ON THE STRUCTURES OF GENERATING ITERATED FUNCTION
SYSTEMS OF CANTOR SETS

DE-JUN FENG AND YANG WANG

ABSTRACT. A generating IFS of a Cantor set F' is an IFS whose attractor is F'. For a
given Cantor set such as the middle-3rd Cantor set we consider the set of its generating
IFSs. We examine the existence of a minimal generating IF'S, i.e., every other generating
IFS of F' is an iterating of that IFS. We also study the structures of the semi-group
of homogeneous generating [FSs of a Cantor set F' in R under the open set condition
(OSC). If dimy F < 1 we prove that all generating IFSs of the set must have logarithmic
commensurable contraction factors. From this Logarithmic Commensurability Theorem
we derive a structure theorem for the semi-group of homogeneous generating IFSs of F
under the OSC. We also examine the impact of geometry on the structures of the semi-
groups. Several examples will be given to illustrate the difficulty of the problem we study.

1. INTRODUCTION

In this paper, a family of maps ® = {¢; ;VZI in R? is called an iterated function system
(written as IFS for brevity) if for each j, ¢;(x) = p;jRj(x) + a; where p; € R with 0 <
lp;| < 1, R; is an orthogonal matrix and a; € R%. According to Hutchinsin [11], there is
a unique non-empty compact F = Fp € R?, which is called the attractor of ®, such that

F=U¥L ¢;(F).
It is well known that the standard middle-third Cantor set C' is the attractor of the IF'S
{d0, ¢1} where
2

(1.1) $o(z) = %l’a ¢1(x) = %x +t3

A natural question is: Is it possible to express C' as the attractor of another IFS?

Surprisingly, the general question whether the attractor of an IFS can be expressed as the

attractor of another IFS, which seems a rather fundamental question in fractal geometry, has
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hardly been studied, even for some of the best known Cantor sets such as the middle-third
Cantor set.

A closer look at this question reveals that it is not as straightforward as it may appear.
It is easy to see that for any given IFS {¢; };VZI one can always iterate it to obtain another
IFS with identical attractor. For example, the middle-third Cantor set C' satisfies

C = ¢o(C)Upi(C)
= ¢0 0 ¢o(C) U oo ¢1(C)U¢r1(C)
= ¢00¢o(C) U o ¢1(C)U 10 ¢o(C)U 1o ¢1(C).
Hence C is also the attractor of the IFS {¢g o ¢g, ¢o © ¢1,¢1} and the IFS {pg o ¢g, Pg ©
¢1,01 0 dg, P1 © P1}, as well as infinitely many other iterations of the original IFS {¢g, ¢1}.

The complexity doesn’t just stop here. Since C' is centrally symmetric, C = —C + 1, we

C= (—%C+%) U <—%C+1>.

Thus C is also the attractor of the IFS {—2z + £, —1x + 1}, or even {—2z + 1 fo + 2}

also have

Definition 1.1. Let ® = {¢;}Y, and ¥ = {¢; jj‘/il be two IFSs. We say that ¥ is derived
from @ if for each 1 < j < M, 9; = ¢, o--- 0 ¢;, for some 1 <iy,...,43; < N. We say that
U is an iteration of ® if ¥ is derived from ®, and it has the same attractor as ®. Let F be
a compact set in R%. A generating IFS of F is an IFS ® whose attractor is F. A generating
IFS family of F is a set Z of generating IFSs of F. A generating IFS family 7 of I is said

to have a minimal element &g € T if every W € 7 is an iteration of ®.

Example 1.1. In this example consider the question raised by Mattila: Is it true that any
self-similar subset F' of the middle-third Cantor set C' is trivial, in the sense that I’ has a
generating IFS that is derived from the generating IFS {¢g, ¢1} of C given in (1.1)?

We give a negative answer here by constructing a counterexample. For now, let & =
{%x, %(1‘ + 2%), %(1‘ + 3—26)} Then by looking at the ternary expansion of the elements in Fg
it is easy to see that Fp C C. But clearly ® cannot be derived from the original TF'S given
in (1.1).

