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Summary. A region T is a closed subset of the real line of positive finite
Lebesgue measure which has a boundary of measure zero. Call a regionT a
tile if R can be tiled by measure-disjoint translates ofT. For a bounded tile all
tilings of R with its translates are periodic, and there are finitely many translation-
equivalence classes of such tilings. The main result of the paper is that for any
tiling of R by a bounded tile, any two tiles in the tiling differ by a rational
multiple of the minimal period of the tiling. From it we a structure theorem
characterizing such tiles in terms of complementing sets for finite cyclic groups.

1. Introduction

This paper studies tilings of the real line using translations of a single prototile
T. We characterize compact setsT of positive measure that tileR by translation,
and the types of tilings they give.

There exist such prototilesT having many connected components. The sim-
plest case concerns regions consisting of a finite number of unit intervals, all
of whose endpoints are integers. Such regions are calledclusters by Stein and
Szab́o [30]. Tiling questions for clusters can be reformulated in terms of the set
A of left endpoints of unit intervals in the cluster, and then concern which finite
subsetsA of Z give tilings of Z, i.e. additive factorizationsA + B = Z. This
problem has been extensively studied, see Tijdeman [32] for references.

Extra subtleties in this problem arise from the existence of prototilesT having
infinitely many connected components. A large class of such prototiles arises
from self-similar constructions, e.g. the self-affine tiles studied in Bandt [2],
Gröchenig and Haas [11], Kenyon [16, 17], Lagarias and Wang [22, 21]. For
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example, givenγ ∈ R there is a unique compact setT := Tγ that satisfies the
set-valued functional equation

3T = T ∪ (T + 1)∪ (T + γ), (1.1)

and such a setTγ tiles R by translation if and only if its Lebesgue measure
µ(Tγ) > 0. It is therefore natural to ask: whichγ ∈ R haveµ(Tγ) > 0? This
question was raised in Odlyzko [27] and was answered in Kenyon [19]:µ(Tγ) > 0
if and only if γ is rational andγ = p/q with pq ≡ 2 (mod 3). The main result
of this paper is a generalized rationality result valid for all bounded regionsT
that tile R by translation, which implies the result above as a special case.

The results of this paper exclusively concern bounded tiles, but to allow
for generalization we use terminology permitting unbounded tiles. Aregion T
is a closed subset ofR which is the closure of its interior, has finite positive
Lebesgue measureµ(T), and has a boundary∂T of measure zero. Regions may
have infinitely many connected components, and may be unbounded. We say that
a regionT tilesR by translation if there is a discrete setT for which

R =
⋃

t∈T

(T + t), (1.2)

such that
µ((T + t) ∩ (T + t ′)) = 0 if t , t ′ ∈ T are distinct, (1.3)

or, equivalently, such that the interiors of all translates are disjoint. Thetransla-
tion setT defines the tiling and we say two tilingsT and ˜T are translation-
equivalentif

˜T = T + c for some c ∈ R.

We call any tiling (1.2) amonohedral translation tiling. This should be distin-
guished from the notion ofmonohedral tiling in Grünbaum and Shepard [12],
which is a tiling using a single prototileT which may be moved by Euclidean
motions and reflections. A monohedral tiling ofR is just a translation tiling us-
ing the set of two prototilesS = {T,TR}, in which TR is the reflection ofT
about 0. Some questions about monohedral tilings ofR are treated in Adler and
Holroyd [1].

In studying arbitrary compact sets that tileR by translation, we can without
loss of generality reduce to the case of regions. In an appendix we show that if
T is a compact set of positive Lebesgue measure that tilesR with tiling set T
then there is a regionT ′ that differs fromT on a set of measure zero such that
T ′ tiles R with the same tiling setT . A tiling T is periodic if

T = T + λ for some λ ∈ R \ {0}. (1.4)

and anyλ satisfying (1.4) is called aperiod of the tiling T . The set of all
periods together with 0 forms a latticeΛ(T ), which is either{0} or else is
{nλ : n ∈ Z} for a minimal periodλ = λ(T ) > 0.

We first show the easy result that one-dimensional translation tilings by a
bounded regionT are extremely rigid: all of them are periodic.
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Theorem 1. Suppose that a bounded region T of measureµ(T) tiles R by trans-
lation. Then:

(i) Every tiling by translations of T is a periodic tiling.
(ii) There are only finitely many translation-equivalence classes of tilings by T .
(iii) Each such tiling has a minimal period which is an integral multiple ofµ(T).

The analogue of Theorem 1 is false in higher dimensions, e.g. the unit square
T in R2 gives infinitely many nonperiodic tilings ofR2 which are translation-
inequivalent. Theorem 1 also fails in general for regionsT admitting a monohe-
dral tiling of R, as shown in Example 1. A final observation is that there are pro-
totilesT that tileR by translation but have no lattice tilings, e.g.T = [0,1]∪[2,3].

Theorem 1 asserts periodicity of all tilings, but it does not give any informa-
tion about the cosets of such a periodic tiling. The main result of the paper is
the following rationality result for such cosets.

Theorem 2 (Rationality Theorem). Suppose that a bounded region T tilesR by
translation, using a periodic tiling setT given by

T =
J⋃

j =1

(rj + λZ). (1.5)

Then all differences rj − rk are rational multiples of the periodλ.

The analogue of Theorem 2 is false in higher dimensions, e.g. there is
a tiling of R2 with unit squares which is 2Z2-periodic with tiling setT =
{(0,0), (1,0), (γ,1), (1 + γ,1)} + 2Z2 where γ is irrational. The conclusion of
Theorem 2 also fails to hold in the more general situation of (indecomposable)
tilings of the line by compactly supported nonnegative functions, see [20].

The proof of Theorem 2 is Fourier-analytic, and depends on several facts
apparently unrelated to tiling questions, including results on the zeros of ban-
dlimited functions, and the use of either Szemeredi’s theorem asserting that sets
of integers having positive upper asymptotic density contain arbitrarily long arith-
metic progressions or of the Skolem-Mahler-Lech theorem characterizing the set
of integer zeros of exponential polynomials. The point of the proof is its validity
for arbitrary tiles ofR; an easier proof exists for the special case of self-affine
tiles (defined below), using the arguments of Kenyon [19].

Using Theorem 2 we obtain a structure theorem for bounded regionsT that
give tilings of R. To state it we need some further definitions. Given two finite
sets of integersA,B and an integerL > 1, we say that the pair (A,B ) is a
complementing pair(mod L) if |A| |B | = L and

A + B ≡ {0,1,2, . . . ,L− 1} (mod L).

