiles, in which \mathbf{A} is an integer matrix and $\mathcal{D} \subset \mathbf{Z}^{n}$. We study the tiling properties and the measures of integeral selfaffine tiles. We also compute the Hausdorff dimensions of the boundaries of integeral self-affine tiles.

1 Introduction

Let \mathbf{A} be an expanding matrix in $M_{n}(\mathbf{R})$, that is, one with all eigenvalues $\left|\lambda_{i}\right|>1$, and suppose that $|\operatorname{det}(\mathbf{A})|=m$ for some integer $m>1$. Let $\mathcal{D}=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\} \subset \mathbf{R}^{n}$ be a finite set of vectors. A result of Hutchinson [27] states that there exists a unique nonempty compact set $T:=T(\mathbf{A}, \mathcal{D})$ such that

$$
\begin{equation*}
T=\bigcup_{j=1}^{m} \mathbf{A}^{-1}\left(T+d_{j}\right) \tag{1.1}
\end{equation*}
$$

More precisely, T is the attractor of the iterated function system $\left\{\phi_{j}(x)=\mathbf{A}^{-1} x+\mathbf{A}^{-1} d_{j}\right.$: $1 \leq j \leq m\}$. In fact, T is given explicitly by

$$
\begin{equation*}
T=\left\{\sum_{k=1}^{\infty} \mathbf{A}^{-k} d_{k}: \text { each } d_{k} \in \mathcal{D}\right\} \tag{1.2}
\end{equation*}
$$

For most pairs $(\mathbf{A}, \mathcal{D})$ the set $T(\mathbf{A}, \mathcal{D})$ has Lebesgue measure $\mu(T)=0$. If $T(\mathbf{A}, \mathcal{D})$ has positive Lebesgue measure we call $T(\mathbf{A}, \mathcal{D})$ a self-affine tile.

[^0]The name "self-affine tile" refers to the fact that

$$
\begin{equation*}
\mathbf{A}(T)=\bigcup_{j=1}^{m}\left(T+d_{j}\right)=T+\mathcal{D} \tag{1.3}
\end{equation*}
$$

geometrically it means that the affinely dilated set $\mathbf{A}(T)$ is perfectly tiled by the m translates $T+d_{j}$ of T. A simple example of a self-affine tile is the unit square $T=[0,1]^{2}$, which satisfies $\mathbf{A}(T)=T+\mathcal{D}$ for

$$
\mathbf{A}=2 I, \quad \mathcal{D}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} .
$$

Self-affine tiles have been studied as "exotic" tiles and as tiles giving interesting tilings of \mathbf{R}^{n} ([1], [2] [11], [12], [13] [22], [24], [29], [34], [37], [52]). Furthermore, they arise in many other contexts, particularly in fractal geometry ([14], [15], [16], [51]), compactly supported wavelet bases ([23], [33], [36]), radix expansions ([19]), and in Markov partitions ([28]). The current interests in self-affine tiles come largely from these applications.

Most of the studies on self-affine tiles employ one or both of the two approaches: algebraic and Fourier analytic. It is rather easy to see the role of algebraic methods. For example, given an expanding matrix \mathbf{A} and a digit set \mathcal{D}, by iterating (1.3) we obtain $\mathbf{A}^{k}(T)=T+\mathcal{D}_{\mathbf{A}, k}$ where

$$
\begin{equation*}
\mathcal{D}_{\mathbf{A}, k}=\left\{\sum_{j=0}^{k-1} \mathbf{A}^{j} d_{j}: \text { each } d_{k} \in \mathcal{D}\right\} \tag{1.4}
\end{equation*}
$$

As we shall see, many properties of $T(\mathbf{A}, \mathcal{D})$ depend fundamentally on the algebraic properties of $\mathcal{D}_{\mathbf{A}, k}$. Of course, this is but one of the many instances where algebraic methods can be employed.

But harmonic analysis can be a powerful tool in the study of self-affine tiles as well. Let $T:=T(\mathbf{A}, \mathcal{D})$ be a self-affine tile. The set-valued equation $\mathbf{A}(T)=T+\mathcal{D}$ can be written as

$$
\begin{equation*}
\chi_{T}(x)=\sum_{d \in \mathcal{D}} \chi_{T}(\mathbf{A} x-d) \tag{1.5}
\end{equation*}
$$

Let $m_{\mathcal{D}}(\xi)=\frac{1}{|\mathcal{D}|} \sum_{d \in \mathcal{D}} e^{i 2 \pi\langle d, \xi\rangle}$. Taking the Fourier transform in (1.5) results in

$$
\begin{equation*}
\widehat{\chi}_{T}(\xi)=m_{\mathcal{D}}\left(\mathbf{B}^{-1} \xi\right) \widehat{\chi}_{T}\left(\mathbf{B}^{-1} \xi\right), \text { where } \mathbf{B}:=\mathbf{A}^{T} \tag{1.6}
\end{equation*}
$$

This yields

$$
\begin{equation*}
\widehat{\chi}_{T}(\xi)=c \prod_{j=1}^{\infty} m_{\mathcal{D}}\left(\mathbf{B}^{-j} \xi\right), \text { where } c:=\widehat{\chi}_{T}(0)=\mu(T) \tag{1.7}
\end{equation*}
$$

By analyzing $m_{\mathcal{D}}(\xi)$ and the infinite product (1.7) a number of nontrivial results on the tile T and its tilings can be proved ([7], [22], [29], [35], [37]).

We shall provide a glimpse of both approaches in this overview. The fundamental question this paper addresses is this: for a given matrix \mathbf{A} and digit set \mathcal{D}, under what conditions will $T(\mathbf{A}, \mathcal{D})$ be a tile? We derive several necessary and sufficient conditions in $\S 2$, and later in $\S 4$. In $\S 3$ we introduce integral self-affine tiles and prove some basic results
concerning their measures and tilings. Some of these results are then used in $\S 5$ to study Haar-type wavelet bases. In $\S 6$ we show a method for finding the exact Hausdorff dimension of the boundaries of self-affine tiles.

Due to the restriction on the length of the paper, We have limited the discussions of this overview mostly to self-affine tiles as sets. In doing so we have made several conspicuous, and perhaps unjustified, omissions. In particular, we have left out the study on self-replicating tilings and on the topological properties of the tiles entirely. We apologize in advance for our inability to include these results and shall refer the readers to [2], [28], [30], [34], [53] for more details.

We are greatly indebt to Professor Ka-Sing Lau and the mathematics department of the Chinese University of Hong Kong for the kind invitation to visit. We would also like to thank Jeff Lagarias, Ka-Sing Lau, Rick Kenyon, Sze-Man Ngai and Bob Strichartz for encouraging and helpful discussions.

2 Conditions For A Tile

As mentioned in the introduction, for a given pair $(\mathbf{A}, \mathcal{D})$ where $\mathbf{A} \in M_{n}(\mathbf{R})$ is expanding and $\mathcal{D} \subset \mathbf{R}^{n}$ has cardinality $|\mathcal{D}|=|\operatorname{det}(\mathbf{A})|$, the corresponding attractor $T(\mathbf{A}, \mathcal{D})$ is usually not a tile. A fundamental question is thus: under what condition(s) is $T(\mathbf{A}, \mathcal{D})$ a tile? To gain some insight into this question we first look at the following example.

Example 2.1. Let $\mathbf{A}=[3]$ and $\mathcal{D}=\{0,1,4\}$. We show that $T=T(\mathbf{A}, \mathcal{D})$ is not a tile by showing that $\mu(T)=0$, where μ denotes the Lebesgue measure. Note that

$$
3 T=T+\mathcal{D}=T+\{0,1,4\} .
$$

Hence

$$
\begin{aligned}
9 T & =3 T+3 \mathcal{D} \\
& =T+\{0,1,4\}+\{0,3,12\} \\
& =T+\{0,1,3,4,7,12,13,16\} .
\end{aligned}
$$

It follows by taking the Lebesgue measure that

$$
9 \mu(T)=\mu(T+\{0,1,3,4,7,12,13,16\}) \leq 8 \mu(T),
$$

and hence $\mu(T)=0$.
For integral \mathbf{A} and \mathcal{D}, the following theorem was established by Bandt [1]:

Theorem 2.1 Let $\mathbf{A} \in M_{n}(\mathbf{Z})$ be an expanding matrix and let $\mathcal{D} \subset \mathbf{Z}^{n}$ be a set of complete coset representatives of $\mathbf{Z}^{n} / \mathbf{A}\left(\mathbf{Z}^{n}\right)$. Then $T=T(\mathbf{A}, \mathcal{D})$ has nonempty interior. Furthermore, T is the closure of its interior and $\mu(\partial T)=0$.

Proof. We present a new proof here. We first show that $\mu(T)>0$. Let $T_{0}=[0,1]^{n}$ and

$$
\begin{equation*}
T_{k}=\bigcup_{d \in \mathcal{D}} \mathbf{A}^{-1}\left(T_{k-1}+d\right), \quad k \geq 1 \tag{2.1}
\end{equation*}
$$

It is easy to check, by induction on k, that the unions in (2.1) are measure-disjoint and $\mu\left(T_{k}\right)=1$ for all k. Since $T_{k} \longrightarrow T$ in the Haudorff metric (c.f. Hutchinson [27]), it follows that $\mu(T) \geq 1$.