The objective of this paper is to study the existence of a minimal IFS in a generating
IFS family of a self-similar set /' C R. To see the complexity of this problem, we first give

the following example.
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Example 1.2. Let F be the attractor of the IFS ® = {t(z +a) : a € A} where A =
{0,1,5,6}. Let Gp denotes the set of all generating IFSs of F. We claim that Gr does not

contain a minimal element.

To see the claim, note that any ¢ in a generating IFS of F' must map either to the left or
to the right part of F', because the hole in the middle (having length diam(F")/2 ) would be
too large for a subset of F' to be similar to F. Thus ¢ must have contraction factor < 1/4.
Assume that Gr contains a minimal element ®(, towards a contradiction. Then ®¢ = P,
because each map in ® (with contraction factors > 1/16) cannot be a composition of two
maps in ®g. However we can find another generating IFS of I’ given by

R . r+1 z+1/2 z+15 416 z+5 =+6
“ 100" 100’ 10 7 100 7 100 * 10 7 10 ’

which can not be derived from ®( since the map xﬁ)/ 2 is not the composition of elements

in ®q. It leads to a contradiction. To see that W is a generating IFS of F, one can check

that I satisfies the following relation:
F+{0,1,5,6} F+{0,1,5,6,10,11,15,16} U F+{5,6}

F =
10 100 10

~ F+{0,1,15,16} U F+1/2 U F +1{5,6}

- 100 10 10 '

Naturally, one cannot expect the existence of a minimal IFS in a generating IFS family
Z of a set F to be the general rule — not without first imposing restrictions on Z and
F. But what are these restrictions? A basic restriction is the open set condition (OSC).
Without the OSC either the existence of a minimal IFS is hopeless, or the problem appears
rather intractable. But even with the OSC a compact set may have generating IFSs that
superficially seem to bear little relation to one another. One such example is the unit
interval F' = [0,1]. It is evident that other restrictions will be needed. We study this issue
in this paper.

While the questions we study in the paper appear to be rather fundamental questions of
fractal geometry in themselves, our study is also motivated by several questions in related
areas. One of the well known questions in tiling is whether there exists a 2-reptile that is
also a 3-reptile in the plane ([5]). Another question comes from the application of fractal
geometry to image compression, see Barnsley [2], Lu [14] and Deliu, Geronimo and Shon-
kwiler [7]. In this application, finding a generating IF'S of a given set plays the central role,

and naturally, better compressions are achieved by choosing a minimal generating IFS. The
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other question concerns the symmetry of a self-similar set such as the Sierpinski Gasket,
see e.g. Bandt and Retta [4], Falconer and O’Conner [10] and Strichartz [19].

For any IFS ® we shall use Fp to denote its attractor. We call an IFS ® = {p;z + aj}é-vzl
homogeneous if all contraction factors p; are identical. In this case we use pg to denote
the homogeneous contraction factor. We call ® positive if all p; > 0. A fundamental
result concerning the structures of generating IFSs of a self-similar set is the Logarithmic
Commensurability Theorem stated below. It is the foundation of many of our results in

this paper.

Theorem 1.1 (The Logarithmic Commensurability Theorem). Let F' be the attrac-
tor of a homogeneous IFS ® = {¢; = px + t;}, in R? satisfying the OSC. Suppose that
dimpg F = s < 1. Let ¢(x) = Ax + d such that Y(E) C F for some Borel subset E of F
with positive s-dimensional Hausdorff measure, i.e., H*(E) > 0. Then log |A|/log |pa| € Q,

that means |\| = r* and |p| = ™ for some r > 0 and positive integers k, m.

Note that the set of all homogeneous generating IFSs of a self-similar set F' forms a semi-
group. Let ® = {¢;}¥, and ¥ = {wj}jj‘/il be two generating IFSs of F. We may define
QoW by Pol = {p;09;: 1<i<N, 1< j< M} Then clearly ® oV is also a generating
IFS of F.