We also say thatA is a complementing set(mod L) if there is someB such
that (A,B ) is a complementing pair (modL), and we call any suchB a
complementof A.

In view of Theorem 1 we may rescale the tileT so that it tiles periodically
with the period latticeZ. We obtain the following structure theorem.
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Theorem 3. Suppose that the bounded region T tilesR with a periodic tiling
whose period lattice containsZ. Then it tilesR with a setT of translations of
the form:

T =
J⋃

j =1

(aj

L
+ Z

)
, (1.6)

where0 = a1 < a2 < · · · < aJ ≤ L − 1 are integers, and the setA = {aj : 1 ≤
j ≤ J} is a complementing set(mod L). If B runs over the (countable) set of
complements ofA (mod L), then there is a decomposition

T =
⋃
B

(TB + B ) (1.7)

in which only finitely many TB /= ∅, which is determined uniquely by the two
requirements that:

(i). The sets TB are all regions and have mutually disjoint interiors.
(ii). The union of all the sets TB is the interval[0, 1

L ].

Conversely, any T having such a decomposition tilesR with a periodic tile set
T of the form (1.6) above.

In particular, a setT of the form (1.6) can be a tiling set for some prototile
T if and only if A is a complementing set (modL). If A is a complementing
set then there exists such a prototileT with the property thatLT is a cluster.
Thus clusters already yield the most general tiling sets possible for translation
tilings in one dimension.

Theorem 3 reduces the classification problem to that of determining all com-
plementing pairs (A,B ) (mod L) for all L ≥ 1. Complementing pairs were first
studied in connection with factorizations of abelian groups, see Hajós [13, 14],
and de Bruijn [6]; see Tijdeman [32] for a survey and some new results. There re-
main several outstanding open questions concerning their structure. These include
the question of Hajós [13] whether all complementing pairs (A,B ) (mod L) are
quasiperiodic. A complementing pair (A,B ) is quasiperiodicif one of A or
B , sayB , can be partitioned asB =

⋃m
i =1 Bi such thatA+Bi = gi +A+B1

where the elements{gi } form an additive subgroup (modL).
Theorem 2 can also be used to prove a classification theorem for one-

dimensional self-affine tiles, which was first established by Kenyon [16, 19].
Given an integerbase bwith |b| ≥ 2 and adigit set D of |b| real digits the
attractor T := T(b,D ) is the solution of the set-valued functional equation

bT =
⋃

d∈D

(T + d),

and is explicitly given by

T(b,D ) :=

{ ∞∑
i =1

b−i di : all di ∈ D

}
. (1.8)
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We say thatT(b,D ) is a self-affine tileif its Lebesgue measure

µ(T(b,D )) > 0, (1.9)

and that it is anintegral self-affine tileif in addition D ⊆ Z. Any self-affine tile
T(b,D ) tiles R by translation. In studying such tiles, one can always reduce to
the case that 0∈ D by translating the digit set, which has the effect of translating
the tile.

Theorem 4. If T (b,D ) is a self-affine tile inR with 0 ∈ D , then there exists
λ > 0 such thatλD ⊆ Z. Consequently every self-affine tile inR is the affine
image of an integral self-affine tile.

The analogue of this theorem in higher dimensions is false, e.g. there is a
two-dimensional self-affine tileT(A,D ) which is not an affine image of any
integral self-affine tile, see Example 2.1 of Lagarias and Wang [22].

The results of Kenyon [19] concerning which real digit setsD give one-
dimensional self-affine tiles follow from Theorem 4, see Section 6.

Our motivation for characterizing one-dimensional tilings was to shed light
on the one-dimensional case of a conjecture of Fuglede [7], which concerns the
structure of spectral sets inRn. We say that a regionT in Rn is a spectral setif
there is a setS of exponentials, sayS = {eλ(x) : λ ∈ T }, where

eλ(x) := exp(2πi (λ1x1 + · · · + λnxn)),

which when restricted toT forms an orthogonal basis1 of L2(T).

Spectral set conjecture.A region T in Rn is a spectral set if and only ifT tiles
Rn by translation.

This conjecture is not settled in either direction, even in the one-dimensional
case. For bounded regionsT, Theorem 3 allows us to reduce the “if” direction of
the one-dimensional case of the conjecture to problems concerning the structure
of complementing sets. In particular we show elsewhere that a conjecture of
Tijdeman concerning complementing pairs implies that all bounded tilesT are
spectral sets.

The Spectral Set Conjecture applies also to unbounded regions, but the meth-
ods of this paper apparently do not extend to the unbounded case. For a survey
of previous work done on the spectral set conjecture see Jorgensen and Pedersen
[15].

Our results also apply to the following conjecture, which is implicitly raised
in Grünbaum and Shepard [12, p. 23].

1 That is, the set{eλ(x)χT (x) : λ ∈ T } is an orthogonal basis ofL2(T), whereχT (x) is the
characteristic function ofT.
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Periodic tiling conjecture.Any regionT that tilesRn by translation has a peri-
odic tiling.

The one-dimensional case of this conjecture follows from Theorem 1. In
Section 2 we also show that any regionT that tilesR with a monohedral tiling
also tilesR with a periodic monohedral tiling.

There are a number of partial results known concerning the Periodic Tiling
Conjecture in dimensionsn ≥ 2. Girault-Beauquier and Nivat [10] proved that
the Periodic Tiling Conjecture holds in dimension 2 whenever the regionT is
a topological disk with a sufficiently smooth boundary (piecewise-C2). Kenyon
[18] asserts that his results permit a proof of this result for all regionsT in R2

that are topological disks, with no restrictions on their boundary. Venkov [34]
proved that any convex polytopeT that tilesRn by translation has a lattice tiling.
Thus the Periodic Tiling Conjecture holds for convex polytopes. Venkov’s result
was independently rediscovered by McMullen [26].

The Periodic Tiling Conjecture depends in an essential way on translations
being the only allowed motions. There are known examples of (non-convex)
polyhedra inR3 which tile R3 by Euclidean motions, but only aperiodically
(Schmitt [29], unpublished). Recently J. H. Conway and L. Danzer constructed
a three dimensional convex polyhedron (with eight faces) which tilesR3 by
Euclidean motions, with all such tilings being aperiodic (L. Danzer [5]).

The contents of this paper are as follows. Theorems 1, 2, 3 and 4 are proved
in Sections 2, 4, 5 and 6, respectively. In Section 3 we obtain an upper bound
for the density of integer zeros of the Fourier transform of compactly supported
nonnegative functions inL2(R), when the support off has measure less than
one. This result plays an important role in the proof of Theorem 2.