Now let $\pi_{n}: \mathbf{R}^{n} \longrightarrow \mathbf{T}^{n}$ be the canonical covering map, where $\mathbf{T}^{n}:=\mathbf{R}^{n} / \mathbf{Z}^{n}$ is the n-torus. Then $\mathbf{A}_{*}:=\pi_{n} \circ \mathbf{A} \circ \pi_{n}^{-1}$ is a well defined endomorphism on \mathbf{T}^{n}. Clearly,

$$
\mathbf{A}_{*}\left(\pi_{n}(T)\right)=\pi_{n}(\mathbf{A}(T))=\pi_{n}(T+\mathcal{D})=\pi_{n}(T) .
$$

So $\pi_{n}(T)$ is invariant under \mathbf{A}_{*}. But \mathbf{A}_{*} is ergodic because \mathbf{A} is expanding (c.f. Walters [54]). Hence $\pi_{n}(T)=\mathbf{T}^{n}$. This means that

$$
\bigcup_{\alpha \in \mathbf{Z}^{n}}(T+\alpha)=\mathbf{R}^{n} .
$$

To see that $T^{o} \neq \emptyset$, let $\mathcal{J} \subset \mathbf{Z}^{n}$ be the smallest set such that $T+\mathcal{J} \supseteq(0,1)^{n}$. Suppose that $T^{o}=\emptyset$. Fix an $\alpha_{0} \in \mathcal{J}$. Then any $x \in(0,1)^{n} \cap\left(T+\alpha_{0}\right)$ must belong to another $T+\beta$ for some $\beta \in \mathcal{J}$. Hence $T+\left(\mathcal{J} \backslash\left\{\alpha_{0}\right\}\right) \supseteq(0,1)^{n}$, contradicting the minimality assumption of \mathcal{J}. So $T^{o} \neq \emptyset$. Now

$$
\mathbf{A}\left(\overline{T^{o}}\right)=\overline{T^{o}}+\mathcal{D} .
$$

By the uniqueness we must have $T=\overline{T^{o}}$.
Finally we prove that $\mu(\partial T)=0$. Let $x_{0} \in T^{o}$. For sufficiently large $k \geq 0$ the interior of $\mathbf{A}^{k}\left(T-x_{0}\right)$ will contain T. But

$$
\mathbf{A}^{k}\left(T-x_{0}\right)=T+\mathcal{J}^{\prime}, \quad \text { where } \mathcal{J}^{\prime}=\mathcal{D}+\mathbf{A} \mathcal{D}+\cdots+\mathbf{A}^{k-1} \mathcal{D}-\mathbf{A}^{k} x_{0},
$$

and the union $T+\mathcal{J}^{\prime}$ is measure-disjoint. Since ∂T is contained in the overlapps in the union, it follows that $\mu(\partial T)=0$.

For any \mathbf{A} and digit set \mathcal{D} we denote

$$
\mathcal{D}_{\mathbf{A}, k}:=\mathcal{D}+\mathbf{A} \mathcal{D}+\cdots+\mathbf{A}^{k-1} \mathcal{D}
$$

Note that if $0 \in \mathcal{D}$ then $\mathcal{D}_{\mathbf{A}, k} \subseteq \mathcal{D}_{\mathbf{A}, k+1}$. In this case we denote

$$
\mathcal{D}_{\mathbf{A}, \infty}:=\bigcup_{k=1}^{\infty} \mathcal{D}_{\mathbf{A}, k}, \quad \Delta(\mathbf{A}, \mathcal{D}):=(\mathcal{D}-\mathcal{D})_{\mathbf{A}, \infty}
$$

The above theorem is a special case of the following more general theorem, due to Kenyon [29] and Lagarias and Wang [34]:

Theorem 2.2 Let $\mathbf{A} \in M_{n}(\mathbf{R})$ be an expanding matrix such that $|\operatorname{det}(\mathbf{A})|=m \in \mathbf{Z}$. Suppose that $\mathcal{D} \subset \mathbf{R}^{n}$ has cardinality m, with $0 \in \mathcal{D}$. Let $T=T(\mathbf{A}, \mathcal{D})$. Then the following conditions are equivalent:
(a) T has positive Lebesgue measure.
(b) T has nonempty interior.
(c) T is the closure of its interior, and its boundary ∂T has Lebesgue measure zero.
(d) For each $k \geq 1$ all m^{k} expansions in $\mathcal{D}_{\mathbf{A}, k}$ are distinct, and $\mathcal{D}_{\mathbf{A}, \infty}$ is uniformly discrete.

Although not difficult, the proof is rather tedious. A proof can be found in Lagarias and Wang [34].

One other question we naturally ask is how does a self-affine tile $T(\mathbf{A}, \mathcal{D})$ tile \mathbf{R}^{n}. We show below that T tiles by translation.

Theorem 2.3 Let $\mathbf{A} \in M_{n}(\mathbf{R})$ be an expanding matrix and $\mathcal{D} \subset \mathbf{R}^{n}$ with $|\mathcal{D}|=|\operatorname{det}(\mathbf{A})|$. Suppose that $T=T(\mathbf{A}, \mathcal{D})$ has nonempty interior. Then there exists a set of translations $\mathcal{J} \subseteq \Delta(\mathbf{A}, \mathcal{D})$ such that $T+\mathcal{J}$ is a tiling of \mathbf{R}^{n}.

Proof. The fundamental idea here is to repeatedly inflate the tile T at some interior point. Since $T^{o} \neq \emptyset$, by (1.2) there exists an interior point $x_{0} \in T^{o}$ that has a finite radix expansion

$$
x_{0}=\sum_{j=1}^{N} \mathbf{A}^{-j} d_{j}^{*}, \quad \text { each } d_{j}^{*} \in \mathcal{D}
$$

Let $\tilde{T}=T-x_{0}$ and $\tilde{\mathcal{D}}:=\mathcal{D}_{\mathbf{A}, N}-\mathbf{A}^{N} x_{0}$. Then $0 \in \tilde{\mathcal{D}}$ and $\mathbf{A}^{N}(\tilde{T})=\tilde{T}+\tilde{D}$. Iterations yield that for all $k \geq 1$,

$$
\begin{equation*}
\mathbf{A}^{N k}(\tilde{T})=\tilde{T}+\tilde{\mathcal{D}}_{\mathbf{A}^{N}, k} \tag{2.2}
\end{equation*}
$$

Because 0 is in the interior of \tilde{T}, any ball $B_{r}(0)$ will be covered by $\mathbf{A}^{N k}(\tilde{T})$ for sufficiently large k. Furthermore, $\tilde{\mathcal{D}}_{\mathbf{A}^{N}, k} \subseteq \tilde{\mathcal{D}}_{\mathbf{A}^{N}, k+1}$ because $0 \in \tilde{\mathcal{D}}$. Hence \tilde{T} tiles \mathbf{R}^{n} by translates of $\mathcal{J}:=\tilde{\mathcal{D}}_{\mathbf{A}^{N}, \infty}$, which implies that T tiles \mathbf{R}^{n} by translates of \mathcal{J}. Now clearly we have $\mathcal{J} \subseteq \Delta(\mathbf{A}, \mathcal{D})$, proving the theorem.

An immediate corollary of Theorem 2.3 is that if $\mathbf{A} \in M_{n}(\mathbf{Z})$ and $\mathcal{D} \subset \mathbf{Z}^{n}$, then we may find a $\mathcal{J} \subseteq \mathbf{Z}^{n}$ such that $T(\mathbf{A}, \mathcal{D})+\mathcal{J}$ is a tiling of \mathbf{R}^{n}, provided that $T(\mathbf{A}, \mathcal{D})$ has nonempty interior.

3 Integral Self-Affine Tiles

A particular class of self-affine tiles is the so-called integral self-affine tiles, where $\mathbf{A} \in M_{n}(\mathbf{Z})$ and $\mathcal{D} \in \mathbf{Z}^{n}$. The integrality allows us to establish many more properties about the tile $T(\mathbf{A}, \mathcal{D})$. In some applications, such as orthonormal wavelet bases, one encounters only integral self-affine tiles. Moreover a large class of self-affine tiles, including all self-affine tiles in the one dimension, are affinely equivalent to integral self-affine tiles, see Kenyon [29], and Lagarias and Wang [34].

Let \mathbf{A} be an expanding matrix in $M_{n}(\mathbf{Z})$ and $\mathcal{D} \subset \mathbf{Z}^{n}$ with $|\mathcal{D}|=|\operatorname{det}(\mathbf{A})|$. Associated to the pair $(\mathbf{A}, \mathcal{D})$ is the smallest \mathbf{A}-invariant sublattice of \mathbf{Z}^{n} containing the difference set $\mathcal{D}-\mathcal{D}$, which we denote by $\mathbf{Z}[\mathbf{A}, \mathcal{D}]$. If $0 \in \mathcal{D}$ then

$$
\begin{equation*}
\mathbf{Z}[\mathbf{A}, \mathcal{D}]=\mathbf{Z}\left[\mathcal{D}, \mathbf{A}(\mathcal{D}), \ldots, \mathbf{A}^{n-1}(\mathcal{D})\right] . \tag{3.1}
\end{equation*}
$$

This follows from the Hamilton-Cayley Theorem that $\mathbf{A}^{n} \in \mathbf{Z}\left[\mathbf{A}^{0}, \mathbf{A}^{1}, \ldots, \mathbf{A}^{n-1}\right]$.
We call a digit set \mathcal{D} primitive (with respect to \mathbf{A}) if $\mathbf{Z}[\mathbf{A}, \mathcal{D}]=\mathbf{Z}^{n}$, and we also call the associated tile $T(\mathbf{A}, \mathcal{D})$ a primitive tile. Most of the questions we consider here can be reduced to the case of primitive tiles.