Definition 1.2. Let F be any compact set in R?. We shall use Ir to denote the set of
all homogeneous generating IFSs of form {px + ai}ij\il in R® of F satisfying the OSC,
augmented by the “identity” Id = {id(z) := z}. We shall use I}, to denote the set of all
positive homogeneous generating IFSs of F' in I, augmented by the identity Id.

We augment the Identity into Zr and I;S so that they are not empty. Clearly both Zr and
IZE, equipped with the composition as product, are semi-groups. If F' is not the attractor
of a homogeneous IFS with OSC then Zp is trivial. The Logarithmic Commensurability

Theorem leads to the following structure theorem for Zp and I}':

Theorem 1.2. Let F be a compact set in R? with dimyg F < 1. Then Both Ip and
IZE are finitely generated Abelian semi-groups. Furthermore assume that there exists a
o = {¢i},~]\;1 € Ir such that ® # Id and N is not a power of another positive integer. Then

the following two statements hold.
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(i) If ps > 0 then ® is the minimal element for I;f, namely IZE =< & >={d™: m >
0}. If ps < O then either Z;E has a minimal element, or I;E =< ®2, U > for some
U with py = p§ where ¢ € N is odd and U2 = §2a,

(ii) Bither Ip =< ® > or Ip =< ®,¥ > for some ¥ with py = —pg where ¢ € N and
U2 = o2,

Definition 1.3. Let ¢ = {gbj};-vzl be an IFS in R. We say ® satisfies the separation
condition (SC) if ¢;(Fa) N ¢;(Fp) = 0 for all ¢ # j. We say ® satisfies the convezr open set
condition (COSC) if ® satisfies the OSC with a convex open set.

The following is another main theorem in this paper:

Theorem 1.3. Let F' C R be a compact set with dimg F' < 1 such that F' is the attractor
of a homogeneous IFS satisfying the COSC. Let ® be any generating homogeneous IFS of
F with the OSC. Then ® also satisfies the COSC. Furthermore we have:

(i) The semi-group I} has a minimal element ®q, namely T;; =< ®g >.
(ii) Suppose that F' is not symmetric. Then I has a minimal element Oy, Tp =< $y >.
(iii) Suppose that F is symmetric. Then there exist & and ®_ in Irp with pe, =
—po_ > 0 such that every ¥ € Ip can be expressed as ¥ = ®T if pg > 0 and
VU =>&Tod_ if py <0 for some m > 0.

In the following we give an example to show that the condition COSC in Theorem 1.3

cannot be replaced with the SC.

Example 1.3. Let F' be the attractor of the IFS ® = {:=(z +a) : a € A} where A =
{0,1,64,65}. It is not difficult to check that ® satisfies the SC but does not satisfy the
COSC. We prove that I;S does not contain a minimal element by contradiction. Assume
this is not true. Let ®g = {pz + ¢;}¥; be the minimal element of Z;;. By the dimension
formula and Theorem 1.1, log p/log 16~ = log N/log4 € Q. Therefore N = 2 and p = %
or N=4and p = %. But it is easy to check that if NV = 2 then the IFS &y must satisfy
the COSC, but ® does not, a contradiction to Theorem 1.3. Hence we must have N = 4
and hence ®; = ® by Proposition 2.1. Now let ¥ = {4 (z +b) : a € B} where ¢ = 64
and B = {0,1,16,17,256,257,272,273}. One can check directly B + ¢B = A + pA + p*A.
Thus W2 = &3, which implies ¥ € Zr. However ¥ is not derived from ®, which leads to a

contradiction. Hence I}' does not contain a minimal element.
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We organize the paper as follows. Due to the technical nature of the proof of the Logarith-
mic Commensurability Theorem we shall postpone it until §3. In §2 we prove Theorem 1.2
and Theorem 1.3. In §4 we determine all the generating IFSs for the standard middle-third

Cantor set.

The authors wish to thank Zhiying Wen and Jun Kigami for helpful comments.

2. STRUCTURES OF THE SEMI-GROUPS AND THE CONVEX OPEN SET CONDITION

In this section we prove Theorem 1.2 and Theorem 1.3, and examine the impact of
geometry to the structures of the semi-groups Zp and I}'. We first give two essential

propositions.