Acknowledgements.We thank Palle Jorgensen for introducing us to the Spectral Set Conjecture, and
Henry Landau, Peter McMullen, Andrew Odlyzko, Bjorn Poonen and Boris Solomyak for helpful
comments and references. We also thank the anonymous referee for supplying Example 1, which
simplified our earlier example.

2. Periodicity and finiteness of tilings

The existence of periodic tilings is a general fact about one-dimensional tilings
using an arbitrary finite setS of bounded prototiles, as we show below. However
the finiteness of translation equivalence-classes of tilings for translation tilings
using one tile is a special fact that fails to generalize even to monohedral tilings,
see Example 1.

Theorem 5. Let S = {Tj : 1 ≤ j ≤ m} be a finite set of bounded regions in
R. If there is a translation tiling ofR using tiles drawn fromS , then there is a
periodic tiling ofR using tiles drawn fromS .

Proof. Since all prototiles inS are bounded, we may suppose allTj ⊆ [−N ,N ].
For any prototilesT in S , the interiorT◦ of T is a countable union of open
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intervals, and the boundary∂T := T−T◦ is some (possibly complicated) nowhere
dense set of measure zero.

A patch P is any finite set of translates of tiles inS , say

P = {T (i ) + ti : 1≤ i ≤ k, each T (i ) ∈ S },
that are nonoverlapping, i.e.

µ
(
(T (i ) + ti ) ∩ (T (j ) + tj )

)
= 0 if i /= j .

Let Ω(P ) denote the closed set covered by the patchP , i.e.

Ω(P ) :=
k⋃

i =1

(T (i ) + ti ).

A tiling of a finite intervalJ by S is a patchP that coversJ and also has
the property that every tileT (i ) + ti in P intersectsJ . A set of prototilesS
has thelocal finiteness propertyif given any closed intervalJ , there are only
finitely many ways to tileJ by translates of prototiles inS , up to translation-
equivalence.

The main step in the proof is:

Claim 1. Any finite setS of bounded prototiles that tiles the line by translation
has the local finiteness property.

To prove this claim, suppose thatJ is a closed interval and thatT + t is a tile
which intersectsJ in a set of positive measure. It suffices to show that it extends
in at most finitely many ways to a patchP that coversJ . There is some choice
of initial tile T ∈ S that extends in at least one way to coverJ , because by
hypothesisS tiles the line.

The interior of T + t must include at least one open interval (x1, x2) that
intersectsJ , and we suppose that this interval is maximal, so thatx1, x2 ∈ ∂T.
Thus forP0 := {T + t} we have

[x1, x2] ⊆ Ω(P0). (2.1)

We assert that there are only finitely many choices to place a tileT ′ + t ′ so that
x2 ∈ T ′ + t ′ and

µ
(
(T + t) ∩ (T ′ + t ′)

)
= 0.

This holds because eitherx2 is the extreme left endpoint ofT ′ + t ′, or else it is
a point ofT ′ + t ′ such thatT ′ + t ′ contains a gap of size≥ x2 − x1 to the left of
this point. SinceT ′ is bounded there can only be finitely many such gaps inT ′,
indeed at mostdN/(x2 − x1)e gaps, proving the assertion.

Now suppose thatx2 lies in the interior ofJ . Then any patchP coveringJ
that includesT + t must include another tileT ′ + t ′ that containsx2. To see this,
take a sequence of points{yi } in J lying outsideT ′ + t2, such that lim

i→∞
yi = x2.

These are covered byP , so some tileT ′ + t ′ in P contains infinitely many of
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them, so this tile contains alsox2 since it is closed. By the above argument there
are only finitely many choices forT ′ + t ′. Let P ′ denote the finite set of tiles in
the patchP that containx2. We assert that there is a valueδ

′′
> 0 such that

[x1, x2 + δ
′′

] ⊆ Ω(P ′). (2.2)

For if not, x2 would still be a boundary point ofΩ(P ′), and the argument above
shows thatP then contains another tileT

′′
+ t

′′
not in P which touchesx2,

contradicting the definition ofP ′. We also note that the value ofδ
′′

can be
chosen independent of the extensionP ′, because we can minimize it over the
finite set of possible extensionsP ′.

Thus we have shown that there are only a finite number of ways to extend
the tiling at leastδ

′′
to the right. The argument can now be repeated, since (2.2)

is the same form as (2.1), takingx′2 to be the right endpoint of the largest interval
in Ω(P ′) that contains [x1, x2 + δ

′′
]. Continuing this way, at each step we have

finitely many choices for the extension, and each step extends the tiling to the
right by at leastδ

′′
. Thus the whole process halts in at most ind|J |/δ′′e iterations.

Whenx1 lies in the interior ofJ , the same argument applies on extending the
tiling to the left. Finally there remain the two cases wherex1 ∈ ∂J or x2 ∈ ∂J .
The argument above shows there are only finitely many choices for a tileT ′ + t ′

that intersectsJ only at one or both of its endpoints. Thus Claim 1 is proved.
Now by Claim 1 there are only finitely many translation-inequivalent ways

to tile the interval [−N ,N ]. Call this numberMT . Take a translation-tilingT
of R from S and look at how it tiles theMT + 1 intervals

Jk = [−N ,N ] + 7kN, 0≤ k ≤ MT .

It covers each of these intervals with a patchRk , and the regions the patches
cover are disjoint because all tilesTj ⊆ [−N ,N ]. By the pigeonhole principle,
two such patches are translation-equivalent, say

Rk1 = Rk2 + λ, λ > 0. (2.3)

Form the patchP of tiles containingRk2 plus all tiles inT containing some
point larger thanN + 7k2N and smaller than−N + 7k1N . Then the patchP tiles
R with a periodic tiling with periodλ. Indeed condition (2.3) assures that the
ends of translates ofP fit together properly. We omit the remaining details.

Applying Theorem 5 withS = {T,TR} shows that any regionT that tiles
R with a monohedral tiling also has a periodic monohedral tiling.

Example 1.The clusterT = [0,2] ∪ [5,6] gives uncountably many monohedral
tilings that are translation-inequivalent. (These include aperiodic tilings.)

Proof. The reflected tileTR is [−6,−5] ∪ [−2,0]. The interval [0,9] can be
monohedrally tiles in two translation-inequivalent ways, namely

(T + {0,3}) ∪ (TR + {8})
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and its “reflection”
(T + {1}) ∪ (TR + {6,9}).

Now R can be tiled usingS = {T,TR} in uncountably many translation-
inequivalent ways, by tiling successive intervals of length 9 arbitrarily using
either of these two patches.