Lemma 3.1 Let \mathbf{A} be an expanding matrix in $M_{n}(\mathbf{Z})$ and $\mathcal{D} \subset \mathbf{Z}^{n}$ with $|\mathcal{D}|=|\operatorname{det}(\mathbf{A})|$. Suppose that $0 \in \mathcal{D}$ and $\mathbf{Z}[\mathbf{A}, \mathcal{D}]=\mathbf{B}\left(\mathbf{Z}^{n}\right)$ for some $\mathbf{B} \in M_{n}(\mathbf{Z})$. Then there is an expanding matrix $\tilde{\mathbf{A}} \in M_{n}(\mathbf{Z})$ and a primitive digit set $\tilde{\mathcal{D}} \subset \mathbf{Z}^{n}$ with respect to $\tilde{\mathbf{A}},|\tilde{\mathcal{D}}|=|\operatorname{det}(\tilde{\mathbf{A}})|$, such that

$$
\begin{equation*}
T(\mathbf{A}, \mathcal{D})=\mathbf{B}(T(\tilde{\mathbf{A}}, \tilde{\mathcal{D}})) \tag{3.2}
\end{equation*}
$$

Proof. Since $\mathbf{Z}[\mathbf{A}, \underset{\sim}{\mathcal{D}}]=\mathbf{B}\left(\mathbf{Z}^{n}\right)$ is \mathbf{A}-invariant, $\mathbf{A B}\left(\mathbf{Z}^{n}\right) \subseteq \mathbf{B}\left(\mathbf{Z}^{n}\right)$. Hence $\mathbf{A B}=\mathbf{B} \tilde{\mathbf{A}}$ for some $\tilde{\mathbf{A}} \in M_{n}(\mathbf{Z})$. $\tilde{\mathbf{A}}$ is expanding because $\tilde{\mathbf{A}}=\mathbf{B}^{-1} \mathbf{A B}$. Now $\mathcal{D} \subseteq \mathbf{B}\left(\mathbf{Z}^{n}\right)$, so $\mathcal{D}=\mathbf{B}(\tilde{\mathcal{D}})$ for some $\tilde{\mathcal{D}} \subset \mathbf{Z}^{n}$. Let $\tilde{T}:=T(\tilde{\mathbf{A}}, \tilde{\mathcal{D}})$. It satisfies $\tilde{\mathbf{A}}(\tilde{T})=\tilde{T}+\tilde{\mathcal{D}}$, so

$$
\mathbf{A}(\mathbf{B}(\tilde{T}))=\mathbf{B} \tilde{\mathbf{A}}(\tilde{T})=\mathbf{B}(\tilde{T}+\tilde{\mathcal{D}})=\mathbf{B}(\tilde{T})+\mathcal{D}
$$

The uniqueness yields $\mathbf{B}(\tilde{T})=T$.

Theorem 3.2 Let $\mathbf{A} \in M_{n}(\mathbf{Z})$ be expanding and $\mathcal{D} \subset \mathbf{Z}^{n}$ with $|\mathcal{D}|=|\operatorname{det}(\mathbf{A})|$. Then $k:=\mu(T(\mathbf{A}, \mathcal{D})) \in \mathbf{Z}$. Furthermore, $T(\mathbf{A}, \mathcal{D})+\mathbf{Z}^{n}$ is a perfect covering of \mathbf{R}^{n} of multiplicity k.

Proof. As before let $\pi_{n}: \mathbf{R}^{n} \longrightarrow \mathbf{T}^{n}$ be the canonical covering map. The integer matrix \mathbf{A} induces an endormorphism $\mathbf{A}_{*}: \mathbf{T}^{n} \longrightarrow \mathbf{T}^{n}$ defined by $\mathbf{A}_{*}:=\pi_{n} \circ \mathbf{A} \circ \pi_{n}^{-1}$. Let $\nu: \mathbf{T}^{n} \longrightarrow \mathbf{Z}$ denote the function $\nu(z):=\left|\pi_{n}^{-1}(z) \cap T\right|$ where $T:=T(\mathbf{A}, \mathcal{D})$. Since T is compact, there exists a finite $k \in \mathbf{Z}$ such that

$$
k=\max \left\{l \in \mathbf{Z}: \nu(z) \geq l \text { for almost all } z \in \mathbf{T}^{n}\right\}
$$

Now there exist disjoint (up to measure zero sets) fundamental domains $F_{1}, F_{2}, \ldots, F_{k}$ of the lattice \mathbf{Z}^{n} such that each $F_{j} \subseteq T$. Denote $F=\cup_{j=1}^{k} F_{j}$ and $\Omega=T \backslash F$. We show that $\Omega_{*}:=\pi_{n}(\Omega)$ is invariant under \mathbf{A}_{*}.

To see this, note that

$$
\begin{equation*}
\mathbf{A}_{*}\left(\Omega_{*}\right)=\pi_{n} \circ \mathbf{A}(\Omega)=\pi_{n}\left((T+\mathcal{D}) \backslash \bigcup_{j=1}^{k} \mathbf{A}\left(F_{j}\right)\right) \tag{3.3}
\end{equation*}
$$

Let $z_{0} \in \mathbf{T}^{n} \backslash \Omega_{*}$. Then z_{0} is covered exactly k times under $\pi_{n}: T \longrightarrow \mathbf{T}^{n}$; so it is covered exactly $k|\mathcal{D}|$ times under $\pi_{n}: T+\mathcal{D} \longrightarrow \mathbf{T}^{n}$. However, z_{0} is also covered $|k \operatorname{det}(\mathbf{A})|=k|\mathcal{D}|$ times under $\cup_{j=1}^{k} \mathbf{A}\left(F_{j}\right)$ times because each F_{j} is a fundamental domain of \mathbf{Z}^{n} and $\mathbf{A} \in$ $M_{n}(\mathbf{Z})$. So $z_{0} \notin \mathbf{A}_{*}\left(\Omega_{*}\right)$ by (3.3). This yields $\mathbf{A}\left(\Omega_{*}\right) \subseteq \Omega_{*}$. By the ergodicty of \mathbf{A}_{*} the set Ω_{*} have measure zero or is all of \mathbf{T}^{n}. But the latter is ruled out by the definition of k. Therefore $\mu(\Omega)=0$, and $\nu(z)=k$ for almost all $z \in \mathbf{T}^{n}$. This proves $\mu(T)=k \in \mathbf{Z}$ and $T+\mathbf{Z}^{n}$ is a perfect covering of \mathbf{R}^{n} of multiplicity k.

As we will see in $\S 4$, a Haar-type orthonormal wavelet basis can be constructed from an integral self-affine tile $T(\mathbf{A}, \mathcal{D})$ with $\mu\left(T(\mathbf{A}, \mathcal{D})=1\right.$. In this case $T(\mathbf{A}, \mathcal{D})$ tiles \mathbf{R}^{n} by \mathbf{Z}^{n}-translations. The following is a necessary condition for it to hold.

Theorem 3.3 Let $\mathbf{A} \in M_{n}(\mathbf{Z})$ be expanding and $\mathcal{D} \subset \mathbf{Z}^{n}$ with $|\mathcal{D}|=|\operatorname{det}(\mathbf{A})|$. Suppose that $\mu(T(\mathbf{A}, \mathcal{D}))=1$. Then \mathcal{D} is primitive and is a complete set of coset representatives of $\mathbf{Z}^{n} / \mathbf{A}\left(\mathbf{Z}^{n}\right)$.

Proof. We project $T:=T(\mathbf{A}, \mathcal{D})$ onto the n-torus \mathbf{T}^{n} by π_{n}. By Theorem 2.3 there exists a $\mathcal{J} \subseteq \mathbf{Z}^{n}$ such that $T+\mathcal{J}$ is a tiling of \mathbf{R}^{n}. Since $\mu(T)=1, \mathcal{J}=\mathbf{Z}^{n}$. Hence $\pi_{n}(T)=\mathbf{T}^{n}$. Now $\mathbf{A}(T)=T+\mathcal{D}$ yields

$$
\mathbf{T}^{n}=\pi_{n}(T)=\bigcup_{d \in \mathcal{D}}\left(\tilde{T}_{*}+\pi_{n}\left(\mathbf{A}^{-1} d\right)\right), \quad \text { where } \tilde{T}_{*}:=\pi_{n}\left(\mathbf{A}^{-1}(T)\right)
$$

Since the measure of \tilde{T}_{*} is at most $1 /|\mathcal{D}|$, all $\pi_{n}\left(\mathbf{A}^{-1} d\right)$ must be distinct in \mathbf{T}^{n}. This shows that \mathcal{D} must be a complet set of coset representatives of $\mathbf{Z}^{n} / \mathbf{A}\left(\mathbf{Z}^{n}\right)$.

The primitiveness of \mathcal{D} follows directly from Lemma 3.1.
The converse of Theorem 3.3 is true in the one dimension (§4) but is false for $n \geq 2$. Let

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right], \quad \mathcal{D}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right\}
$$

Then \mathcal{D} is a primitive complete set of coset representatives of $\mathbf{Z}^{2} / \mathbf{A}\left(\mathbf{Z}^{2}\right)$. However, $\mu(T(\mathbf{A}, \mathcal{D}))$ has Lebesgue measure 3, see [37].

In the above example the tile $T(\mathbf{A}, \mathcal{D})$ tiles \mathbf{R}^{2} by lattice translates, using the lattice $3 \mathbf{Z} \oplus \mathbf{Z}$. In general we have:

Theorem 3.4 Let $\mathbf{A} \in M_{n}(\mathbf{Z})$ be expanding and \mathcal{D} be a complete set of coset representatives of $\mathbf{Z}^{n} / \mathbf{A}\left(\mathbf{Z}^{n}\right)$. Then there exists a full rank lattice $\mathcal{L} \subseteq \mathbf{Z}^{n}$ such that $T(\mathbf{A}, \mathcal{D})$ tiles \mathbf{R}^{n} by \mathcal{L}-translations.

For the proof of Theorem 3.4 we refer the readers to Conz, Hervè and Raugi [7] or Lagarias and Wang [37].

4 Digit Sets of Integral Self-Affine Tiles

Although Theorem $2.2(\mathrm{~d})$ provides a necessary and sufficient condition for $T(\mathbf{A}, \mathcal{D})$ to be a tile, the condition itself is rather difficult to verify. In this section we explicitly classify integral digit sets \mathcal{D} that result in tiles for certain types of expanding matrices $\mathbf{A} \in M_{n}(\mathbf{Z})$.

Theorem 4.1 Let p be a prime and $\mathcal{D} \subset \mathbf{Z}$ be a primitive digit set with $|\mathcal{D}|=|p|$. Then $T(\mathbf{A}, \mathcal{D})$ is a tile if and only if \mathcal{D} is a complete set of residues ($\bmod p$).