Proposition 2.1. Let ® = {¢;(7) := pRx +a;}Y, and ¥ = {¢;(x) := pr—i—bj}inl be two
homogeneous IFSs in R¢ satisfying the OSC, where R is an orthogonal matriz. If Fp = Fy,
then ® = .

Proof. Denote F' = Fg = Fy. It is easy to see N = M by comparing the Hausdorff dimen-
sion of Fp and Fy. Let v be the normalized s-dimensional Hausdorfl measure restricted to
F, where s = dimg F, ie. v = H%(F)HS. It is well known that v is the self-similar measure

defined by ® ( as well as ¥) with equal weights, i.e.

NZI/oqb_ NZyoqp !

Now taking the Fourier transform of v and applying the self-similarity yield

D) = A(E)V(pR™'€) = B(€)U(pR™'€)

where A(&) = NZ e?™5¢ and B(€) = %Z;\le e i€ Since v(pR™1€) # 0 on a
neighborhood V' of 0, A(f) = B(§) on V. It implies {a;} = {b;}, proving the lemma. |

Proposition 2.2. Let ® = {¢;(z) := pRr +a;}Y, and ¥ = {¢;(x) := A\Sx + b; }M be two
homogeneous IFSs in R? satisfying the OSC, where R, S are two orthogonal matrices. Then
Fo =Fyg if oW =Wod. Conversely, if RS = SR and Fg = Fyg, then oV = Vo d,

Proof. Suppose that ® o W = W o ® then ® o U = U™ o ® for any m € N. Therefore
OoU™(Fy) = V"o d(Fy). But V" (F) — Fy as m—oc in the Hausdorff metric for any
compact set E. Taking limit we obtain ®(Fy) = Fy. Therefore Fg = Fy.
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Conversely, if Fg = Fy and RS = SR, then both ® o ¥ and ¥ o ® are generating IFSs
of F' with the identical linear part, and both satisfy the OSC. Hence ® o ¥ = ¥ o & by
Proposition 2.1. [ |

Proof of Theorem 1.2. By Proposition 2.2, Zr is Abelian, and so is I;E. To see that
Ir and IZE are finitely generated, we assume that Zp is non-trivial and fix an arbitrary
I = {y M, € Ir with I # Id. Write M = L™ where L is not a power of another positive

integer. Denote p = ]pp]%.

Suppose that ¥ = {¢; 3]:1 € Ir and ¥ # Id. Then the dimension formula M = |pp|~*
and J = |py|™® where s = dimy F' implies that log M/logJ = log|pr|/|pw| € Q, by

Theorem 1.1. Tt follows that J = L™ and py = +|pr|n» = £p™ for some m € N.

Define PT = {m: p™ = py for some ¥ € Zp} and P~ = {m: p™ = —py for some ¥ €
Zr}. We will show that Z;E is finitely generated. Set a = ged(P™T). Let ¥q,..., ¥, € Ip with
pw, = p™ such that gcd(mq,ms,...,my) = a. By a standard result in elementary number
theory every sufficiently large integer ma > Ny can be expressed as ma = Z;LZI pjm; with
pj = 0. Thus every ¥ € IZE with pgy = p™?, ma > Ny, can be expressed as ¥ = H?:ﬁl’?j
since the two IFSs have the same contraction factor. Let {U,i,..., Ui} C I;E consist of
all elements ¥ € I;E with pg > p™o that are not already in {¥y,...,¥,}. Then 7, =<
WUy, Wy, ..., Uy >, and it is finitely generated. The proof that Tr is finitely generated is

virtually identical, and we omit it.