Proof of Theorem 1.Suppose thatT ⊆ [−N ,N ]. By Claim 1 of the proof of
Theorem 5, the prototileT has the local finiteness property. We supplement this
with:

Claim 2. If a patchP covers the interval [−N ,N ] and P can be extended to
a tiling of the line, then this extended tiling is unique.

To prove this claim, consider the pointx+ ≥ N which is the infimum of
all points≥ N not covered byP . Suppose that the patchP extends to some
patchP ′ that covers [−N , x+ + δ] for someδ > 0. ThenP ′ contains a new tile
T + t ′ that includes some pointsx+ + ε for every sufficiently smallε > 0. Now
the patchP completely covers the closed interval [−N , x+]; hence by measure-
disjointness ofΩ(P ) and T + t ′, and the fact that any two points inT are at
distance at most 2N apart, it follows that

T + t ′ ⊆ [x+,∞).

SinceT + t ′ is closed and contains points arbitrarily close tox+, it also contains
x+. But now x+ is the left endpoint ofT + t ′, so the translationt ′ is uniquely
specified. In particular, any extension of the patchP to a tiling of R must
include the tileT + t ′. Furthermore, the new patchP

′′
= P ∪ {T + t ′} must

cover some interval [−2N , x+ + δ
′′

] with δ
′′
> 0. To see this, suppose not, so

that x+ is still a boundary point of the setΩ(P
′′

) covered by the patchP
′′

.
If the patchP

′′
can be extended to a tiling ofR, then a new tileT + t

′′
could

be added to it that covers some points arbitrarily nearx+, and by the argument
above we must havet

′′
= t ′, which gives a contradiction because the tilesT + t ′

andT + t
′′

overlap in a set of positive measure.
Now we have extended the tiling slightly to the right, by adding a uniquely

determined tileT + t ′. We can now repeat the argument, to conclude that, if the
patchP extends to a tiling ofR, it extends in a unique manner to the interval
[x+,∞). By a similar argument, the tiling extends uniquely to the left, to cover
(−∞, x′]. Thus Claim 2 is proved.

Parts (i) and (ii) of the theorem follow easily using Claims 1 and 2. By Claim
1 there are only finitely many translation-inequivalent ways to tile the interval
[−N ,N ]. By Claim 2 each of these tilings of [−N ,N ] extends to at most one
tiling of R. Thus there are only finitely many translation-inequivalent tilings of
R by T, which is (ii).

The pigeonhole principle argument used in proving Theorem 5 shows that
any tiling T contains some patchR such that:
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(a) [−N ,N ] + t ⊆ R for somet .
(b) R and some disjoint translateR + λ both occur inT .

Consider now the tilingT −λ. It containsR, and Claim 2 applies to show that
R determines the tilingT − λ uniquely. SinceT is also a tiling containing
R, we haveT − λ = T . ThusT is periodic, which is (i).

Finally, we verify (iii). Let T be a periodic tiling set forT with period
latticeλZ. SetT =

⋃J
i =1(ri +λZ), in which caseU :=

⋃J
i =1(T + ri ) tiles R with

tile setλZ. We count the number of elementst in T such thatT + t intersects
the interval [−M ,M ] in two ways. Counted directly, it is

2M
µ(T)

+ O(1) as M →∞,

while counted in terms of tilesU that intersect [−M ,M ], it is

2MJ
λ

+ O(1) as M →∞.

Thusλ = Jµ(T), which is (iii).

Remark.Is Theorem 1 true for unbounded regions? The proof above used the
boundedness assumption in proving both Claim 1 and Claim 2.

The following example shows that translation-inequivalent tilings do occur.

Example 2.The clusterT = [0,1] ∪ [4,5] ∪ [8,9] gives several translation-
inequivalent tilings ofR.

Proof. Two tiling sets with periodλ = 12 areT1 = {0,1,2,3} + 12Z and T2 =
{0,1,2,7} + 12Z, and there are others.

3. Density bound for integer Fourier zeros

Given a functionf (t) ∈ L1(R), its Fourier transform

f̂ (λ) =
∫ ∞

−∞
f (t)e2πiλt dt (3.1)

is defined for allλ ∈ R and lies inL∞(R). We use thesupport of f ∈ L1(R) in
the sense of distributions, denoting it Supp (f ), and note that it is a closed set,
cf. Rudin [28, p. 149]. Without loss of generality we may redefine such anf on
a set of measure zero so that it vanishes outside Supp(f ). TheFourier series zero
set of f ∈ L1(R) is

Z(f ) := {n : n ∈ Z and f̂ (n) = 0}. (3.2)

Finally, theupper asymptotic densityd(V ) of a (discrete) setΛ of real numbers
is

d(Λ) := lim sup
T→∞

1
2T

#{λ : λ ∈ Λ and |λ| ≤ T}, (3.3)

We prove:
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Theorem 6. Let f (t) be a compactly supported nonnegative function in L2(R),
whose support has measure

0 < µ(Supp(f )) < 1. (3.4)

Then the Fourier series zero set Z(f ) of f has upper asymptotic density

d(Z(f )) < 1. (3.5)

Proof. Let L2
c(R) denote the linear space of compactly supported functions in

L2(R). Note thatL2
c(R) ⊆ L1(R). By the Paley-Wiener theorem the Fourier trans-

forms of functions inL2
c(R) are exactly the entire functions of exponential type

whose restrictions to the real axis are inL2(R).
We will apply two linear operators onL2

c(R) which changef but do not affect
the Fourier series zero set. The simplest of these is translation

Tyf (t) := f (t − y). (3.6)

Clearly Ty is a linear operator onL2
c(R), with

Supp(Tyf ) = Supp(f ) + y.

The Fourier series zero setVf is invariant underTy, i.e.

Z(Tyf ) = Z(f ), all y ∈ R, (3.7)

sinceT̂yf (λ) = e2πiyλ f̂ (λ), all λ ∈ R.
The second operationP, which is a projection onto functions supported on[− 1

2,
1
2

]
, takesf ∈ L2

c(R) to the compactly supported function

Pf (t) =


∑
m∈Z

f (t + m) −1/2≤ t < 1/2,

0 otherwise.

(3.8)

To see thatPf ∈ L2
c(R), we need only verify thatPf ∈ L2(R). For this, note that

if f (t) has support in [−M ,M ], then the sum definingf (t) for −1/2≤ t ≤ 1/2
is finite, whence

‖Pf (t)‖2
L2 ≤ (2M + 1)2‖f ‖2

L2.

The operatorP obviously does not change the values of the Fourier transform
at n ∈ Z, i.e.

P̂f (n) = f̂ (n) for all n ∈ Z,

hence the Fourier series zero setZ(f ) is invariant, i.e.