Proof. The sufficency is already established. We prove the necessity. Without loss of generality we assume that $0 \in \mathcal{D}$ and $d \geq 0$ for all $d \in \mathcal{D}$. Let $f_{\mathcal{D}}(z)$ denote the characteristic polynomial $f_{\mathcal{D}}(z):=\frac{1}{|p|} \sum_{d \in \mathcal{D}} z^{d}$. We prove that there exists a $k \geq 1$ such that the cyclotomic polynomial $F_{p^{k}}(z):=\frac{z^{p^{k}}-1}{z^{p^{k-1}}-1}$ divides $f_{\mathcal{D}}(z)$.

Let $m_{\mathcal{D}}(\xi):=f_{\mathcal{D}}\left(e^{i 2 \pi \xi}\right)$. Note that the characteristic function of $T:=T(\mathbf{A}, \mathcal{D})$ satisfies

$$
\begin{equation*}
\chi_{T}(x)=\sum_{d \in \mathcal{D}} \chi_{T}(p x-d) \tag{4.1}
\end{equation*}
$$

Taking the Fourier transform yields $\widehat{\chi}_{T}=m_{\mathcal{D}}\left(p^{-1} \xi\right) \widehat{\chi}_{T}\left(p^{-1} \xi\right)$. By iteration,

$$
\begin{equation*}
\widehat{\chi}_{T}(\xi)=c \prod_{j=1}^{\infty} m_{\mathcal{D}}\left(p^{-j} \xi\right), \quad \text { where } c=\widehat{\chi}_{T}(0)=\mu(T) \tag{4.2}
\end{equation*}
$$

The convergence of the infinite product (4.2) is well known. By Theorem 3.2, $T+\mathbf{Z}$ is a perfect covering of \mathbf{R} of multiplicity $\mu(T) \in \mathbf{Z}$, so $\widehat{\chi}_{T}(l)=0$ for all nonzero integer l. In particular $\widehat{\chi}_{T}(1)=0$. By (4.2) there exists some integer $k \geq 1$ such that $m_{\mathcal{D}}\left(p^{-k}\right)=0$. Hence $f_{\mathcal{D}}\left(e^{i 2 \pi p^{-k}}\right)=0$, proving that $F_{k}(z) \mid f_{\mathcal{D}}(z)$ and hence $\left(z^{p^{k}}-1\right) \mid f_{\mathcal{D}}(z)\left(z^{z^{k-1}}-1\right)$.

Observe that if two integers satisfy $j_{1} \equiv j_{2}\left(\bmod p^{k}\right)$ then $z^{j_{1}} \equiv z^{j_{2}}\left(\bmod \left(z^{p^{k}}-1\right)\right)$. Because

$$
f_{\mathcal{D}}(z)\left(z^{p^{k-1}}-1\right)=\sum_{d \in \mathcal{D}+p^{k-1}} z^{d}-\sum_{d \in \mathcal{D}} z^{d} \equiv 0 \quad\left(\bmod \left(z^{p^{k}}-1\right)\right),
$$

and because a nonzero polynomial of degree less than p^{k} can never be divisible by $z^{p^{k}}-1$, we must have

$$
\begin{equation*}
\mathcal{D}+p^{k-1}\left(\bmod p^{k}\right)=\mathcal{D}\left(\bmod p^{k}\right) . \tag{4.3}
\end{equation*}
$$

$p^{k-1} \in \mathcal{D}+p^{k-1}$, so $d \equiv p^{k-1}\left(\bmod p^{k}\right)$ for some $d \in \mathcal{D}$. Similarly now $2 p^{k-1} \in \mathcal{D}+$ $p^{k-1}\left(\bmod p^{k}\right)$, so $2 p^{k-1} \in \mathcal{D}\left(\bmod p^{k}\right)$. This argument yields

$$
\mathcal{D} \equiv\left\{0, p^{k-1}, 2 p^{k-1}, \ldots,(p-1) p^{k-1}\right\} \quad\left(\bmod p^{k}\right)
$$

But \mathcal{D} is primitive, so $\operatorname{gcd}\{d: d \in \mathcal{D}\}=1$. Therefore $k=1$ and \mathcal{D} is a complete set of residues $(\bmod p)$.

The above theorem was due to Kenyon [29]. The same argument can be used to prove the following generalization, a proof of which can be found in Lagarias and Wang [35].

Theorem 4.2 Let $\mathbf{A} \in M_{n}(\mathbf{Z})$ be expanding such that $|\operatorname{det}(\mathbf{A})|=p$ is a prime and $p \mathbf{Z}^{n} \nsubseteq$ $\mathbf{A}^{2}\left(\mathbf{Z}^{n}\right)$. Let $\mathcal{D} \subset \mathbf{Z}^{n}$ with $|\mathcal{D}|=|\operatorname{det}(\mathbf{A})|$ be primitive. Then $T(\mathbf{A}, \mathcal{D})$ is a tile if and only if \mathcal{D} is a set of complete coset representatives of $\mathbf{Z}^{n} / \mathbf{A}\left(\mathbf{Z}^{n}\right)$.

It should be pointed out that the classification of digit sets for a given matrix \mathbf{A} is in general very difficult, even in the integral case. This is evident from the fact that even for $\mathbf{A}=[6]$ in the one dimension it is not completely known what digit sets \mathcal{D} result in self-affine tiles. The only other cases in which all digit sets resulting in self-affine tiles are classified are $\mathbf{A}=2 I$ for $n=2([29])$ and $\mathbf{A}=\left[p^{k}\right]$ for $n=1$, where p is a prime ([35]).

So far we have discussed mostly digit sets that are complete set of coset representatives of $\mathbf{Z}^{n} / \mathbf{A}\left(\mathbf{Z}^{n}\right)$. Naturally one may ask whether there are other types of digit sets \mathcal{D} that also give self-affine tiles. Here is a simple example:
Example 4.1. Let $\mathbf{A}=[4]$ and $\mathcal{D}=\{0,1,8,9\}$. Clearly \mathcal{D} is primitive and is not a complete set of residues $(\bmod 4)$. But one may check directly that $T(\mathbf{A}, \mathcal{D})=[0,1] \cup[2,3]$.

Example 4.1 is an example of a class of digit sets called product form digit sets. Suppose that $0 \in \mathcal{E}$ is a set of complete coset representatives of $\mathbf{Z}^{n} / \mathbf{A}\left(\mathbf{Z}^{n}\right)$, and suppose that it has a factorization

$$
\begin{equation*}
\mathcal{E}=\mathcal{E}_{1}+\mathcal{E}_{2}+\cdots+\mathcal{E}_{r}, \quad \text { where } 0 \in \mathcal{E}_{i} \text { and }|\mathcal{E}|=\prod_{i=1}^{r}\left|\mathcal{E}_{i}\right| . \tag{4.4}
\end{equation*}
$$

A digit set \mathcal{D} has the product-form if

$$
\begin{equation*}
\mathcal{D}:=\mathbf{A}^{f_{1}}\left(\mathcal{E}_{1}\right)+\mathbf{A}^{f_{2}}\left(\mathcal{E}_{2}\right)+\cdots+\mathbf{A}^{f_{r}}\left(\mathcal{E}_{r}\right) \tag{4.5}
\end{equation*}
$$

for some integers $0 \leq f_{1} \leq f_{2} \leq \cdots \leq f_{r}$.

Theorem 4.3 Let $\mathbf{A} \in M_{n}(\mathbf{Z})$ be expanding and \mathcal{D} is the product-form digit set defined in (4.5). Then $T(\mathbf{A}, \mathcal{D})$ is a measure-disjoint union of translates of $T(\mathbf{A}, \mathcal{E})$, and

$$
\begin{equation*}
\mu(T(\mathbf{A}, \mathcal{D}))=\mu(T(\mathbf{A}, \mathcal{E})) \prod_{i=1}^{r}\left|\mathcal{E}_{i}\right|^{f_{i}} \tag{4.6}
\end{equation*}
$$

Proof. Let $\mathcal{A}_{i, k}:=\left\{\sum_{j=0}^{k-1} \mathbf{A}^{j} e_{i, j}:\right.$ all $\left.e_{i, j} \in \mathcal{E}_{i}\right\}$ with $\mathcal{A}_{i, 0}=\{0\}$. We prove that $T(\mathbf{A}, \mathcal{D})=$ $T(\mathbf{A}, \mathcal{E})+\mathcal{A}$ where

$$
\mathcal{A}:=\mathcal{A}_{1, f_{1}}+\mathcal{A}_{2, f_{2}}+\cdots+\mathcal{A}_{r, f_{r}}
$$

$T(\mathbf{A}, \mathcal{D})=\left\{\sum_{j=0}^{\infty} \mathbf{A}^{-j} d_{j}:\right.$ all $\left.d_{j} \in \mathcal{D}\right\}$ from (1.2), and by assumption $d_{j}=\sum_{i=0}^{r} \mathbf{A}^{f_{i}} e_{i, j}$ where $e_{i, j} \in \mathcal{E}_{i}$. So

$$
\begin{align*}
\sum_{j=1}^{\infty} \mathbf{A}^{-j} d_{j} & =\sum_{j=1}^{\infty} \mathbf{A}^{-j} \sum_{i=0}^{r} \mathbf{A}^{f_{i}} e_{i, j} \\
& =\sum_{i=0}^{r}\left(\sum_{j=f_{i}}^{\infty} \mathbf{A}^{-j} \mathbf{A}^{f_{i}} e_{i, j}+\sum_{j=1}^{f_{i}} \mathbf{A}^{-j} \mathbf{A}^{f_{i}} e_{i, j}\right) \\
& =\sum_{j=0}^{\infty} \mathbf{A}^{-j}\left(\sum_{i=0}^{r} e_{i, j+f_{i}}\right) \sum_{i=0}^{r} \sum_{j=1}^{f_{i}} \mathbf{A}^{f_{i}-j} e_{i, j} \tag{4.7}
\end{align*}
$$

Since $\sum_{i=0}^{r} e_{i, j+f_{i}} \in \mathcal{E}$ and $\sum_{i=0}^{r} \sum_{j=1}^{f_{i}} \mathbf{A}^{f_{i}-j} e_{i, j} \in \mathcal{A}$, we have $\sum_{j=0}^{\infty} \mathbf{A}^{-j} d_{j} \in T(\mathbf{A}, \mathcal{E})+\mathcal{A}$; hence $T(\mathbf{A}, \mathcal{D}) \subseteq T(\mathbf{A}, \mathcal{E})+\mathcal{A}$.