Now we turn to the proof of (i). Assume that ® = {¢;}}¥, € I such that ® # Id
and N is not a power of another positive integer. Let ¥ = {1; 3]:1 € I}' with W #£ Id.
Since N is not a power of another integer and |ps|/py € Q, we have J = N™ for some
m, which implies that py = |pa|™. If pg > 0 then ¥ = ®™ via Proposition 2.1 because
they have the same contraction factor. Thus I;S =< ® >. Suppose that ps < 0. We have
two cases: Either every ¥ € Z}' has py = ]pq>\2m/ for some m’, or there exists a ¥ € I}'
with pgy = |pa|™ for some odd m. In the first case every ¥ € 7;. has ¥ = (®?)™ again by
Proposition 2.1. Hence I;E =< ®2 >. In the second case, let ¢ be the smallest odd integer
such that py, = |pe|? for some ¥y € I}, For any ¥ € I}, we have py = |po|™. If m = 2m’
then ¥ = (@2)’”/. If m is odd then m > q and m — ¢ = 2m’. Thus pgy = P2’ oy 20
hence ¥ = ®2™ o Wy, It follows that I =< 92, ¥y > with U2 = (®2)9. This proves (i).

We next prove (ii), which is rather similar to (ii). Again, any ¥ € Zr must have pg =

+|pa|™ for some m. If Ip =< ® > we are done. Otherwise there exists a ¥y € Zp such that
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Uy €< & > and it has the largest contraction factor in absolute value. Since py, = +|pa|?
for some ¢, and ¥y # P9, we must have py, = —p%. We show that Tp =< D2 Wy >.
For any ¥ € I either ¥ = ®™ for some m or py = —pg. In the latter case m > ¢. So
PU = Pem-aow,, implying that ¥ = ™79 0 ¥y, Also it is clear U2 = 2 because they have
the same contraction factor. We have proved (ii). This finishes the proof of Theorem 1.2.

In the remaining part of this section we prove Theorem 1.3. We shall first prove several
results about the COSC.

Lemma 2.3. Let ® = {¢;} be an IFS in R. Then ® satisfies the COSC' if and only if for
all i # j we have ¢;(x) < ¢;(y) for all x,y € Fo or ¢i(x) > ¢j(y) for all x,y € Fop.

Proof. It follows immediately from the definition of the COSC. [ |

Lemma 2.4. Let ® and ¥ be two homogeneous IFSs in R satisfying the OSC such that
pe = —pw and Fo = Fy. Assume that ® satisfies the COSC. Then Fg must be symmetric.

Proof. Let ® = {¢;(z) := pr+a;}Y; and ¥ = {¢;(z) := —p$+bj}jj‘i1. Then ¥ also satisfies
the COSC by Theorem 1.3 (See the proof below; the proof of that part does not depend
on this lemma). Without loss generality we assume that p > 0 and a; < as < --- < ap,
b1 < by < --- <by. Denote A = {a;} and B = {b;}. The OSC for & and ¥ now implies
®? = W2, Observe that

®? = {p’r +a; +paj}yy, U ={pPx 4 by — pby}loy.

It follows from the COSC for ®2 that the lexicographical order for {a; + ,oaj}fyj:l also
yields a strictly increasing order for the set. Similarly, the lexicographical order for {b; —
pr-i-l—j}%:l also yields a strictly increasing order for the set. Therefore M = N and
a; + paj = b; — pbyy1—j for all 4,j. Fix j = 1 yields a; = b; + ¢ for some constant c. Fix
i =1 yields aj = —by41—; + ¢ for some constant ¢’. Thus a; = an41—; + ¢” for some

constant ¢””. Hence A is symmetric, which implies that Fg is symmetric. [ |

Proof of Theorem 1.3. We prove that ¥ satisfies the COSC if ® does. By Theorem
1.1 there exist integers m,n such that pg = pif. It follows from Proposition 2.1 that
®" = W, Assume that ¥ does not satisfy the COSC. Then there exist 1;,1; € ¥ so that
Pi(x) < j(y) and ¢;(z) > ¢j(w) for some z,y,z,w € F. If pgb_l is positive, then the same
inequalities will hold if we replace v;, 1; by w{“_l o1p; and 1/11”_1 o1;, respectively; otherwise
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if pgf_l is negative then the reverse inequalities will hold. But this is impossible because

both w;n_l o 1; and 1/;{”_1 o1 are in U™, and hence in ®", which satisfies the COSC.

To prove the rest of the theorem we first prove the following claim.