Z(Pf ) = Z(f ). (3.9)

Furthermore
µ(Supp(Pf )) ≤ µ(Supp(f )) < 1, (3.10)
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for if f is supported in [−M ,M ], then

Supp(Pf ) ⊆
M⋃

m=−M

{(
Supp(f ) ∩ [m− 1/2, m + 1/2

])−m
}
, (3.11)

from which (3.10) follows.
Our object is to apply the operatorsP andTy repeatedly to produce a nonzero

function h having support in an interval [− 1
2 + δ, 1

2 − δ] for someδ > 0. Since
Supp(Pf ) is a closed set of measure less than 1 in [− 1

2,
1
2], its complement in

[− 1
2,

1
2] contains an open interval, call it (x0 − δ, x0 + δ), with − 1

2 + δ ≤ x0 ≤
1
2 − δ. Now we apply the translation operatorT1/2−x0

to Pf to get a function
g := T1/2−x0

Pf with

Supp(T1/2−x0
Pf ) = Supp(Pf ) +

(
1/2− x0

)
⊆ [−x0,1− x0] ⊆ [−1/2 + δ, 3/2− δ

]
.

By construction the support ofg lies in [− 1
2,

3
2] and omits intervals of width 2δ

centered about− 1
2,

1
2 and 3

2. Now apply the operatorP again, to get the function

h := Pg = PT1/2−x0
Pf ,

which has

Supp(h) = Supp(PT1/2−x0
Pf ) ⊆ [−1/2 + δ, 1/2− δ

]
, (3.12)

using (3.11) applied tog. The invariance of Fourier series zero sets gives

Z(h) = Z(g) = Z(f ). (3.13)

Certainlyh ∈ L2
c(R), henceĥ ∈ L2(R). We next show that̂h(λ) 6≡ 0. To see

this, note that both operatorsTy and P take nonnegative functions inL2
c(R) to

nonnegative functions inL2
c(R), and∫ ∞

−∞
Tyf (t)dt =

∫ ∞

−∞
Pyf (t)dt =

∫ ∞

−∞
f (t)dt > 0

implies thatĥ(λ) 6≡ 0.
Sinceh is compactly supported, the Paley-Wiener theorem applied toh says

that its Fourier transform̂h(λ) is the restriction toR of an entire function of
exponential typeρ, and (3.12) implies that

ρ ≤ 2π
(
1/2− δ

)
. (3.14)

However it is known that entire functionsφ(λ) of exponential type having re-
stricted growth on the real axis cannot have too large a density of real zeros. Let
Nφ(R) count the number of real zeros of such a function in the interval [0,R].
Then we have:
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Proposition 1. If φ(λ) 6≡ 0 is an entire function of exponential typeρ and if its
restriction to the real axis is in L2(R), then

lim sup
R→∞

Nφ(R)
R

≤ ρ

π
. (3.15)

Proof. This appears as Theorem 5.4.1 in Logan [25], with the following proof.
The Paley-Wiener theorem states that

φ(t) =
∫ ρ

−ρ
h(t)eitλdt

whereh(t) ∈ L2([−ρ, ρ]). Now h(t) ∈ L1(R) soφ(t) ∈ L∞(R), whence∫ ∞

−∞

log+(φ(λ))
1 +λ2

dλ <∞,

where log+(|x|) = max(0, log |x|). The hypotheses of Theorem VIII of Levinson
[24] are then satisfied, and its conclusion yields (3.15). (An alternate proof can
be derived using Boas [4], Theorem 8.4.16.)

To complete the proof of Theorem 6, we note that the bound (3.15) also
applies to zeros ofφ(λ) on the negative real axis – just considerφ(−λ). Thus
Proposition 1 implies that the upper asymptotic density of all real zeros is at
mostρ/π. Now the upper asymptotic densityVh of integer zeros of̂h(λ) can be
no larger than that of all real zeros ofĥ(λ), and by Proposition 1 this is at most
ρ/π. Since (3.13) givesρ/π ≤ 1− 2δ, Theorem 6 follows.

Remarks.(1). Theorem 6 cannot be strengthened to give any quantitative upper
bound between the measure of Supp(f ) and the densityd(Z(f )). For anyε > 0
there are examples wheref is the characteristic functionχT of a tile T, having
µ(Supp(f )) < ε and neverthelessd(Z(f )) ≥ 1− ε, see Lemma 1 in Section 4.

(2). The hypothesis thatf be nonnegative cannot be removed from Theorem
6. The function

f (t) :=


1 for + 1/2≤ x ≤ 1/2 + δ,

−1 for − 1/2≤ x ≤ −1/2 + δ,

hasPf (t) ≡ 0, so thatZ(f ) = Z, andd(Z(f )) = 1.
(3). The requirement thatZ(f ) be the set ofinteger zeros is also crucial to

the statement of Theorem 6. If we study instead the set ofhalf-integer zeros

Z̃(f ) :=
{

n ∈ Z : f̂
(
n + 1

2

)
= 0
}
,

then the conclusion of Theorem 6 is no longer valid. For anyδ > 0, takef to
be the characteristic functionχS for S =

[− 1
2 − δ,− 1

2 + δ
]∪ [ 1

2 − δ, 1
2 + δ

]
, with

µ(Supp(f )) = 4δ. Then

f̂ (λ) =
2
πλ

sin(2πλδ) cos(πλ),

which vanishes on the entire set1
2 + Z, so thatZ̃(f ) = Z.
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4. Rationality of translates

We now prove the rationality of translates in tiling ofR by translates of a bounded
regionT. Theorem 6 plays an important role in this proof.

Proof of Theorem 2.Without loss of generality we may take the period lattice
of T to be Z, by rescalingT and T to 1

λT and 1
λT , respectively. We are

now given a bounded regionT that tilesR with a tiling setT which hasZ as
a period, so that

T :=
J⋃

j =1

(rj + Z). (4.1)

Our object is to show that allri − rj ∈ Q. Set

R := {rj : 1≤ j ≤ J}
and define the new region

U :=
J⋃

j =1

(T + rj ) (4.2)

The hypotheses show that the regionU tiles R with the lattice tilingZ. Now U
is a bounded region, so it must be a fundamental domain forR/Z (up to a set of
measure 0), henceµ(U ) = 1. (The measure-disjointness of the union (4.2) then
implies thatµ(T) = 1