Conversely, one verifies that any element in $T(\mathbf{A}, \mathcal{E})+\mathcal{A}$ must be in $T(\mathbf{A}, \mathcal{D})$ be reversing (4.7) (we omit the details here), yielding $T(\mathbf{A}, \mathcal{E})+\mathcal{A} \subseteq T(\mathbf{A}, \mathcal{D})$. Therefore, $T(\mathbf{A}, \mathcal{D})=$ $T(\mathbf{A}, \mathcal{E})+\mathcal{A}$.

We still need to show that the translates of $T(\mathbf{A}, \mathcal{E})$ in $T(\mathbf{A}, \mathcal{E})+\mathcal{A}$ are measure-disjoint. For any $m \geq 1$ we have

$$
\begin{equation*}
\mathbf{A}^{m}(T(\mathbf{A}, \mathcal{E}))=T(\mathbf{A}, \mathcal{E})+\mathcal{E}_{\mathbf{A}, m} \tag{4.8}
\end{equation*}
$$

where $\mathcal{E}_{\mathbf{A}<m}:=\left\{\sum_{k=0}^{m-1} \mathbf{A}^{k} e_{k}\right.$: all $\left.e_{k} \in \mathcal{E}\right\}$. Since each $\mathcal{E}_{i} \subseteq \mathcal{E}$ and $0 \in \mathcal{E}, \mathcal{A} \subseteq \mathcal{E}_{\mathbf{A}, m}$ whenever $m \geq f_{r}$. But the translates of $T(\mathbf{A}, \mathcal{E})$ in (4.8) are measure-disjoint, it follows that the translates of $T(\mathbf{A}, \mathcal{E})$ in $T(\mathbf{A}, \mathcal{E})+\mathcal{A}$ must be measure-disjoint.

Finally, all expansions $\sum_{i=0}^{r} \sum_{j=0}^{f_{i}-1} \mathbf{A}^{j} e_{i, j}$ where $e_{i, j} \in \mathcal{E}_{i}$ in \mathcal{A} are distinct because $\mathcal{E}=\mathcal{E}_{1}+\cdots+\mathcal{E}_{r}$ is a direct sum by (4.4). The measure-disjointness of $T(\mathbf{A}, \mathcal{E})+\mathcal{A}$ yields (4.6).

The digit set $\mathcal{D}=\{0,1,8,9\}$ in Example 4.1 is a product-form digit set, with $\mathcal{E}=$ $\{0,1,2,3\}=\{0,1\}+\{0,2\}$ and $\mathcal{D}=\{0,1\}+4\{0,2\}$. There are integral self-affine tiles whose digit sets are not product-form digit sets, see [35]. One simple such example is $\mathbf{A}=[4], \mathcal{D}=\{0,1,8,25\}$. Can you prove that $T(\mathbf{A}, \mathcal{D})$ is a tile?

5 Haar-Type Wavelet Bases of $L^{2}\left(\mathbf{R}^{n}\right)$

Let $\psi_{1}(x), \ldots, \psi_{r}(x) \in L^{2}\left(\mathbf{R}^{n}\right)$ and $\mathbf{A} \in M_{n}(\mathbf{Z})$ be expanding. Suppose that

$$
\left\{|\operatorname{det}(\mathbf{A})|^{\frac{m}{2}} \psi_{i}\left(\mathbf{A}^{m} x-\alpha\right): \alpha \in \mathbf{Z}^{n}, 1 \leq i \leq r, m \in \mathbf{Z}\right\}
$$

is an orthonormal basis of $L^{2}\left(\mathbf{R}^{n}\right)$. Then we call this basis a wavelet basis of $L^{2}\left(\mathbf{R}^{n}\right)$, and $\psi_{1}(x), \ldots, \psi_{r}(x)$ wavelets. The simpliest wavelet is the wavelet basis of $L^{2}(\mathbf{R})$ constructed by A. Haar [25], which has $\mathbf{A}=[2]$ and consists of a single wavelet

$$
\psi(x)=\left\{\begin{array}{cl}
1 & 0 \leq x<1 / 2 \\
-1 & 1 / 2 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

A popular way to construct wavelet bases is by multiresolution analysis. We shall not discuss the details here; a comprehensive discussion can be found in Daubechies [9]. Let $\mathbf{A} \in M_{n}(\mathbf{Z})$ be expanding. A scaling function (of a multiresolution analysis), from which a wavelet basis can be constructed, is a function $\phi(x) \in L^{2}\left(\mathbf{R}^{n}\right)$ such that
(i) $\quad \phi(x)$ satisfies a dilation equation

$$
\begin{equation*}
\phi(x)=\sum_{\alpha \in \mathbf{Z}^{n}} c_{\alpha} \phi(\mathbf{A} x-\alpha) . \tag{5.1}
\end{equation*}
$$

(ii) $\quad\left\{\phi(x-\alpha): \alpha \in \mathbf{Z}^{n}\right\}$ is an orthonormal set in $L^{2}\left(\mathbf{R}^{n}\right)$, and $\int_{\mathbf{R}^{n}} \phi(x) d x \neq 0$.

A Haar-type wavelet basis is a one constructed from a scaling function of the form $\phi(x)=$ $c \chi_{\Omega}(x)$ for some compact set $\Omega \subset \mathbf{R}^{n}$ and constant c. Gröchenig and Madych [23] established the following relation between Haar-type wavelet bases and self-affine tiles:

Theorem 5.1 Let $\mathbf{A} \in M_{n}(\mathbf{Z})$ be expanding and $\Omega \subset \mathbf{R}^{n}$ be compact. Then the following are equivalent:
(a) $\phi(x)=c \chi_{\Omega}(x)$ is a scaling function with respect to \mathbf{A} for some constant c.
(b) There exists a set of complete coset representatives of $\mathbf{Z}^{n} / \mathbf{A}\left(\mathbf{Z}^{n}\right)$ such that $\mathbf{A}(\Omega)=$ $\Omega+\mathcal{D}$ up to a measure zero set, and $\mu(\Omega)=1$.

Proof. $\quad(\mathrm{a}) \Rightarrow(\mathrm{b})$. By assumption $\phi(x)$ satisfies some dilation equation

$$
\begin{equation*}
\phi(x)=\sum_{\alpha \in \mathbf{Z}^{n}} c_{\alpha} \phi(\mathbf{A} x-\alpha) . \tag{5.2}
\end{equation*}
$$

The orthonormality of $\left\{\phi(x-\alpha): \alpha \in \mathbf{Z}^{n}\right\}$ implies that $\Omega+\alpha, \alpha \in \mathbf{Z}^{n}$, are measure-disjoint. By letting $y=\mathbf{A} x$ and rewritting (5.2) as

$$
\begin{equation*}
\chi_{\mathbf{A}(\Omega)}(y)=\sum_{\alpha \in \mathbf{Z}^{n}} c_{\alpha} \chi_{\Omega+\alpha}(y), \tag{5.3}
\end{equation*}
$$

it yields $c_{\alpha}=0$ or $c_{\alpha}=1$.
Let $\mathcal{D}=\left\{\alpha: c_{\alpha}=1\right\}$. Integrating (5.3) yields $|\mathcal{D}|=|\operatorname{det}(\mathbf{A})|$, and the measuredisjointness of $\Omega+\alpha$ in (5.3) implies that

$$
\begin{equation*}
\mathbf{A}(\Omega)=\bigcup_{d \in \mathcal{D}}(\Omega+d)=\Omega+\mathcal{D} \tag{5.4}
\end{equation*}
$$

up to a measure zero set.
To show that $\mu(\Omega)=1$, let $\pi_{n}: \mathbf{R}^{n} \longrightarrow \mathbf{T}^{n}$ be the canonical covering map and $\mathbf{A}_{*}:=$ $\pi_{n} \circ \mathbf{A} \circ \pi_{n}^{-1}$. By $(5.4), \mathbf{A}_{*}\left(\pi_{n}(\Omega)\right)=\pi_{n}(\Omega)$ up to a measure zero set. It follows from the ergodicity of \mathbf{A}_{*} that $\pi_{n}(\Omega)=\mathbf{T}^{n}$ up to a measure zero set. Hence $\mu(\Omega) \geq 1$. But $\mu(\Omega) \leq 1$ because $\Omega+\alpha, \alpha \in \mathbf{Z}^{n}$, are measure-disjoint. Therefore $\mu(\Omega)=1$.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$. By the ergodicity argument above, $\Omega+\mathbf{Z}^{n}$ is a covering of \mathbf{R}^{n} up to a measure zero set. Since $\mu(\Omega)=1$, all $\Omega+\alpha, \alpha \in \mathbf{Z}^{n}$, are measure-disjoint. Hence $\phi(x):=\chi_{\Omega}(x)$ satisfies $\phi(x)=\sum_{d \in \mathcal{D}} \phi(\mathbf{A} x-d)$ and $\left\{\phi(x-\alpha): \alpha \in \mathbf{Z}^{n}\right\}$ is an orthonormal system in $L^{2}\left(\mathbf{R}^{n}\right)$. So $\phi(x)=\chi_{\Omega}(x)$ is a scaling function.
Remark. It can be shown that if a compact set Ω satisfies $A(\Omega)=\Omega+\mathcal{D}$ up to a measure zero set, then $\Omega \supseteq T(\mathbf{A}, \mathcal{D})$ and $\Omega=T(\mathbf{A}, \mathcal{D})$ up to a measure zero set. We omit the proof here.