Claim. Let ®, ¥ be any two elements in Zr with |ps| > |pw|. Then there exists al' € Zp
such that U = ® o', where ®ol':={poy:¢p e &,y T}

Proof of Claim: Let ® = {¢;(z)}}Y, and ¥ = {1;() jj‘/il. Since both ® and VU satisfy
the COSC, we may without loss of generality assume that ¢1(F) < --- < ¢p(F) and
P1(F) < -« <Yn(F), where X <Y for two sets X and Y means z < y for all x € X and
y€Y. Set e=minF, f = max F and Fy = [e, f]. Clearly each ¢;(Fpy) (resp. ¥;(Fp)) is a
sub-interval of Fj, with end points ¢;(a) and ¢;(b) (resp. ¥;(a) and ;(b)). The COSC for

® and ¥ now imply that ¢1(Fp) < --- < dpr(Fo) and 91 (Fo) < -+ < Yy (Fp).

It follows from Theorem 1.1 that izgl_p@\ = logN _ 1 for some positive integers m and n
glpw| — logM T m
n 1
with ged(m,n) = 1. Thus N™ = M™ or N = Mm. This forces K = M= to be an integer,
for otherwise the co-primeness of n,m makes N = M m an irrational number. Therefore

M = K™ and N = K". In particular, % =LeN

Now ®7 = ¥" by Proposition 2.1, where ¢ = 2m and r = 2n. For each i = i1iy---1, €
{1,...,N}? denote ¢; := ¢, ©--- o ¢;,, and similarly define +; for j € {1,...,M}". Then
Pl ={p;:iec{l,...,N}9} and ¥" = {¢; : j € {1,...,M}"}. It is clear that both ®¢ and
U1 satisfy the COSC. We order the maps in ®¢ and U" according to the orders of ¢;(Fp) and
¥j(Fp) respectively. Then the first N9°! maps in ®7 are J; = {¢1y : i’ € {1,...,N}71},
while the first N97! maps in U” are Jo = {¢;,5 : 1 < j1 < L,j’ € {1,..., M}"~'}. Therefore
J1 = J2. Note that

L
U e =an(F), | oF) =)
e pET2 Jj=1

It follows that F' = Ule ¢7to Y (F), so I'y := {op7t 0 %}le is a generating IFS for F. It
clearly satisfies the COSC.

We can continue the same argument by counting the next N9=! elements in the two

sequences. This yields F' = U?iLH ¢2_1 o (F), so 'y := {¢2_1 o %}?QLH is a generating
IFS for F. Continuing to the end yields I'y, ..., I'y in Zp, with the property that

(2.1) {thj: (k—1)L+1<j<kL}={¢rop:peT:}.
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But all 'y, are equal because they have the same contraction factor. It follows from (2.1)
that ¥ = ® oI, with I" := I'y,. This proves the Claim. ]

To prove part (i) of the theorem, let & € I;S have the largest contraction factor. Such
a Py exists because for any ® € IZE we must have pg = N—Vdmue(F) for some positive
integer N. Now any ® # & in I;S we have pp < pg,. By the Claim, & = &g o'y for
some I'7 € I;S. If 'y = &g then & = q)g, and we finish the proof. If not then pr < ps,,
yielding I'y = ®¢ o I'y for some I's € I;f. Apply the Claim recursively, and the process will

eventually terminate. Hence & = @lg for some k. The proof of part (i) is now complete.

To prove part (ii) of the theorem, if Zp = I;S then there is nothing we need to prove.
Assume that ZTp # I}'. Let 7, C I consisting of all homogeneous IFSs with negative
contraction factors, and ®_ € T, have the largest contraction factor in absolute value. Let
® € I; have the largest contraction factor in Z5. If |[po_| = po, then F is symmetric
by Lemma 2.4, a contradiction. So |ps_| # ps, . Note that P2 = @™ for some m by part
(i). Thus m =1 or m > 2. If m > 2 then ps, > [ps_|. Following the Claim we have
¢_ = @y oI for some I' € Zp. But pr < 0 and |pr| > |pe_|. This is a contradiction.
Therefore m = 1 and ®2 = ®,. Part (ii) of the theorem follows from part (i) and the

Claim.

