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Abstract

A self�a�ne tile in R
n is a set T of positive Lebesgue measure satisfying A�T � �

�d�D�T �d�� where A is an expanding n�n real matrix with j det�A�j � m an integer�
and D � fd�� � � � � dmg � R

n a set of m digits� Self�a�ne tiles arise in many contexts�
including radix expansions� fractal geometry� and the construction of compactly sup�
ported orthonormal wavelet bases of L��Rn�� They are also studied as interesting tiles�
In this article we survey the fundamental properties of self�a�ne tiles� We examine
necessary and su�cient conditions for digit sets D to give rise to self�a�ne tiles� A
special class of self�a�ne tiles is the integeral self�a�ne tiles� in which A is an integer
matrix and D � Z

n� We study the tiling properties and the measures of integeral self�
a�ne tiles� We also compute the Hausdor� dimensions of the boundaries of integeral
self�a�ne tiles�

� Introduction

Let A be an expanding matrix in Mn�R�� that is� one with all eigenvalues j�ij � �� and
suppose that jdet�A�j � m for some integer m � �� Let D � fd�� d�� � � � � dmg � Rn be a
�nite set of vectors� A result of Hutchinson ��	
 states that there exists a unique nonempty
compact set T �� T �A�D� such that

T �
m�
j��

A���T � dj�� �����

More precisely� T is the attractor of the iterated function system f�j�x� � A��x�A��dj �
� � j � mg� In fact� T is given explicitly by

T �

�
�X
k��

A�kdk � each dk � D

�
� �����

For most pairs �A�D� the set T �A�D� has Lebesgue measure ��T � � � If T �A�D� has
positive Lebesgue measure we call T �A�D� a self�a�ne tile�
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The name �self�a�ne tile� refers to the fact that

A�T � �
m�
j��

�T � dj� � T �D� �����

geometrically it means that the a�nely dilated setA�T � is perfectly tiled by them translates
T�dj of T � A simple example of a self�a�ne tile is the unit square T � �� �
�� which satis�es
A�T � � T �D for

A � �I� D �

��
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Self�a�ne tiles have been studied as �exotic� tiles and as tiles giving interesting tilings
of Rn ���
� ��
 ���
� ���
� ���
 ���
� ���
� ���
� ���
� ��	
� ���
�� Furthermore� they arise in many
other contexts� particularly in fractal geometry ����
� ���
� ���
� ���
�� compactly supported
wavelet bases ����
� ���
� ���
�� radix expansions ����
�� and in Markov partitions ����
�� The
current interests in self�a�ne tiles come largely from these applications�

Most of the studies on self�a�ne tiles employ one or both of the two approaches� al�
gebraic and Fourier analytic� It is rather easy to see the role of algebraic methods� For
example� given an expanding matrix A and a digit set D� by iterating ����� we obtain
Ak�T � � T �DA�k where

DA�k �

���
k��X
j��

Ajdj � each dk � D

�	
 � �����

As we shall see� many properties of T �A�D� depend fundamentally on the algebraic prop�
erties of DA�k� Of course� this is but one of the many instances where algebraic methods
can be employed�

But harmonic analysis can be a powerful tool in the study of self�a�ne tiles as well� Let
T �� T �A�D� be a self�a�ne tile� The set�valued equation A�T � � T � D can be written
as

�T �x� �
X
d�D

�T �Ax� d�� �����

Let mD��� �
�
jDj

P
d�D ei��hd��i� Taking the Fourier transform in ����� results in

b�T ��� � mD�B
����b�T �B����� where B �� AT � �����

This yields

b�T ��� � c
�Y
j��

mD�B
�j��� where c �� b�T �� � ��T �� ���	�

By analyzing mD��� and the in�nite product ���	� a number of nontrivial results on the tile
T and its tilings can be proved ��	
� ���
� ���
� ���
� ��	
��

We shall provide a glimpse of both approaches in this overview� The fundamental
question this paper addresses is this� for a given matrix A and digit set D� under what
conditions will T �A�D� be a tile� We derive several necessary and su�cient conditions in
x�� and later in x�� In x� we introduce integral self�a�ne tiles and prove some basic results
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concerning their measures and tilings� Some of these results are then used in x� to study
Haar�type wavelet bases� In x� we show a method for �nding the exact Hausdor� dimension
of the boundaries of self�a�ne tiles�

Due to the restriction on the length of the paper� We have limited the discussions of this
overview mostly to self�a�ne tiles as sets� In doing so we have made several conspicuous� and
perhaps unjusti�ed� omissions� In particular� we have left out the study on self�replicating
tilings and on the topological properties of the tiles entirely� We apologize in advance for
our inability to include these results and shall refer the readers to ��
� ���
� ��
� ���
� ���

for more details�

We are greatly indebt to Professor Ka�Sing Lau and the mathematics department of
the Chinese University of Hong Kong for the kind invitation to visit� We would also like
to thank Je� Lagarias� Ka�Sing Lau� Rick Kenyon� Sze�Man Ngai and Bob Strichartz for
encouraging and helpful discussions�

� Conditions For A Tile

As mentioned in the introduction� for a given pair �A�D� where A �Mn�R� is expanding
and D � Rn has cardinality jDj � jdet�A�j� the corresponding attractor T �A�D� is usually
not a tile� A fundamental question is thus� under what condition�s� is T �A�D� a tile� To
gain some insight into this question we �rst look at the following example�

Example ���� Let A � ��
 and D � f� �� �g� We show that T � T �A�D� is not a tile by
showing that ��T � � � where � denotes the Lebesgue measure� Note that

�T � T �D � T � f� �� �g�

Hence

�T � �T � �D

� T � f� �� �g � f� �� ��g

� T � f� �� �� �� 	� ��� ��� ��g�

It follows by taking the Lebesgue measure that

���T � � ��T � f� �� �� �� 	� ��� ��� ��g� � ���T ��

and hence ��T � � �

For integral A and D� the following theorem was established by Bandt ��
�

Theorem ��� Let A �Mn�Z� be an expanding matrix and let D � Zn be a set of complete

coset representatives of Zn�A�Zn�� Then T � T �A�D� has nonempty interior� Further�

more� T is the closure of its interior and ��	T � � �

Proof� We present a new proof here� We �rst show that ��T � � � Let T� � �� �
n and

Tk �
�
d�D

A���Tk�� � d�� k � �� �����

�



It is easy to check� by induction on k� that the unions in ����� are measure�disjoint and
��Tk� � � for all k� Since Tk��T in the Haudor� metric �c�f� Hutchinson ��	
�� it follows
that ��T � � ��

Now let 
n � Rn��Tn be the canonical covering map� where Tn �� Rn�Zn is the
n�torus� Then A� �� 
n �A � 
��n is a well de�ned endomorphism on Tn� Clearly�

A��
n�T �� � 
n�A�T �� � 
n�T �D� � 
n�T ��

So 
n�T � is invariant under A�� But A� is ergodic because A is expanding �c�f� Walters
���
�� Hence 
n�T � � Tn� This means that�

��Zn

�T � �� � Rn�

To see that T o �� �� let J � Zn be the smallest set such that T � J 	 �� ��n� Suppose
that T o � �� Fix an �� � J � Then any x � �� ��n 
 �T ���� must belong to another T ��
for some � � J � Hence T � �J n f��g� 	 �� ��n� contradicting the minimality assumption
of J � So T o �� �� Now

A�T o� � T o �D�

By the uniqueness we must have T � T o�

Finally we prove that ��	T � � � Let x� � T o� For su�ciently large k �  the interior
of Ak�T � x�� will contain T � But

Ak�T � x�� � T � J �� where J � � D �AD � � � � �Ak��D �Akx��

and the union T � J � is measure�disjoint� Since 	T is contained in the overlapps in the
union� it follows that ��	T � � �

For any A and digit set D we denote

DA�k �� D �AD � � � ��Ak��D�

Note that if  � D then DA�k � DA�k��� In this case we denote

DA�� ��
��
k��

DA�k � ��A�D� �� �D �D�A���

The above theorem is a special case of the following more general theorem� due to
Kenyon ���
 and Lagarias and Wang ���
�

Theorem ��� Let A � Mn�R� be an expanding matrix such that jdet�A�j � m � Z�

Suppose that D � Rn has cardinality m� with  � D� Let T � T �A�D�� Then the following

conditions are equivalent�

�a� T has positive Lebesgue measure�

�b� T has nonempty interior�

�c� T is the closure of its interior� and its boundary 	T has Lebesgue measure zero�
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�d� For each k � � all mk expansions in DA�k are distinct� and DA�� is uniformly discrete�

Although not di�cult� the proof is rather tedious� A proof can be found in Lagarias
and Wang ���
�

One other question we naturally ask is how does a self�a�ne tile T �A�D� tile Rn� We
show below that T tiles by translation�

Theorem ��� Let A �Mn�R� be an expanding matrix and D � Rn with jDj � jdet�A�j�
Suppose that T � T �A�D� has nonempty interior� Then there exists a set of translations

J � ��A�D� such that T � J is a tiling of Rn�

Proof� The fundamental idea here is to repeatedly in�ate the tile T at some interior point�
Since T o �� �� by ����� there exists an interior point x� � T o that has a �nite radix expansion

x� �
NX
j��

A�jd�j � each d�j � D�

Let �T � T � x� and �D �� DA�N �ANx�� Then  � �D and AN � �T � � �T � �D� Iterations
yield that for all k � ��

ANk� �T � � �T � �DAN �k� �����

Because  is in the interior of �T � any ball Br�� will be covered by ANk� �T � for su�ciently
large k� Furthermore� �DAN �k � �DAN �k�� because  � �D� Hence �T tiles Rn by translates

of J �� �DAN ��� which implies that T tiles Rn by translates of J � Now clearly we have
J � ��A�D�� proving the theorem�

An immediate corollary of Theorem ��� is that if A � Mn�Z� and D � Zn� then we
may �nd a J � Zn such that T �A�D� � J is a tiling of Rn� provided that T �A�D� has
nonempty interior�

� Integral Self�A�ne Tiles

A particular class of self�a�ne tiles is the so�called integral self�a�ne tiles� whereA �Mn�Z�
and D � Zn� The integrality allows us to establish many more properties about the tile
T �A�D�� In some applications� such as orthonormal wavelet bases� one encounters only
integral self�a�ne tiles� Moreover a large class of self�a�ne tiles� including all self�a�ne
tiles in the one dimension� are a�nely equivalent to integral self�a�ne tiles� see Kenyon
���
� and Lagarias and Wang ���
�

Let A be an expanding matrix in Mn�Z� and D � Zn with jDj � jdet�A�j� Associated
to the pair �A�D� is the smallest A�invariant sublattice of Zn containing the di�erence set
D �D� which we denote by Z�A�D
� If  � D then

Z�A�D
 � Z�D�A�D�� � � � �An���D�
� �����

This follows from the Hamilton�Cayley Theorem that An � Z�A��A�� � � � �An��
�

We call a digit set D primitive �with respect to A� if Z�A�D
 � Zn� and we also call
the associated tile T �A�D� a primitive tile� Most of the questions we consider here can be
reduced to the case of primitive tiles�
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Lemma ��� Let A be an expanding matrix in Mn�Z� and D � Zn with jDj � jdet�A�j�
Suppose that  � D and Z�A�D
 � B�Zn� for some B �Mn�Z�� Then there is an expanding

matrix �A � Mn�Z� and a primitive digit set �D � Zn with respect to �A� j �Dj � jdet� �A�j�
such that

T �A�D� � B�T � �A� �D��� �����

Proof� Since Z�A�D
 � B�Zn� is A�invariant� AB�Zn� � B�Zn�� Hence AB � B �A for
some �A � Mn�Z�� �A is expanding because �A � B��AB� Now D � B�Zn�� so D � B� �D�
for some �D � Zn� Let �T �� T � �A� �D�� It satis�es �A� �T � � �T � �D� so

A�B� �T �� � B �A� �T � � B� �T � �D� � B� �T � �D�

The uniqueness yields B� �T � � T �

Theorem ��� Let A � Mn�Z� be expanding and D � Zn with jDj � jdet�A�j� Then
k �� ��T �A�D�� � Z� Furthermore� T �A�D��Zn is a perfect covering of Rn of multiplicity

k�

Proof� As before let 
n � Rn��Tn be the canonical covering map� The integer matrix A
induces an endormorphism A� � T

n��Tn de�ned by A� �� 
n �A � 
��n � Let  � Tn��Z

denote the function �z� �� j
��n �z� 
 T j where T �� T �A�D�� Since T is compact� there
exists a �nite k � Z such that

k � max fl � Z � �z� � l for almost all z � Tng �

Now there exist disjoint �up to measure zero sets� fundamental domains F�� F�� � � � � Fk of
the lattice Zn such that each Fj � T � Denote F � kj��Fj and � � T n F � We show that
�� �� 
n��� is invariant under A��

To see this� note that

A����� � 
n �A��� � 
n
�
�T �D� n

k�
j��

A�Fj�
�
� �����

Let z� � Tn n ��� Then z� is covered exactly k times under 
n � T��Tn� so it is covered
exactly kjDj times under 
n � T � D��Tn� However� z� is also covered jk det�A�j � kjDj
times under kj��A�Fj� times because each Fj is a fundamental domain of Zn and A �
Mn�Z�� So z� �� A����� by ������ This yields A���� � ��� By the ergodicty of A� the
set �� have measure zero or is all of Tn� But the latter is ruled out by the de�nition of k�
Therefore ���� � � and �z� � k for almost all z � Tn� This proves ��T � � k � Z and
T � Zn is a perfect covering of Rn of multiplicity k�

As we will see in x�� a Haar�type orthonormal wavelet basis can be constructed from
an integral self�a�ne tile T �A�D� with ��T �A�D� � �� In this case T �A�D� tiles Rn by
Zn�translations� The following is a necessary condition for it to hold�

Theorem ��� Let A � Mn�Z� be expanding and D � Zn with jDj � jdet�A�j� Suppose

that ��T �A�D�� � �� Then D is primitive and is a complete set of coset representatives of

Zn�A�Zn��

�



Proof� We project T �� T �A�D� onto the n�torus Tn by 
n� By Theorem ��� there exists
a J � Zn such that T � J is a tiling of Rn� Since ��T � � �� J � Zn� Hence 
n�T � � Tn�
Now A�T � � T �D yields

Tn � 
n�T � �
�
d�D

�
�T� � 
n�A

��d�
�
� where �T� �� 
n�A

���T ���

Since the measure of �T� is at most ��jDj� all 
n�A
��d� must be distinct in Tn� This shows

that D must be a complet set of coset representatives of Zn�A�Zn��

The primitiveness of D follows directly from Lemma ����

The converse of Theorem ��� is true in the one dimension �x�� but is false for n � ��
Let

A �

�
� �
 �

�
� D �

��



�
�

�
�


�
�

�

�

�
�

�
�
�

��
�

ThenD is a primitive complete set of coset representatives of Z��A�Z��� However� ��T �A�D��
has Lebesgue measure �� see ��	
�

In the above example the tile T �A�D� tiles R� by lattice translates� using the lattice
�Z�Z� In general we have�

Theorem ��� Let A �Mn�Z� be expanding and D be a complete set of coset representatives

of Zn�A�Zn�� Then there exists a full rank lattice L � Zn such that T �A�D� tiles Rn by

L�translations�

For the proof of Theorem ��� we refer the readers to Conz� Herv�e and Raugi �	
 or
Lagarias and Wang ��	
�

� Digit Sets of Integral Self�A�ne Tiles

Although Theorem ��� �d� provides a necessary and su�cient condition for T �A�D� to be
a tile� the condition itself is rather di�cult to verify� In this section we explicitly classify
integral digit sets D that result in tiles for certain types of expanding matrices A �Mn�Z��

Theorem ��� Let p be a prime and D � Z be a primitive digit set with jDj � jpj� Then

T �A�D� is a tile if and only if D is a complete set of residues �mod p��

Proof� The su�cency is already established� We prove the necessity� Without loss of
generality we assume that  � D and d �  for all d � D� Let fD�z� denote the charac�
teristic polynomial fD�z� ��

�
jpj

P
d�D zd� We prove that there exists a k � � such that the

cyclotomic polynomial Fpk�z� ��
zp
k
��

zpk����
divides fD�z��

Let mD��� �� fD�e
i����� Note that the characteristic function of T �� T �A�D� satis�es

�T �x� �
X
d�D

�T �px� d�� �����

	



Taking the Fourier transform yields b�T � mD�p
����b�T �p����� By iteration�

b�T ��� � c
�Y
j��

mD�p
�j��� where c � b�T �� � ��T �� �����

The convergence of the in�nite product ����� is well known� By Theorem ���� T � Z is a
perfect covering of R of multiplicity ��T � � Z� so b�T �l� �  for all nonzero integer l� In
particular b�T ��� � � By ����� there exists some integer k � � such that mD�p

�k� � �

Hence fD�e
i��p�k� � � proving that Fk�z�jfD�z� and hence �zp

k
� ��jfD�z��z

pk��

� ���

Observe that if two integers satisfy j� � j� �mod pk� then zj� � zj� �mod �zp
k
� ����

Because
fD�z��z

pk��

� �� �
X

d�D�pk��

zd �
X
d�D

zd �  �mod �zp
k

� ����

and because a nonzero polynomial of degree less than pk can never be divisible by zp
k
� ��

we must have
D � pk�� �mod pk� � D �mod pk�� �����

pk�� � D � pk��� so d � pk�� �mod pk� for some d � D� Similarly now �pk�� � D �
pk�� �mod pk�� so �pk�� � D �mod pk�� This argument yields

D � f� pk��� �pk��� � � � � �p� ��pk��g �mod pk��

But D is primitive� so gcdfd � d � Dg � �� Therefore k � � and D is a complete set of
residues �mod p��

The above theorem was due to Kenyon ���
� The same argument can be used to prove
the following generalization� a proof of which can be found in Lagarias and Wang ���
�

Theorem ��� Let A �Mn�Z� be expanding such that jdet�A�j � p is a prime and pZn ��
A��Zn�� Let D � Zn with jDj � jdet�A�j be primitive� Then T �A�D� is a tile if and only

if D is a set of complete coset representatives of Zn�A�Zn��

It should be pointed out that the classi�cation of digit sets for a given matrix A is in
general very di�cult� even in the integral case� This is evident from the fact that even
for A � ��
 in the one dimension it is not completely known what digit sets D result in
self�a�ne tiles� The only other cases in which all digit sets resulting in self�a�ne tiles are
classi�ed are A � �I for n � � ����
� and A � �pk
 for n � �� where p is a prime ����
��

So far we have discussed mostly digit sets that are complete set of coset representatives
of Zn�A�Zn�� Naturally one may ask whether there are other types of digit sets D that
also give self�a�ne tiles� Here is a simple example�

Example ���� Let A � ��
 and D � f� �� �� �g� Clearly D is primitive and is not a
complete set of residues �mod ��� But one may check directly that T �A�D� � �� �
 ��� �
�

Example ��� is an example of a class of digit sets called product form digit sets� Suppose
that  � E is a set of complete coset representatives of Zn�A�Zn�� and suppose that it has
a factorization

E � E� � E� � � � � � Er� where  � Ei and jEj �
rY

i��

jEij� �����

�



A digit set D has the product�form if

D �� Af��E�� �Af��E�� � � � ��Afr�Er� �����

for some integers  � f� � f� � � � � � fr�

Theorem ��� Let A �Mn�Z� be expanding and D is the product�form digit set de�ned in

���	�� Then T �A�D� is a measure�disjoint union of translates of T �A� E�� and

��T �A�D�� � ��T �A� E��
rY

i��

jEij
fi � �����

Proof� Let Ai�k �� f
Pk��

j�� A
jei�j � all ei�j � Eig with Ai�� � fg� We prove that T �A�D� �

T �A� E� �A where
A �� A��f� �A��f� � � � ��Ar�fr �

T �A�D� � f
P�

j��A
�jdj � all dj � Dg from ������ and by assumption dj �

Pr
i��A

fiei�j
where ei�j � Ei� So

�X
j��

A�jdj �
�X
j��

A�j
rX

i��

Afiei�j

�
rX

i��

� �X
j�fi

A�jAfiei�j �
fiX
j��

A�jAfiei�j
�

�
�X
j��

A�j
� rX
i��

ei�j�fi

� rX
i��

fiX
j��

Afi�jei�j � ���	�

Since
Pr

i�� ei�j�fi � E and
Pr

i��

Pfi
j��A

fi�jei�j � A� we have
P�

j��A
�jdj � T �A� E� �A�

hence T �A�D� � T �A� E� �A�

Conversely� one veri�es that any element in T �A� E��A must be in T �A�D� be reversing
���	� �we omit the details here�� yielding T �A� E� � A � T �A�D�� Therefore� T �A�D� �
T �A� E� �A�

We still need to show that the translates of T �A� E� in T �A� E��A are measure�disjoint�
For any m � � we have

Am�T �A� E�� � T �A� E� � EA�m� �����

where EA�m �� f
Pm��

k�� A
kek � all ek � Eg� Since each Ei � E and  � E � A � EA�m

whenever m � fr� But the translates of T �A� E� in ����� are measure�disjoint� it follows
that the translates of T �A� E� in T �A� E� �A must be measure�disjoint�

Finally� all expansions
Pr

i��

Pfi��
j�� Ajei�j where ei�j � Ei in A are distinct because

E � E� � � � �� Er is a direct sum by ������ The measure�disjointness of T �A� E� �A yields
������

The digit set D � f� �� �� �g in Example ��� is a product�form digit set� with E �
f� �� �� �g � f� �g � f� �g and D � f� �g � �f� �g� There are integral self�a�ne tiles
whose digit sets are not product�form digit sets� see ���
� One simple such example is
A � ��
� D � f� �� �� ��g� Can you prove that T �A�D� is a tile�

�



� Haar�Type Wavelet Bases of L	�Rn�

Let ���x�� � � � � �r�x� � L��Rn� and A �Mn�Z� be expanding� Suppose thatn
jdet�A�j

m
� �i�A

mx� �� � � � Zn� � � i � r� m � Z
o

is an orthonormal basis of L��Rn�� Then we call this basis a wavelet basis of L��Rn�� and
���x�� � � � � �r�x� wavelets� The simpliest wavelet is the wavelet basis of L��R� constructed
by A� Haar ���
� which has A � ��
 and consists of a single wavelet

��x� �

���
�  � x � ���
�� ��� � x � �
 otherwise�

A popular way to construct wavelet bases is by multiresolution analysis� We shall not
discuss the details here� a comprehensive discussion can be found in Daubechies ��
� Let
A �Mn�Z� be expanding� A scaling function �of a multiresolution analysis�� from which a
wavelet basis can be constructed� is a function ��x� � L��Rn� such that

�i� ��x� satis�es a dilation equation

��x� �
X
��Zn

c���Ax� ��� �����

�ii� f��x� �� � � � Zng is an orthonormal set in L��Rn�� and
R
Rn ��x� dx �� �

A Haar�type wavelet basis is a one constructed from a scaling function of the form ��x� �
c���x� for some compact set � � Rn and constant c� Gr ochenig and Madych ���
 estab�
lished the following relation between Haar�type wavelet bases and self�a�ne tiles�

Theorem ��� Let A � Mn�Z� be expanding and � � Rn be compact� Then the following

are equivalent�

�a� ��x� � c���x� is a scaling function with respect to A for some constant c�

�b� There exists a set of complete coset representatives of Zn�A�Zn� such that A��� �
� �D up to a measure zero set� and ���� � ��

Proof� �a���b�� By assumption ��x� satis�es some dilation equation

��x� �
X
��Zn

c���Ax� ��� �����

The orthonormality of f��x��� � � � Zng implies that ���� � � Zn� are measure�disjoint�
By letting y � Ax and rewritting ����� as

�A����y� �
X
��Zn

c������y�� �����

�



it yields c� �  or c� � ��

Let D � f� � c� � �g� Integrating ����� yields jDj � jdet�A�j� and the measure�
disjointness of � � � in ����� implies that

A��� �
�
d�D

�� � d� � ��D �����

up to a measure zero set�

To show that ���� � �� let 
n � Rn��Tn be the canonical covering map and A� ��

n �A � 
��n � By ������ A��
n���� � 
n��� up to a measure zero set� It follows from the
ergodicity of A� that 
n��� � Tn up to a measure zero set� Hence ���� � �� But ���� � �
because � � �� � � Zn� are measure�disjoint� Therefore ���� � ��

�b���a�� By the ergodicity argument above� � � Zn is a covering of Rn up to a measure
zero set� Since ���� � �� all � � �� � � Zn� are measure�disjoint� Hence ��x� �� ���x�
satis�es ��x� �

P
d�D ��Ax � d� and f��x � �� � � � Zng is an orthonormal system in

L��Rn�� So ��x� � ���x� is a scaling function�

Remark� It can be shown that if a compact set � satis�es A��� � ��D up to a measure
zero set� then � 	 T �A�D� and � � T �A�D� up to a measure zero set� We omit the proof
here�

Naturally we would like to know when will ��T �A�D�� � � for any given A and D�
Theorem ��� states that D must be a primitive set of complete coset representatives of
Zn�A�Zn�� A counterexample is given in x� to show that the converse of the theorem is
false for n � �� The converse� however� is true in the one dimension�

Theorem ��� Let q � Z� jqj � � and D be a complete set of residues �mod q�� Suppose

that D is primitive� Then ��T ��q
�D�� � ��

Proof� We present the following Fourier analytic proof� due to Gr ochenig and Haas ���
�
The technique here is valuable for studying other type of scaling functions as well�

Without loss of generality we assume that  � D� The primitiveness of D is equivalent
to gcdfd � d � Dg � ��

Let mD��� ��
�
jqj

P
d�D ei��d� � Key to the proof is the following linear transition operator

CD�f���� �

jqj��X
l��

���mD�q
���� � l��

���� f�q���� � l�� �����

de�ned on the space of Z�periodic functions� Let

gD��� ��
X
k�Z

��T 
 �T � k��ei��k� �����

where T �� T ��q
�D�� One easily checks �see Gr ochenig ���
�� using the assumption that D
is a complete set of residues �mod q�� that

CD��� � �� CD�gD� � gD� ���	�

��



Assume that ��T � � �� Then gD��� is not a constant� hence the set

ZD ��

�
� � gD��� � min

��R
gD���

�
is a nonempty discrete Z�periodic set� and ZD 
 Z � � by ������ Fix an �� � ZD� By ���	�

gD���� �

jqj��X
l��

���mD�q
����� � l��

���� gD�q����� � l��� �����

But
Pjqj��

l��

��mD�q
����� � l��

��� � � by CD��� � �� so gD�q
����� � l�� � gD���� whenever

mD�q
����� � l�� �� � In particular there exists an l� such that �� �� q����� � l�� � ZD�

Note that q�� � �� �mod ���

Now let bZD �� ZD �mod ��� So for any b�� � bZD there exists a b�� � bZD such that
qb�� � b��� But bZD is �nite� Hence the map b� �� qb� is a permutation on bZD�

Back to ������ There exists no l� �� l� in the sum such that �� �� q����� � l�� � ZD
because otherwise q�� � q�� �mod �� while �� �� �� �mod ��� contradicting the fact thatb� �� qb� is a permutation on bZD� Hence mD�q

����� � l�� �  for all  � l � jqj � �� l �� l��
This means ���mD�q

����� � l���
���� jmD����j

� � �� �����

Because  � D� ����� is possible only if ei��d�� � �� and hence d�� � Z for all d � D� But
�� �� Z� it follows that gcdfd � d � Dg � �� a contradiction�

Theorem ��� generalizes to higher dimensions only in special cases� One such case is
when A � Mn�Z� is irreducible� which means that the characteristic polynomial of A is
irreducible in Q�z
�

Theorem ��� Let A � Mn�Z� be an expanding irreducible matrix� and D be a primitive

set of complete coset representatives of Zn�A�Zn�� Then ��T �A�D�� � ��

A proof can be found in ��	
� It uses a deep result of Cerveau� Conze� and Raugi ��

characterizing the set of zeros of certain trigonometric polynomials� In the case of reducible
A� ��T �A�D�� � � only when the digit set has the so called quasi�product form� see ��	
�

Another interesting question is� For a given expanding A �Mn�Z�� is it always possible
to construct Haar�type wavelet basis� In other words� is it always possible to �nd a digit set
D such that ��T �A�D�� � �� The answer is clearly a�rmative in the one dimension as a
result of Theorem ���� The answer is known to be a�rmative in dimensions n � �� � ����
�
���
� ���
� ��	
�� In dimension n� Haar�type wavelet bases exist if jdet�A�j � n� But what
if jdet�A�j � n� for example� jdet�A�j � �� The question becomes intriguing� because in
this case the digit set D consists of only two digits� Since we may assume that  � D� we
have in reality the freedom to choose for only one digit� If the dimension is large� it is not
clear we can always choose this digit so that D is primitive� i�e� Z�A�D
 � Zn� Although
no counterexample has been found yet� it is almost certain that they exist� This problem
has a surprising connection to algebraic number theory� see Lagarias and Wang ���
�

��



Figure �� The Fractal Red Cross

� Boundaries of Self�A�ne Tiles

An important problem in fractal geometry is to �nd the Hausdor� dimension of a fractal
set� Since a tile by de�nition has positive Lebesgue measure� its Hausdor� dimension is
simply the dimension of the space in which it resides� A more interesting problem is to �nd
the Hausdor� dimension of the boundary of a self�a�ne tile�

Getting the exact Hausdor� dimension of a fractal set is tricky in general� This had been
the case for the boundaries of self�a�ne tiles� Boundaries of several well known tiles� such
as the Gosper Flake �Gardner ���
� or the Fractal Red Cross �Strichartz ��
�� were studied
and their exact Hausdor� dimension derived� We illustrate how the Hausdor� dimensions
of the boundaries of some self�a�ne tiles can be computed by the example of the Fractal
Red Cross �Figure �� in ��
� which is the self�a�ne tile T �� T �A�D� with

A �

�
� ��
� �

�
� D �

��
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�

�
�


�
�

�
��


�
�

�

�

�
�

�

��

��
�

By Figure �� the boundary of A�T � consists of �� pieces� each congruent to a quarter of
the boundary of T � Note that there are � � � quarter boundaries in the �ve translates of

��



T in A�T �� but � of them are overlaps that become part of the interior of A�T �� So in
fact 	�A�T �� � A�	T � consists of � � � � �� quarter boundaries of T � Let Hs denote
the s�dimensional Hausdor� measure� Then Hs�A�	T �� � �Hs�	T �� On the other hand�
Hs�A�	T �� � �s��Hs�	T � by the scaling property of Hs� For Hs�	T � to be �nite and
nonzero we must have �s�� � �� So s � � log� � is the dimension of 	T �

The above method can be made rigorous� The drawback is that it depends fundamen�
tally on the visualization of the tiles� making it useful only on a case by case basis� For
many self�a�ne tiles� the method either does not work� or requires ingenuity to work�

In this section we outline a method for �nding the exact Hausdor� dimension of the
boundaries of integral self�a�ne tiles� It employs the same basic idea� but requires no
visualization of the tiles and works in all cases where the expanding matrix A � Mn�Z� is
similar to a similarity�

Let T �� T �A�D� be an integral self�a�ne tile with ��T � � �� Because T tiles Rn by
Zn�translations and T is the closure of its interior�

	T �
�

��Znnf�g

T 
 �T � ��� �����

Denote B� �� T 
 �T � �� for all � � Zn n fg� Of course there are only �nitely many
nonemtpy B�!s� Let K� � f� � Zn n fg � B� �� �g� To �nd the Hausdor� dimension of 	T
we utilize the fact that fB� � � � K�g form a self�similar system� more precisely�

A�B�� � A�T � 
A�T � ��

� �T �D� 
 �T �D �A��

�
�

d�d��D

�BA��d��d � d� � �����

Now� label elements in K� as K� � f��� ��� � � � � �Jg and de�ne

Ei�j ��
�
d � D � A�i � d� � d � K� for some d� � D

�
� �����

Let Bi �� B�i for � � i � J � Then we may rewrite ����� as

A�Bi� �
J�

j��

�Bj � Ei�j�� � � i � J� �����

Theorem ��� Let T �� T �A�D� be an integral self�a�ne tile with ��T �A�D�� � �� Sup�

pose that A is similar to a similarity� Then

dimB�	T � � dimB�	T � � dimH�	T � �
n log ��M�

log jdet�A�j
� �����

where M �� �jEi�j j
J�J and ��M� is its specrtal radius�

We call the matrix M � �jEi�j j
 the substitution matrix of the boundary of T �

To prove Theorem ��� we �rst observe that iterating ����� yields

AN �Bi� �
J�
j��

�Bj � ENi�j�� � � i � J� �����

��



where for all � � i� j � ��

ENi�j �
J�

k��

�
A�EN��

i�k � � Ek�j
�
� E�i�j �� Ei�j� ���	�

Lemma ��� �jENi�jj
 �MN for all N � ��

Proof� We prove the lemma by induction on N � The lemma is clearly true for N � ��
Assume that it holds for N � �� we show that it also holds for N �

Observe that Ei�j � D and D is a complete set of coset representatives of Zn�A�Zn��
Hence ���A�EN��

i�k � � Ek�j
��� � jEN��

i�k jjEk�jj� �����

We shall establish that for all k �� l��
A�EN��

i�k � � Ek�j
�


�
A�EN��

i�l � � El�j
�
� �� �����

This is clear if we can show that Ek�j 
 El�j � � because this will mean the two sets have
no elements in a same coset of Zn�A�Zn�� Assume that d � Ek�j 
 El�j� Then there exist
d�� d� � D such that

A�k � d� � d � A�l � d� � d � �j �

So A��k � �l� � d� � d�� contradicting k �� l� This proves ������

It now follows from ���	� and ����� that

jENi�jj �
JX

k��

jEN��
i�k jjEk�jj�

proving the lemma�

Proof of Theorem ���� Let � �� ��M�� Since M is a nonnegative matrix� there is a
nonnegative eignevector v associated to �� Without loss of generality we assume that v� � 
and that A is a similarity� Let s �� n log ��M��log jdet�A�j� We divide the proof into three
parts�

�I� dimB�	T � � s�

Let Ci��� denote the least number of ��cubes needed to cover Ti� Observe that

AN �B�� �
J�
j��

�Bj � EN��j� 	 B� � EN����

hence
B� 	 A�N �B�� �A�N �EN����� �����

This means at least jEN���j �N �cubes are needed to cover B�� where �N �� jdet�A�j�
N
n � Hence

C���N � � jEN���j�

��



Now for any su�ciently small � �  there exists an N �  such that �N�� � � � �N � So

logC����

� log �
�

logC���N �

� log �N��
�

n log jEN���j

�N � �� log jdet�A�j
�

It is well known that limN��
log jEN

���j

N � log �� This yields

dimB�	T � � dimB�B�� � s�

�II� dimB�	T � � s�

Let �� �� max f�diam�Bj� � � � j � Jg and �N �� jdet�A�j�
N
n � Observe that each Bj

can be covered by a single ���cube� The iteration

AN �Bi� �
J�

j��

�Bj � ENi�j�� � � i � J

yields

Ci��N � �
JX
j��

���ENi�j��� �
Note that for each � � i � J �

lim sup
N��

log
�PJ

j��

���ENi�j����
� log �N

�
n log �

log jdet�A�j
� s�

The same techniques employed in �I� immediately gives �II��

�III� dimH�	T � � s�

dimH�	T � � s follows easily from Falconer ���
� Theorem ��� and ���� Details can be
found in ���
�

Example ��� One of the best known self�a�ne tile is the Twin Dragon� which is given by

A �

�
� ��
� �

�
� D �

��



�
�

�
�


��
�

In this example� one can show ����
� that K� � fe���e�� e���e�� e� � e�� e� � e�g and the
substitution matrix is

M �

���������

  �   
   �  
   � � 
  �   �
�     
 �    

���������
�

The characteristic polynomial is f��� � ��	 � �� � ����	 � ��� ��� Hence by Theorem ����

dimH�	T � � � log� ��

��



where �� is the largest root of �	 � �� � ��

In general� the set K� for any given self�a�ne tile can be found via a �pruning algorithm��
see ���
� One can also obtain a priori a set K� 	 K� by estimating the diameter of the
tile� It turns out that the substitution matrix obtained using K� will have the exactly same
spectral radius as the substitution matrix from K��

It should be pointed out that Duvall and Keesling ���
 have recently computed the
exact Hausdor� dimension of the boundary of the well known L"evy Dragon� using a rather
di�erent approach� The method in ���
 can handle more general self�similar tiles� although
typically requires much larger matrices �in the case of the L"evy Dragon it is a 	�� � 	��
matrix��
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