Naturally we would like to know when will $\mu(T(\mathbf{A}, \mathcal{D}))=1$ for any given \mathbf{A} and \mathcal{D}. Theorem 3.3 states that \mathcal{D} must be a primitive set of complete coset representatives of $\mathbf{Z}^{n} / \mathbf{A}\left(\mathbf{Z}^{n}\right)$. A counterexample is given in $\S 3$ to show that the converse of the theorem is false for $n \geq 2$. The converse, however, is true in the one dimension.

Theorem 5.2 Let $q \in \mathbf{Z},|q|>1$ and \mathcal{D} be a complete set of residues ($\bmod q$). Suppose that \mathcal{D} is primitive. Then $\mu(T([q], \mathcal{D}))=1$.

Proof. We present the following Fourier analytic proof, due to Gröchenig and Haas [22]. The technique here is valuable for studying other type of scaling functions as well.

Without loss of generality we assume that $0 \in \mathcal{D}$. The primitiveness of \mathcal{D} is equivalent to $\operatorname{gcd}\{d: d \in \mathcal{D}\}=1$.

Let $m_{\mathcal{D}}(\xi):=\frac{1}{|q|} \sum_{d \in \mathcal{D}} e^{i 2 \pi d \xi}$. Key to the proof is the following linear transition operator

$$
\begin{equation*}
C_{\mathcal{D}}(f)(\xi)=\sum_{l=0}^{|q|-1}\left|m_{\mathcal{D}}\left(q^{-1}(\xi+l)\right)\right|^{2} f\left(q^{-1}(\xi+l)\right) \tag{5.5}
\end{equation*}
$$

defined on the space of Z-periodic functions. Let

$$
\begin{equation*}
g_{\mathcal{D}}(\xi):=\sum_{k \in \mathbf{Z}} \mu(T \cap(T+k)) e^{i 2 \pi k \xi} \tag{5.6}
\end{equation*}
$$

where $T:=T([q], \mathcal{D})$. One easily checks (see Gröchenig [21]), using the assumption that \mathcal{D} is a complete set of residues $(\bmod q)$, that

$$
\begin{equation*}
C_{\mathcal{D}}(1)=1, \quad C_{\mathcal{D}}\left(g_{\mathcal{D}}\right)=g_{\mathcal{D}} \tag{5.7}
\end{equation*}
$$

Assume that $\mu(T)>1$. Then $g_{\mathcal{D}}(\xi)$ is not a constant, hence the set

$$
Z_{\mathcal{D}}:=\left\{\xi: g_{\mathcal{D}}(\xi)=\min _{\eta \in \mathbf{R}} g_{\mathcal{D}}(\eta)\right\}
$$

is a nonempty discrete \mathbf{Z}-periodic set, and $Z_{\mathcal{D}} \cap \mathbf{Z}=\emptyset$ by (5.6). Fix an $\xi_{0} \in Z_{\mathcal{D}}$. By (5.7)

$$
\begin{equation*}
g_{\mathcal{D}}\left(\xi_{0}\right)=\sum_{l=0}^{|q|-1}\left|m_{\mathcal{D}}\left(q^{-1}\left(\xi_{0}+l\right)\right)\right|^{2} g_{\mathcal{D}}\left(q^{-1}\left(\xi_{0}+l\right)\right) \tag{5.8}
\end{equation*}
$$

But $\sum_{l=0}^{|q|-1}\left|m_{\mathcal{D}}\left(q^{-1}\left(\xi_{0}+l\right)\right)\right|^{2}=1$ by $C_{\mathcal{D}}(1)=1$, so $g_{\mathcal{D}}\left(q^{-1}\left(\xi_{0}+l\right)\right)=g_{\mathcal{D}}\left(\xi_{0}\right)$ whenever $m_{\mathcal{D}}\left(q^{-1}\left(\xi_{0}+l\right)\right) \neq 0$. In particular there exists an l_{1} such that $\xi_{1}:=q^{-1}\left(\xi_{0}+l_{1}\right) \in Z_{\mathcal{D}}$. Note that $q \xi_{1} \equiv \xi_{0}(\bmod 1)$.

Now let $\widehat{Z}_{\mathcal{D}}:=Z_{\mathcal{D}}(\bmod 1)$. So for any $\widehat{\xi}_{0} \in \widehat{Z}_{\mathcal{D}}$ there exists a $\widehat{\xi}_{1} \in \widehat{Z}_{\mathcal{D}}$ such that $q \widehat{\xi}=\widehat{\xi}_{0}$. But $\widehat{Z}_{\mathcal{D}}$ is finite. Hence the $\operatorname{map} \widehat{\xi} \mapsto q \widehat{\xi}$ is a permutation on $\widehat{Z}_{\mathcal{D}}$.

Back to (5.8). There exists no $l_{2} \neq l_{1}$ in the sum such that $\xi_{2}:=q^{-1}\left(\xi_{0}+l_{2}\right) \in Z_{\mathcal{D}}$ because otherwise $q \xi_{1} \equiv q \xi_{2}(\bmod 1)$ while $\xi_{1} \not \equiv \xi_{2}(\bmod 1)$, contradicting the fact that $\widehat{\xi} \mapsto q \widehat{\xi}$ is a permutation on $\widehat{Z}_{\mathcal{D}}$. Hence $m_{\mathcal{D}}\left(q^{-1}\left(\xi_{0}+l\right)\right)=0$ for all $0 \leq l \leq|q|-1, l \neq l_{1}$. This means

$$
\begin{equation*}
\left|m_{\mathcal{D}}\left(q^{-1}\left(\xi_{0}+l_{1}\right)\right)\right|^{2}\left|m_{\mathcal{D}}\left(\xi_{1}\right)\right|^{2}=1 . \tag{5.9}
\end{equation*}
$$

Because $0 \in \mathcal{D}$, (5.9) is possible only if $e^{i 2 \pi d \xi_{1}}=1$, and hence $d \xi_{1} \in \mathbf{Z}$ for all $d \in \mathcal{D}$. But $\xi_{1} \notin \mathbf{Z}$, it follows that $\operatorname{gcd}\{d: d \in \mathcal{D}\}>1$, a contradiction.

Theorem 5.2 generalizes to higher dimensions only in special cases. One such case is when $\mathbf{A} \in M_{n}(\mathbf{Z})$ is irreducible, which means that the characteristic polynomial of \mathbf{A} is irreducible in $\mathbf{Q}[z]$.

Theorem 5.3 Let $\mathbf{A} \in M_{n}(\mathbf{Z})$ be an expanding irreducible matrix, and \mathcal{D} be a primitive set of complete coset representatives of $\mathbf{Z}^{n} / \mathbf{A}\left(\mathbf{Z}^{n}\right)$. Then $\mu(T(\mathbf{A}, \mathcal{D}))=1$.

A proof can be found in [37]. It uses a deep result of Cerveau, Conze, and Raugi [6] characterizing the set of zeros of certain trigonometric polynomials. In the case of reducible $\mathbf{A}, \mu(T(\mathbf{A}, \mathcal{D}))>1$ only when the digit set has the so called quasi-product form, see [37].

Another interesting question is: For a given expanding $\mathbf{A} \in M_{n}(\mathbf{Z})$, is it always possible to construct Haar-type wavelet basis? In other words, is it always possible to find a digit set \mathcal{D} such that $\mu(T(\mathbf{A}, \mathcal{D}))=1$? The answer is clearly affirmative in the one dimension as a result of Theorem 5.2. The answer is known to be affirmative in dimensions $n=2,3$ ([22], [33], [36], [37]). In dimension n, Haar-type wavelet bases exist if $|\operatorname{det}(\mathbf{A})|>n$. But what if $|\operatorname{det}(\mathbf{A})| \leq n$, for example, $|\operatorname{det}(\mathbf{A})|=2$? The question becomes intriguing, because in this case the digit set \mathcal{D} consists of only two digits. Since we may assume that $0 \in \mathcal{D}$, we have in reality the freedom to choose for only one digit. If the dimension is large, it is not clear we can always choose this digit so that \mathcal{D} is primitive, i.e. $\mathbf{Z}[\mathbf{A}, \mathcal{D}]=\mathbf{Z}^{n}$. Although no counterexample has been found yet, it is almost certain that they exist. This problem has a surprising connection to algebraic number theory, see Lagarias and Wang [36].

Figure 1: The Fractal Red Cross

6 Boundaries of Self-Affine Tiles

An important problem in fractal geometry is to find the Hausdorff dimension of a fractal set. Since a tile by definition has positive Lebesgue measure, its Hausdorff dimension is simply the dimension of the space in which it resides. A more interesting problem is to find the Hausdorff dimension of the boundary of a self-affine tile.

Getting the exact Hausdorff dimension of a fractal set is tricky in general. This had been the case for the boundaries of self-affine tiles. Boundaries of several well known tiles, such as the Gosper Flake (Gardner [18]) or the Fractal Red Cross (Strichartz [50]), were studied and their exact Hausdorff dimension derived. We illustrate how the Hausdorff dimensions of the boundaries of some self-affine tiles can be computed by the example of the Fractal Red Cross (Figure 1) in [50], which is the self-affine tile $T:=T(\mathbf{A}, \mathcal{D})$ with

$$
\mathbf{A}=\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right], \quad \mathcal{D}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\right\}
$$

By Figure 1, the boundary of $\mathbf{A}(T)$ consists of 12 pieces, each congruent to a quarter of the boundary of T. Note that there are 5×4 quarter boundaries in the five translates of
T in $\mathbf{A}(T)$, but 8 of them are overlaps that become part of the interior of $\mathbf{A}(T)$. So in fact $\partial(\mathbf{A}(T))=\mathbf{A}(\partial T)$ consists of $20-8=12$ quarter boundaries of T. Let \mathcal{H}^{s} denote the s-dimensional Hausdorff measure. Then $\mathcal{H}^{s}(\mathbf{A}(\partial T))=3 \mathcal{H}^{s}(\partial T)$. On the other hand, $\mathcal{H}^{s}(\mathbf{A}(\partial T))=5^{s / 2} \mathcal{H}^{s}(\partial T)$ by the scaling property of \mathcal{H}^{s}. For $\mathcal{H}^{s}(\partial T)$ to be finite and nonzero we must have $5^{s / 2}=3$. So $s=2 \log _{5} 3$ is the dimension of ∂T.