Finally we prove (iii). If F' is symmetric, then for any IFS W € Zp there is another
U’ € Ip such that py = —pgs because F = —F + ¢ for some c¢. Let &, and ®_ be the
elements in Zr whose contraction factors have the largest absolute values, po, = —ps_ > 0.
Proposition 2.1 and the same argument to prove part (i) now easily apply to prove that for

any UV € Ip, ¥ = @7 if pg > 0 and ¥ = &' o ®_ if py < 0 for some m € N. [ |

3. LOGARITHMIC COMMENSURABILITY OF CONTRACTION FACTORS

In this section we prove Theorem 1.1. We first prove several lemmas.

Lemma 3.1. Let I be the attractor of an IFS ® = {¢;}N, in R? satisfying the OSC.
Denote s = dimy F. Let E C F be a Borel set with H*(E) > 0. Then for any € > 0, there
evist k € N and i€ {1,...,N}* such that H*(¢:(F) N E) > (1 — e)H*(¢:(F)).

Proof. By the classical density theorems for s-sets (see, e.g., [9, Corollary 2.5-2.6]),

lim sup HAENU(2)) (ENU(z)) = lim sup HFN U (z)) (F0 Uy ()

>27% for H%-a.e. x € FE,
r—0 (27“)5 r—0 (27’)8 -
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where U, (x) denotes the open ball of center z and radius r. It together with E C F' yields

lim sup —HS(E NU())
r—0 HS(FNU(x))

Hence for given € > 0, there exists an open ball U,.(z) such that U,(x) N E # () and

=1 for H%a.e z € FE.

(3.1) HYENU(2) > (1 — OH(F N U, ().

Set Ay = {i€ {1,...,N}*: ¢(F) C Uy(2)} for k € N. Then FNU,(x) = limg_.o Uica, @i(F)
and ENUp(z) = limg 00 Use 4, ¢i(F) N E. Since @ satisfies the OSC, we have
H*(E N Uy (2)) = lim ; H(Gi(F) N E), H(FNU(x)) = lim ; H (¢3(F)).
1€EAL 1CAE

These two equalities together with (3.1) yield the desired existence result of the lemma. W

Lemma 3.2. Let F be the attractor of a homogeneous IFS & = {¢; = pxr + ti}ij\il mn
R satisfying the OSC. Denote s = dimg F. Assume that ¢(z) = Az + e is a map such
that Y(E) C F for some Borel set E C F with H*(E) > 0. Then there exists a map
&(z) = \p™x + ¢ such that m € N and {(F) C F.

Proof. By Lemma 3.1, for each n € N we can choose an integer k, and a word i, €
{1,...,N}* such that

(3-2) H(EN¢;, (F)) = (1= 1/n)H* (¢4, (F)).
Since ¥(E) C F, we have ¥(E N ¢;, (F)) C F and thus
(3.3) ¢ W(ENG,(F)Cor (F) = | o' ¢(F).

je{1,...,N}kn
Denote F,, = <Z>i_nl(E N ¢y, (F)). Then the set in the left-hand side of (3.3) can be written
as A\F,, + ¢, for some ¢, € Rd, whilst the set in the right-hand side can be written as
Ujeqr,...nyen (F 4+ dj) with dj € RY. Since ® satisfies the OSC, these dj’s are uniformly
discrete, i.e., there exists a ¢ > 0 independent of n such that |dj — dy| > 6 for j # j'. Hence
we have
(3.4) AR, C | (Pt
je{l,...,N}kn

where t; = dj — c,.