J .)
We use the Fourier transforms of the characteristic functionχT (t) of T and

of the measure
δR(t) :=

∑
r∈R

δr (t), (4.3)

whereδr (t) := δ(t − r ) is a δ-function centered atr . These are

χ̂T (λ) =
∫

T
exp(2πitλ)dt, λ ∈ C, (4.4)

and
δ̂R(λ) =

∑
r∈R

exp(2πir λ), λ ∈ C, (4.5)

respectively. Then the characteristic functionχU of U has Fourier transform

χ̂U (λ) =
∫

U
exp(2πitλ)dt

=
m∑

i =1

∫
T+ri

exp(2πitλ)dt

= δ̂R(λ)χ̂T (λ), λ ∈ C. (4.6)
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SinceU tiles R with tiling set Z, we have

χ̂U (n) =

{
1 if n = 0 ,
0 if n ∈ Z \ {0}. (4.7)

becauseU ≡ [0,1] (mod 1), aside from a set of measure zero.
In terms of the Fourier series zero setsZ(δR) and Z(χT ), (4.6) and (4.7)

combine to give
Z(δR) ∪ Z(χT ) = Z \ {0}. (4.8)

By making a translation ofT we may reduce to the case thatr1 = 0 without
loss of generality. The theorem then reduces to proving that

R ⊆ Q. (4.9)

We begin by partitioningR into nonempty equivalence classes moduloQ.
Call the resulting partition

R =
K⋃

k=1

R∗
k ,

where r − r ′ ∈ Q if r , r ′ ∈ R∗
k , and r − r ′ 6∈ Q if r ∈ R∗

k1
, r ′ ∈ R∗

k2
with

k1 /= k2. We thus have a decomposition

R∗
k = r̃k + C ∗

k with C ∗
k ⊆ Q, 1≤ k ≤ K ,

where each ˜rk ∈ R. Define N to be the least common denominator for this
decomposition, i.e.

N := min

{
M ∈ Z+ : M

(
K⋃

k=1

C ∗
k

)
⊆ Z

}
. (4.10)

Next, for eachC ∗
k , set

f ∗k (λ) =
∑

c∈C ∗
k

exp(2πicλ), 1≤ k ≤ K . (4.11)

If f ∗k (n) = 0 for n ∈ Z then

f ∗k (n + Nm) = 0, all m ∈ Z, (4.12)

becauseN is a common denominator for all elements ofC ∗
k .

We define thecommon integer zero set Xof the f ∗k by

X := {n ∈ Z : f ∗k (n) = 0 for 1≤ k ≤ K}. (4.13)

Sinceδ̂R(λ) =
∑K

k=1 f ∗k (λ), we haveX ⊆ Z(δR). (4.13) shows thatX is a union
of arithmetic progressions (modN ), and certainly 06∈ X because 06∈ Z(δR).

Claim. The Fourier series zero set has a partition

Z(δR) = X ∪ Y ,

in which X is the common integer zero set andY is a set of density zero, i.e.

d(Y) = 0. (4.14)

In fact, Y is a finite set.
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Proof of Claim. We define

Y := Z(δR) \ X, (4.15)

so that{X,Y} is a partition ofZ(δ̂R). We must show thatd(Y) = 0.
We now prove thatY contains no arithmetic progression of lengthJ ≥ |R|.

We argue by contradiction. Suppose that it contains one of lengthJ = |R|, call
it

s, s + d, s + 2d, . . . , s + (J − 1)d.

Now

δ̂R(s + ld ) :=
J∑

j =1

exp(2πir j (s + ld )) = 0, 0≤ l ≤ J − 1. (4.16)

Define an equivalence relation on the elements of the setR by

r ≈ r ′⇐⇒ exp(2πird ) = exp(2πir ′d).

This relation≈ induces a partition ofR into nonempty equivalence classes, call
it

R =
L⋃

l =1

R̃l ,

and setzl = exp(2πird ) for somer ∈ R̃l . We have

δ̂R̃l
(λ) :=

∑
r∈R̃l

exp(2πir λ), 1≤ l ≤ L,

and (4.16) yields

δ̂R(s + md) =
L∑

l =1

zm
l δ̂R̃l

(s) = 0, 1≤ m ≤ J − 1.

This is a linear system with unknownsxl = δ̂R̃l
(s). It is coefficients for 1≤ m ≤

J − 1 form a Vandermonde matrix with distinctzl , hence

δ̂R̃l
(s) = 0 for 1≤ l ≤ L. (4.17)

We next assert that the partition{R̃l : 1 ≤ l ≤ L} refines the partition
{R∗

k : 1≤ k ≤ K}. For r ≈ r ′ implies that exp(2πi (r − r ′)d) = 1, which since
d ∈ Z \ {0} gives r − r ′ ∈ Q, so r and r ′ are in the sameQ-equivalence class,
as asserted. In consequence,

δ̂R∗
k
(s) =

∑
r∈R∗

k

exp(2πirs)

=
∑

R̃l⊆R∗
k

δ̂R̃l
(s) = 0, 1≤ k ≤ K .
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By definition of X this makess ∈ X so s ∈ X ∩ Y /= ∅, a contradiction.
To complete the proof of the claim, suppose thatd(Y) > 0. We apply Sze-

meredi’s theorem asserting that ifY ⊆ Z+ has d(Y) > 0 then Y contains
arbitrarily long arithmetic progressions, cf. Szemeredi [31], Furstenberg [8, 9].
This contradictsY containing no arithmetic progression of length|R|.

An alternative argument uses the Skolem-Mahler-Lech theorem, and yields
the stronger result thatY is a finite set. The Skolem-Mahler-Lech theorem states
that the integer zero set of an exponential polynomial is a finite union of complete
arithmetic progressions plus a finite set, cf. Lech [23], van der Poorten [33]. In
particularZ(δR) and X both have this structure, from which it follows thatY
differs from a finite union of complete arithmetic progressions on a finite set. So
if Y were infinite then it would contain arbitrarily long arithmetic progressions,
which gives the same contradiction.

To continue the proof of Theorem 2, introduce the regions

Uk :=
⋃

r∈R∗
k

(T + r ), 1≤ k ≤ K . (4.18)

A calculation identical to (4.6) gives

χ̂Uk (λ) = δ̂Rk (λ)χ̂T (λ), λ ∈ C, (4.19)

which implies that
Z(χUk ) = Z(δR∗

k
) ∪ Z(χT ). (4.20)

The definition (4.13) ofX guarantees that

X ⊆ Z(δR∗
k
) for 1≤ k ≤ K , (4.21)

whence

Z \ {0} = Z(δR) ∪ Z(χT ) = X ∪ Y ∪ Z(χT )

⊆ Y ∪ Z(δR∗
k
) ∪ Z(χT ).