The above method can be made rigorous. The drawback is that it depends fundamentally on the visualization of the tiles, making it useful only on a case by case basis. For many self-affine tiles, the method either does not work, or requires ingenuity to work.

In this section we outline a method for finding the exact Hausdorff dimension of the boundaries of integral self-affine tiles. It employs the same basic idea, but requires no visualization of the tiles and works in all cases where the expanding matrix $\mathbf{A} \in M_{n}(\mathbf{Z})$ is similar to a similarity.

Let $T:=T(\mathbf{A}, \mathcal{D})$ be an integral self-affine tile with $\mu(T)=1$. Because T tiles \mathbf{R}^{n} by \mathbf{Z}^{n}-translations and T is the closure of its interior,

$$
\begin{equation*}
\partial T=\bigcup_{\alpha \in \mathbf{Z}^{n} \backslash\{0\}} T \cap(T+\alpha) \tag{6.1}
\end{equation*}
$$

Denote $B_{\alpha}:=T \cap(T+\alpha)$ for all $\alpha \in \mathbf{Z}^{n} \backslash\{0\}$. Of course there are only finitely many nonemtpy B_{α} 's. Let $\mathcal{K}_{0}=\left\{\alpha \in \mathbf{Z}^{n} \backslash\{0\}: B_{\alpha} \neq \emptyset\right\}$. To find the Hausdorff dimension of ∂T we utilize the fact that $\left\{B_{\alpha}: \alpha \in \mathcal{K}_{0}\right\}$ form a self-similar system; more precisely,

$$
\begin{align*}
\mathbf{A}\left(B_{\alpha}\right) & =\mathbf{A}(T) \cap \mathbf{A}(T+\alpha) \\
& =(T+\mathcal{D}) \cap(T+\mathcal{D}+\mathbf{A} \alpha) \\
& =\bigcup_{d, d^{\prime} \in \mathcal{D}}\left(B_{\mathbf{A} \alpha+d^{\prime}-d}+d\right) . \tag{6.2}
\end{align*}
$$

Now, label elements in \mathcal{K}_{0} as $\mathcal{K}_{0}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{J}\right\}$ and define

$$
\begin{equation*}
\mathcal{E}_{i, j}:=\left\{d \in \mathcal{D}: \mathbf{A} \alpha_{i}+d^{\prime}-d \in \mathcal{K}_{0} \text { for some } d^{\prime} \in \mathcal{D}\right\} . \tag{6.3}
\end{equation*}
$$

Let $B_{i}:=B_{\alpha_{i}}$ for $1 \leq i \leq J$. Then we may rewrite (6.2) as

$$
\begin{equation*}
\mathbf{A}\left(B_{i}\right)=\bigcup_{j=1}^{J}\left(B_{j}+\mathcal{E}_{i, j}\right), \quad 1 \leq i \leq J \tag{6.4}
\end{equation*}
$$

Theorem 6.1 Let $T:=T(\mathbf{A}, \mathcal{D})$ be an integral self-affine tile with $\mu(T(\mathbf{A}, \mathcal{D}))=1$. Suppose that \mathbf{A} is similar to a similarity. Then

$$
\begin{equation*}
\underline{\operatorname{dim}}_{B}(\partial T)=\overline{\operatorname{dim}}_{B}(\partial T)=\operatorname{dim}_{H}(\partial T)=\frac{n \log \rho(\mathbf{M})}{\log |\operatorname{det}(\mathbf{A})|} \tag{6.5}
\end{equation*}
$$

where $\mathbf{M}:=\left[\left|\mathcal{E}_{i, j}\right|\right]_{J \times J}$ and $\rho(\mathbf{M})$ is its specrtal radius.
We call the matrix $\mathbf{M}=\left[\left|\mathcal{E}_{i, j}\right|\right]$ the substitution matrix of the boundary of T.
To prove Theorem 6.1 we first observe that iterating (6.4) yields

$$
\begin{equation*}
\mathbf{A}^{N}\left(B_{i}\right)=\bigcup_{j=1}^{J}\left(B_{j}+\mathcal{E}_{i, j}^{N}\right), \quad 1 \leq i \leq J, \tag{6.6}
\end{equation*}
$$

where for all $1 \leq i, j \leq 1$,

$$
\begin{equation*}
\mathcal{E}_{i, j}^{N}=\bigcup_{k=1}^{J}\left(\mathbf{A}\left(\mathcal{E}_{i, k}^{N-1}\right)+\mathcal{E}_{k, j}\right), \quad \mathcal{E}_{i, j}^{1}:=\mathcal{E}_{i, j} \tag{6.7}
\end{equation*}
$$

Lemma 6.2 $\left[\left|\mathcal{E}_{i, j}^{N}\right|\right]=\mathbf{M}^{N}$ for all $N \geq 1$.

Proof. We prove the lemma by induction on N. The lemma is clearly true for $N=1$. Assume that it holds for $N-1$; we show that it also holds for N.

Observe that $\mathcal{E}_{i, j} \subseteq \mathcal{D}$ and \mathcal{D} is a complete set of coset representatives of $\mathbf{Z}^{n} / \mathbf{A}\left(\mathbf{Z}^{n}\right)$. Hence

$$
\begin{equation*}
\left|\mathbf{A}\left(\mathcal{E}_{i, k}^{N-1}\right)+\mathcal{E}_{k, j}\right|=\left|\mathcal{E}_{i, k}^{N-1}\right|\left|\mathcal{E}_{k, j}\right| \tag{6.8}
\end{equation*}
$$

We shall establish that for all $k \neq l$,

$$
\begin{equation*}
\left(\mathbf{A}\left(\mathcal{E}_{i, k}^{N-1}\right)+\mathcal{E}_{k, j}\right) \cap\left(\mathbf{A}\left(\mathcal{E}_{i, l}^{N-1}\right)+\mathcal{E}_{l, j}\right)=\emptyset \tag{6.9}
\end{equation*}
$$

This is clear if we can show that $\mathcal{E}_{k, j} \cap \mathcal{E}_{l, j}=\emptyset$ because this will mean the two sets have no elements in a same coset of $\mathbf{Z}^{n} / \mathbf{A}\left(\mathbf{Z}^{n}\right)$. Assume that $d \in \mathcal{E}_{k, j} \cap \mathcal{E}_{l, j}$. Then there exist $d_{1}, d_{2} \in \mathcal{D}$ such that

$$
\mathbf{A} \alpha_{k}+d_{1}-d=\mathbf{A} \alpha_{l}+d_{2}-d=\alpha_{j}
$$

So $\mathbf{A}\left(\alpha_{k}-\alpha_{l}\right)=d_{2}-d_{1}$, contradicting $k \neq l$. This proves (6.9).
It now follows from (6.7) and (6.8) that

$$
\left|\mathcal{E}_{i, j}^{N}\right|=\sum_{k=1}^{J}\left|\mathcal{E}_{i, k}^{N-1}\right|\left|\mathcal{E}_{k, j}\right|
$$

proving the lemma.
Proof of Theorem 6.1. Let $\lambda:=\rho(\mathbf{M})$. Since \mathbf{M} is a nonnegative matrix, there is a nonnegative eignevector v associated to λ. Without loss of generality we assume that $v_{1}>0$ and that \mathbf{A} is a similarity. Let $s:=n \log \rho(\mathbf{M}) / \log |\operatorname{det}(\mathbf{A})|$. We divide the proof into three parts.
(I) $\underline{\operatorname{dim}}_{B}(\partial T) \geq s$.

Let $C_{i}(\varepsilon)$ denote the least number of ε-cubes needed to cover T_{i}. Observe that

$$
\mathbf{A}^{N}\left(B_{1}\right)=\bigcup_{j=1}^{J}\left(B_{j}+\mathcal{E}_{1, j}^{N}\right) \supseteq B_{1}+\mathcal{E}_{1,1}^{N}
$$

hence

$$
\begin{equation*}
B_{1} \supseteq \mathbf{A}^{-N}\left(B_{1}\right)+\mathbf{A}^{-N}\left(\mathcal{E}_{1,1}^{N}\right) \tag{6.10}
\end{equation*}
$$

This means at least $\left|\mathcal{E}_{1,1}^{N}\right| \varepsilon_{N}$-cubes are needed to cover B_{1}, where $\varepsilon_{N}:=|\operatorname{det}(\mathbf{A})|^{-\frac{N}{n}}$. Hence

$$
C_{1}\left(\varepsilon_{N}\right) \geq\left|\mathcal{E}_{1,1}^{N}\right|
$$

Now for any sufficiently small $\varepsilon>0$ there exists an $N>0$ such that $\varepsilon_{N+1}<\varepsilon \leq \varepsilon_{N}$. So

$$
\frac{\log C_{1}(\varepsilon)}{-\log \varepsilon} \geq \frac{\log C_{1}\left(\varepsilon_{N}\right)}{-\log \varepsilon_{N+1}} \geq \frac{n \log \left|\mathcal{E}_{1,1}^{N}\right|}{(N+1) \log |\operatorname{det}(\mathbf{A})|}
$$

It is well known that $\lim _{N \rightarrow \infty} \frac{\log \left|\mathcal{E}_{1,1}^{N}\right|}{N}=\log \lambda$. This yields

$$
\underline{\operatorname{dim}}_{B}(\partial T) \geq \underline{\operatorname{dim}}_{B}\left(B_{1}\right) \geq s
$$

(II) $\overline{\operatorname{dim}}_{B}(\partial T) \leq s$.

Let $\delta_{0}:=\max \left\{2 \operatorname{diam}\left(B_{j}\right): 1 \leq j \leq J\right\}$ and $\delta_{N}:=|\operatorname{det}(\mathbf{A})|^{-\frac{N}{n}}$. Observe that each B_{j} can be covered by a single δ_{0}-cube. The iteration

$$
\mathbf{A}^{N}\left(B_{i}\right)=\bigcup_{j=1}^{J}\left(B_{j}+\mathcal{E}_{i, j}^{N}\right), \quad 1 \leq i \leq J
$$

yields

$$
C_{i}\left(\delta_{N}\right) \leq \sum_{j=1}^{J}\left|\mathcal{E}_{i, j}^{N}\right| .
$$

Note that for each $1 \leq i \leq J$,

$$
\limsup _{N \rightarrow \infty} \frac{\log \left(\sum_{j=1}^{J}\left|\mathcal{E}_{i, j}^{N}\right|\right)}{-\log \delta_{N}} \leq \frac{n \log \lambda}{\log |\operatorname{det}(\mathbf{A})|}=s
$$

The same techniques employed in (I) immediately gives (II).
(III) $\operatorname{dim}_{H}(\partial T)=s$.
$\operatorname{dim}_{H}(\partial T)=s$ follows easily from Falconer [16], Theorem 3.1 and 3.2. Details can be found in [51].
Example 6.1 One of the best known self-affine tile is the Twin Dragon, which is given by

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right], \quad \mathcal{D}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\} .
$$

In this example, one can show ([51]) that $\mathcal{K}_{0}=\left\{e_{1},-e_{1}, e_{2},-e_{2}, e_{1}-e_{2}, e_{2}-e_{1}\right\}$ and the substitution matrix is

$$
\mathbf{M}=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 \\
0 & 0 & 1 & 0 & 0 & 2 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The characteristic polynomial is $f(\lambda)=\left(\lambda^{3}-\lambda^{2}-2\right)\left(\lambda^{3}+\lambda^{2}-2\right)$. Hence by Theorem 6.1,

$$
\operatorname{dim}_{H}(\partial T)=2 \log _{2} \lambda_{0}
$$

where λ_{0} is the largest root of $\lambda^{3}-\lambda^{2}-2$.
In general, the set \mathcal{K}_{0} for any given self-affine tile can be found via a "pruning algorithm," see [51]. One can also obtain a priori a set $\mathcal{K}_{1} \supseteq \mathcal{K}_{0}$ by estimating the diameter of the tile. It turns out that the substitution matrix obtained using \mathcal{K}_{1} will have the exactly same spectral radius as the substitution matrix from \mathcal{K}_{0}.

It should be pointed out that Duvall and Keesling [14] have recently computed the exact Hausdorff dimension of the boundary of the well known Lévy Dragon, using a rather different approach. The method in [14] can handle more general self-similar tiles, although typically requires much larger matrices (in the case of the Lévy Dragon it is a 752×752 matrix).

References

[1] C. Bandt, Self-similar sets 5. integer matrices and fractal tilings of \mathbf{R}^{n}, Proc. Amer. Math. Soc. 112, (1991) 549-562.
[2] C. Bandt and G. Gelbrich, Classification of self-affine tilings, J. London Math. Soc. 50 (1994), 581-593.
[3] M. Barnsley, Fractals Everywhere, Academic Press, Inc., Boston, 1988.
[4] M. Berger and Y. Wang, Multidimensional two-scale dilation equations, in: Wavelets - A Tutorial In Theory and Applications, C. K. Chui, Ed., Academic Press, 1992, 295-323.
[5] R. Bowen, Markov partitions are not smooth, Proc. Amer. Math. Soc. 71 (1978), 130-132.
[6] D. Cerveau, J. Conze and A. Raugi, Ensembles invariants pour un opérateur de transfert dans \mathbf{R}^{d}, preprint.
[7] J. Conze, L. Hervé and A. Raugi, Pavages auto-affines, opérateur de transfert et critères de réseau dans \mathbf{R}^{d}, preprint.
[8] L. Danzer, A family of 3-d-spacefillers not permitting any periodic or quasiperiodic tiling, preprint.
[9] I. Daubechies, Ten Lectures on Wavelets, SIAM: Philadelphia, 1992.
[10] I. Daubechies and J. C. Lagarias, Two scale difference equations I. global regularity of solutions, SIAM J. Math. Anal. 22 (1991), 1388-1410.
[11] C. De Boor and K. Höllig, Box spline tilings, Amer. Math. Monthly 98 (1991), 793802.
[12] F. M. Dekking, Recurrent sets, Advances in Math. 44 (1982), 78-104.
[13] F. M. Dekking, Replicating superfigures and endomorphisms of free groups, J. Comb. Th., Series A, 32 (1982), 315-320.
[14] P. Duvall and J. Keesling, The hausdorff dimension of the boundary of the lévy dragon, preprint (1997).
[15] K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley \& Sons (1990).
[16] K. J. Falconer, Techniques in Fractal Geometry, John Wiley \& Sons (1990).
[17] T. Flaherty and Y. Wang, Haar-type multiwavelet bases and self-affine multi-tiles, preprint (1997)
[18] M. Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, New York, 1989.
[19] W. Gilbert, Geometry of radix representations, in: The Geometric Vein: the Coxeter Festschrift, 1981, 129-139.
[20] F. Girault-Beauquier and M. Nivat, Tiling the plane with one tile, in: Topology and Category Theory in Computer Science, Oxford U. Press, 1989, 291-333.
[21] K. Gröchenig, Orthogonality criteria for compactly supported scaling functions, Appl. Comp. Harmonic Analy. 1 (1994), 242-245.
[22] K. Gröchenig and A. Haas, Self-similar lattice tilings, J. Fourier Anal. Appl. 1 (1994), 131-170.
[23] K. Gröchenig and W. Madych, Multiresolution analysis, haar bases, and self-similar tilings, IEEE Trans. Info. Th. IT-38, No. 2, Part II (1992), 556-568.
[24] B. Grunbaum and G. C. Shepard, Tilings and Patterns, W. H. Freeman \& Co., New York, 1987.
[25] A. Haar, Zur theorie der orthogonalen funktionen-systeme, Math. Ann. 69 (1910), 331-371.
[26] D. Hacon, N. Saldanha and P. Veerman, Self-similar tilings of \mathbf{R}^{n}, Experimental Math.
[27] J. E. Hutchinson, Fractals and self-similarity, Indiana U. Math. J. 30 (1981), 713-747.
[28] R. Kenyon, Self-similar tilings, Ph.D. thesis, Princeton University, 1990.
[29] R. Kenyon, Self-replicating tilings, in: Symbolic Dynamics and Its Applications (P. Walters, Ed.), Contemporary Math., Vol. 135, 1992, 239-264.
[30] R. Kenyon, Rigidity of planar tilings, Inventiones Math. 107 (1992), 637-651.
[31] R. Kenyon, J. Li, R. Strichartz and Y. Wang, Geometry of self-affine tiles II, preprint (1998).
[32] D. Knuth, The Art of Computer Programming: Volume 2. Seminumerical Algorithms (Second Edition), Addison-Wesley: Reading, MA, 1981.
[33] J. C. Lagarias and Y. Wang, Haar type orthonormal wavelet basis in R ${ }^{2}$, J. Fourier Analysis and Appl. 2 (1995), 1-14.
[34] J. C. Lagarias and Y. Wang, Self-affine tiles in \mathbf{R}^{n}, Adv. in Math. 121 (1996), 21-49.
[35] J. C. Lagarias and Y. Wang, Integral self-affine tiles in \mathbf{R}^{n} I. Standard and nonstandard digit sets, J. London Math. Soc. 53 (1996), 161-179.
[36] J. C. Lagarias and Y. Wang, Haar bases in \mathbf{R}^{n} and algebraic number theory, J. Number Theory 57 (1996), 181-197.
[37] J. C. Lagarias and Y. Wang, Integral self-affine tiles in \mathbf{R}^{n}, part II: lattice tilings, J. Fourier Anal. and Appl. 3 (1997), 83-102.
[38] D. Lind, Dynamical properties of quasihyperbolic toral automorphisms, Ergod. Th. Dyn. Sys. 2 (1982), 49-68.
[39] S. Mallat, Multiresolution analysis and wavelets, Tans. Amer. Math. Soc. 315 (1989), 69-88.
[40] D. W. Matula, Basic digit sets for radix representations, J. Assoc. Comp. Mach. 4 (1982), 1131-1143.
[41] A. M. Odlyzko, Non-negative digit sets in positional number systems, Proc. London Math. Soc., 3rd Series, 37 (1978), 213-229.
[42] B. Praggastis, Markov partitions for hyperbolic toral automorphisms, Ph.D. Thesis, Univ. of Washington, 1992.
[43] C. Radin, Space tilings and substitutions, Geom. Dedicata 55 (1995), 257-264.
[44] C. Radin and M. Wolff, Space tilings and local isomorphism, Geom. Dedicata 42 (1992), 355-360.
[45] P. Schmitt, An aperiodic prototile in space, preprint, 1993.
[46] C. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton U. Press, Princeton, NJ. 1970.
[47] R. S. Strichartz, Self-similar measures and their fourier transforms I., Indiana U. Math. J. 39 (1990), 797-817.
[48] R. S. Strichartz, Self-similar measures and their fourier transforms II., Trans. Amer. Math. Soc. 2 (1993), 335-361.
[49] R. Strichartz, Wavelets and self-affine tilings, Constructive Approx. 9 (1993), 327-346.
[50] R. Strichartz, Self-similarity in harmonic analysis, J. Fourier Anal. Appl. 1 (1994), 1-37.
[51] R. Strichartz and Y. Wang, Geometry of self-affine tiles I, preprint (1998).
[52] W. Thurston, Groups, tilings, and finite state automata, AMS Colloquium Lecture Notes, unpublished, 1989.
[53] A. Vince, Replicating tesselations, SIAM J. Discrete Math., 6 (1993), 501-521.
[54] J. Walters, Ergodic Theory, Springer-Verlag, 1970.

[^0]: *Research supported in part by the National Science Foundation, grant DMS-9307601.