The claim states thatd(Y) = 0, so this yields

d(Z(χUk )) = d(Z(χR∗
k
) ∪ Z(χT )) ≥ 1. (4.22)

If it were true thatµ(Uk) < 1, then Theorem 6 would give

d(Z(χUk )) < 1,

contradicting (4.22). Thusµ(Uk) = 1, which means thatRk = R so k = K = 1,
and, since 0∈ R, we haveR ⊆ Q.

We now show that Theorem 6 cannot be improved, using some particular
regionsT that tile R.



358 J.C. Lagarias, Y. Wang

Lemma 1. For any ε > 0 there exists a region T in[0,1] which has measure
µ(T) < ε and which tilesR with a periodic tiling whose period lattice contains
Z, yet whose characteristic functionχT has Fourier series zero set satisfying

d(Z(χT )) ≥ 1− ε.

Proof. For anyN ≥ 1 take

T =

[
0,

1
N 2

]
+

1
N 2

A

whereA = {0,N ,2N , . . . , (N − 1)N}, so that

µ(T) =
1
N
. (4.23)

If B = {0,1, . . . ,N − 1} thenA + B + N 2Z = Z, henceT tiles R with tile set

T =
1

N 2
B + Z.

Taking R = 1
N 2 B , the functionδR has Fourier transform

δ̂R(λ) =
N−1∑
j =0

exp

(
2πij λ

N 2

)
=

1− exp
(

2πiλ
N

)
1− exp

(
2πiλ

N 2

) ,
hence it has Fourier series zero set

Z(δR) := {N ,2N , . . . , (N − 1)N} + N 2Z.

Thus

d(Z(δR)) =
N − 1

N 2
,

and (4.8) now implies that

d(Z(χT )) ≥ d(Z(χT )) ≥ N 2 − N + 1
N 2

≥ 1− 1
N
, (4.24)

from which the lemma follows on choosingN large enough.

5. Structure theorem for tiles

We classify the structure of bounded regionsT that tileR, using Theorem 2. We
let T1 ' T2 mean thatT1 andT2 differ on a set of measure zero.
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Proof of Theorem 3.We are given thatT tiles R with a periodic tilingT whose
period lattice containsZ. Without loss of generality we may suppose that 0∈ T ,
by translating the tile set. TheZ-periodicity of T yields

T =
J⋃

j =1

(rj + Z), 0≤ rj < 1, (5.1)

and we may suppose thatr1 = 0. By Theorem 2 allrj = rj − r1 are rational.
Taking L to be their common denominator, we setrj = aj

L , and thenT is of the
form (1.6).

Now set
A = {ai : 1≤ i ≤ J}

and, for eacht ∈ [0, 1
L ), define the set of integers

B (t) :=
{

j ∈ Z : t +
j
L
∈ T

}
. (5.2)

SinceT is bounded, sayT ⊆ [−N ,N ], there are only finitely many possibilities
for the setB (t), i.e. B (t) lies in SN := {all subsets of [−LN ,LN ] ∩ Z}. For
each set of integersB ∈ SN , we let

T∗B := {t : B (t) = B }.
By discarding setsB with µ(T∗B ) = 0, we have

T '
⋃

µ(T∗
B )>0

(T∗B + B ). (5.3)

Furthermore, we have [
0,

1
L

]
'

⋃
µ(T∗

B )>0

T∗B . (5.4)

This will turn out to be the required decomposition (1.7), after replacing each of
the setsT∗B by its closureT∗B .

We assert that for eachB with µ(T∗B ) > 0, the pair (A,B ) is a comple-
menting pair (modL). To show this, look at the tiling restricted to the subset

SB := T∗B +
1
L

Z

of R. Now SB is tiled (up to a measure zero set) by the tiles

UB := T∗B +
1
L

B ' T ∩ SB ,

using the tile setT . Thus

T∗B +
1
L

Z '
(

T∗B +
1
L

B
)

+

(
1
L

A + Z

)
'

(
T∗B +

1
L

(A + B )

)
+ Z.



360 J.C. Lagarias, Y. Wang

SinceT∗B ⊆ [0, 1
L

]
has positive measure, this forces

1
L

Z =
1
L

(A + B ) + Z (5.5)

viewed as setswith multiplicity, which requires that (A,B ) be a complementing
pair (modL), proving the assertion. It follows thatA is a complementing set
(mod L), and also that

|B | =
L
|A| when µ(T∗B ) > 0. (5.6)

Now, for eachB with µ(T∗B ) > 0, we set

TB := T∗B ,

and proceed to show that these sets satisfy (1.7) with properties (i) and (ii).
We first observe that[

0,
1
L

]
=

⋃
µ(T∗

B )>0

T∗B =
⋃

µ(T∗
B )>0

T∗B (5.7)

is a direct consequence of (5.4), so (ii) holds.
To continue the proof, we study the points inT∗B \ T∗B .

Claim. The set
X :=

⋃
µ(T∗

B )>0

(T∗B \ T∗B ) (5.8)

is a closed set of measure zero and is given by

X =
⋃

µ(T∗
B )=0

T∗B . (5.9)

Proof. We proceed in three steps. First observe that

|B (t)| ≥ L
|A| for all t ∈

[
0,

1
L

)
. (5.10)

Indeed sinceT coversR using the tiling setT , it follows that the discrete set
t + 1

L Z must be completely covered by the discrete set

t +
1
L

B (t) + T = t +
1
L

(A + B (t)) + Z.

This requires thatA + B (t) = Z as sets (not counting multiplicity), which
implies (5.10).

Second, consider for any setB a limit point t∗ ∈ T∗B \ T∗B . We have

B ⊆ B (t∗), (5.11)
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for if we take a sequence{tj } ⊆ T∗B with tj → t∗, then tj + B ⊆ T and
tj + B → t∗ + B , hencet∗ + B ⊆ T sinceT is closed, and (5.11) follows.
HoweverB (t∗) /= B sincet∗ 6∈ T∗B so that

|B (t∗)| > |B |. (5.12)

If µ(T∗B ) > 0 then (5.6) implies thatµ(T∗B (t∗)) = 0. This shows that

X ⊆
⋃

µ(T∗
B )=0

T∗B , (5.13)

henceµ(X) = 0. Next, every pointt∗ ∈ T∗B with µ(T∗B ) = 0 hast∗ ∈ [0, 1
L

]
, and

(5.7) shows that it arises as a member of someT∗B , hence the inclusion (5.13)
is an equality and (5.9) holds.

Third, we show thatX is a closed set. Any limit pointt∗ of X is a limit point
of someT∗B with |B | > L

|A| , and (5.11) applies, so that|B (t∗)| ≥ |B | > t
|A|

henceµ(T∗B (t∗)) = 0 andt∗ ∈ X. The claim follows.

Now form the set
T̃◦ := Int(T) \ X,

which is an open set withµ(T̃◦) = µ(T) becauseT is a region andX is closed
and of measure zero. Now the claim gives

T̃◦ ⊆
⋃

µ(T∗
B )>0

(T∗B + B ). (5.14)

SinceT is a region, every point inT is a limit point of Int(T), hence is still a
limit point of T̃◦, becauseX is in the limit set ofT̃◦.

We next show that ifµ(T∗B ) > 0 then each̃T◦ ∩ (T∗B + B ) is an open set.
This follows from (5.14) because the setsT∗B + B are disjoint and no point in
any one of them is a limit point of any other, by (5.12). Thus

T̃◦ ∩ T∗B ⊆ Int(T∗B + B ). (5.15)

We now have

µ(T) ≥
∑

µ(T∗
B )>0

µ(Int(T∗B ))

≥
∑

µ(T∗
B )>0

µ(T̃◦ ∩ (T∗B + B ))

= µ(T̃◦) = µ(T).

and this gives
µ(Int(T∗B ) + B ) = µ(T∗B + B ). (5.16)

Intersecting with
(
0, 1

L

)
, we get
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µ(Int(T∗B )) = µ(T∗B ). (5.17)

Furthermore (5.14) yields that every point ofT is a limit point of some Int(T∗B +
B ), hence

T =
⋃

µ(T∗
B )>0

(T∗B + B ),

which verifies (1.7).
Finally, since limit points in the open interval

(
0, 1

L

)
can only arise fromT∗B

itself,
T∗B = Int(T∗B ).

ThusT∗B is a region, and (i) is verified.
We have proved existence of a decomposition (1.7), and it remains to prove

uniqueness. So let̃TB be another choice. We use the fact that a regionU is
uniquely determined by its interior Int(U ). The interior disjointness and covering
properties (i) and (ii) guarantee that

T̃◦ ∩
(

0,
1
L

)
∩ T∗B ⊆ T̃B .

By earlier arguments, the closure of the left side isT∗B so T∗B ⊆ T̃B , whence

Int(T∗B ) ⊆ Int(T̃B ).

But µ(Int(T̃B )) ≤ µ(Int(T∗B )), for if it were larger it would intersect the interior
of some otherT∗B ′ , because the sets Int(T∗B ) have full measure in [0, 1

L ] by (5.7)
and (5.17), hence it would intersect Int(T̃B ′ ), contradicting property (i). Thus

µ(Int(T̃B )) = µ(Int(T∗B )).

Now Int(T∗B ) = Int(T̃B ), so T∗B = T̃B , verifying uniqueness.

6. One-dimensional self-affine tiles

We show that all one-dimensional self-affine tiles are affine images of integral
self-affine tiles. An easier proof of this result can be obtained along the lines of
Kenyon [19], Lemma 4.

Proof of Theorem 4.Suppose first that 0∈ D . It is well-known that self-affine
tiles T(b,D ) tile Rn by a translation tilingT , cf. Theorem 2 of Lagarias and
Wang [22]. That proof showed moreover that if 0∈ D and if one sets

Db,k =


k−1∑
j =0

bj dj : all dj ∈ D
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then there is one such tilingT which for somek ≥ 1 has

Db,k − d∗ ⊆ T , d∗ ∈ Db,k .

In particular for eachd ∈ D there are two tiles in this tilingT translated from
each other byd. Now Theorem 6 shows that every suchd = d − 0 is a rational
multiple of the minimal periodλ of the tiling T . If m ∈ Z is the least common
denominator of all the rationals

{
d
λ : d ∈ D

}
then

m
λ

D ⊆ Z, (6.1)

which is the second part of the theorem.
To complete the proof by an affine transformation we reduce the general case

to the case that 0∈ D . To do this we use

T(b, tD ) = tT(b,D ), (6.2)

and
T(b,D − t) = T(b,D )− t∗ (6.3)

with t∗ =
∑∞

j =1 b−j t = bt
t−1.

Theorem 4 has immediate consequences concerning digit sets for positional
number systems, extending those of Kenyon [19].

Theorem 7. (i). Given an integer base b with|b| ≥ 2 and a digit setD =
{0,1, x2, . . . , x|b|−1} with all xi ∈ R then a necessary condition forµ(T(b,D )) >
0 is that all xi ∈ Q.

(ii). Suppose further that|b| = p is prime. Thenµ(T(b,D )) > 0 if and only
if there are integers{mi : 1≤ i ≤ p− 1} such that

xi =
mi

m1
with g.c.d.(m1,m2, . . . ,mp−1) = 1,

and{0,m1,m2, . . . ,mp−1} is a complete residue system(mod p).

Proof. (i). This follows from Theorem 4.
(ii). Certainly µ(T(b,D )) > 0 if and only if µ(T(b,m1D )) > 0, where

m1D = {0,m1,m2, . . . ,mp−1}. Now apply Theorem 4.1 of Lagarias and Wang
[21].

Appendix. Tilings of R by compact sets

We reduce the study of compact sets that tileR by translation to the case of
regions that tileR by translation.

Lemma A.1. Let T be a compact set of positive measure that tilesR with a
measure-disjoint tiling using the tile setT . If T ′ is the closure of the interior of
T thenµ(T \ T ′) = 0, and T′ tiles R using the same tile setT .
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Proof. Since the setT is measurable withµ(T) > 0, the tile set must be uniformly
discrete, i.e. there exists anε > 0 such that|t − t ′| > ε for distinct t , t ′ ∈ T ,
for µ

(
(T + t) ∩ (T + t ′)

)
> 0 whenever|t − t ′| is sufficiently small.

Let T ⊆ T ′ be the closure of the interior ofT. We assert that the setE = T\T ′

hasµ(E) = 0. By translation if necessary, we may assume that 0∈ T . Let
T ⊆ [−M ,M ] and consider the finite setS := {t ∈ T : |t | ≤ 3M , t /= 0}.
These tilesT + t with t ∈ S are the only ones that can possibly intersect the tile
T. If x ∈ T \ T ′ then it can be approximated asx = limi→∞ xi with all xi 6∈ T.
Hence infinitely manyxi lie in some fixedT + t∗ for somet∗ ∈ S . We have
x ∈ T + t∗, sinceT is closed. Thus

E ⊆
⋃

t∈S

(T + t) ∩ T,

and
µ(E) ≤

∑
t∈S

µ
(
(T + t) ∩ T

)
= 0,

using (1.3).
Now T ′ is a region, and it has the same measure asT. SinceT is discrete,

the setR \⋃t∈S (T + t) is an open set, and it has zero measure; hence it must
be empty, proving thatT ′ tiles R with the tile setT .
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