Note that F,, C F, and lim,,_.. H*(F,) = H*(F) by (3.2). Due to (3.4) and the fact

that t;’s are uniformly discrete, a compactness argument yields that there exists a closed
set F C F with H5(F) = H*(F) and finitely many vectors ay,...,a; € R? such that
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AF C Uizl(F + ay,). Since ® satisfies the OSC, the above conditions for F guarantee that
F = F. Thus we have

l
(3.5) AF C | J(F + ap).
k=1

Without loss of generality, we assume that the above £ is the minimal one. Then there exists
x € F such that Az € (F+a1)\(Uf;:2(F+ak)). Since \z ¢ Ui:2(F+ak), there exists a large
integer m and a word i € {1,... N} such that z € ¢;(F) and A¢;(F) N sy (F 4 az) = 0.
According to (3.5), we have A¢;(F) C F'+ay, which implies the desired result of the lemma
by setting &(x) = Api(x) — ag. |

Lemma 3.3. Let F be the attractor of a homogeneous IFS ® = {¢; = px + t;}, in RY
satisfying the OSC with s = dimg F < 1. Then there exist a closed ball B,(x) of center
x and radius v, and a positive integer k, such that B,(x) N F # () and the following two

statements hold:

i) Fn{yeR:r—|p/fu < |y—=| <r+|p|*u} =0, where u = diamF.
(i) Denote A= {ie {1,--- ,N}*: ¢;(F) C B.(z)} and M = #A. Then

(3.6) (M +1/2) |p* HE(F) > dmax (21)°,
where dmax 15 defined by

(3.7) dinax = sup{H*(F N B (y))/(2r")* : y e R, ¥ > 0}.

Proof. Since 0 < s < 1, using L’Hospital’s rule we have

1+ ha)s —1
T e ) el S SR VI S

x—0 s

Therefore there exist £ € N and € > 0 such that
1
(3.8) S PHAE) =& > dina ((1 +8 pt~diamF)* — 1) .
By the definition of dy,ax there exists a ball B,/(x) such that B,(x) N F # () and

H(F O By () > (dmax — ) (27)°.
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We may furthermore assume that H*(0B,/(x)) = 0. Let n be the integer so that p"*! <
2r" < p". Then we have

1 1
H2(F'N By (x)) + 50("“)57%3(1’) > (dmax — £) (2r')" + 5 p"H(F) (20)°

> (dmax —e+ %p“ HS(F)> (2r')®
> e (1 +8 pf—ldiamp)s @) (by (3.8))
> dimax (2r'+8 p£_1(2r/)diamF>s
> Ao (2r’ +8 p“"diamF)s.
That is
(3.9) HE(F N By () + %\p\("M)SHS(F) > dinax (2r’ +8] p|f+"diamF>s :

Define k = £+ n and r = 7’ + 2|p|*u, where u = diam F. In the following we show that the
statements (i) and (ii) hold for B,(x) and k.

Assume that (i) is not true, towards a contradiction. Then
Fﬁ{yeRd:r’—l—\p\kug ly — x| §r’+3]p]ku} £ 0.
Therefore there exists at least one i € {1,..., N}¥ such that
$i(F) C {y eRY:r <|y—az| <r+ 4]p]ku} .
It together with (3.9) yields

HS(F N Br’+4\p\ku('x))

v

H2(F'N Byp(x)) + H (¢ (F))
> H*(F N Bp(x)) +|p|*H(F)
> dmax (217 + 8 |p|Fu)?,

which contradicts the maximality of dpyax. This finishes the proof of (i).

To prove (ii), observe that (J;c 4 ¢i(F) 2 F'N By (x). Thus

Mol H(F) > H*(F 1\ By(a)).
Combining it with (3.9), we have
(M +1/2) [p|* H(F) = H(F N By(x)) +1/2 |p|* H*(F)
> dyax(2r' + 8 |p|ku)8 > dpax(2r)°

and we are done. [ |
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Proof of Theorem 1.1. By Lemma 3.2, it suffices to prove the theorem under the stronger
assumption that ¢(F) C F. Let B.(z), k, A and M and dpax be given as in Lemma 3.3.
Assume that Theorem 1.1 is false, that is, log |A|/log |p| € Q. We derive a contradiction.

Choose € > 0 such that (1 —¢)%(M + 1) > (M + 1/2). Since log |A|/log |p| &€ Q, there
exist m,n € N such that 1 —e < |p|™/|A\|" < 1. Define J = ¢"(B,(x)). We will deduce that

(3.10) H(JNE) > dax |J]%,

which contradicts the maximality of dax.

To show (3.10), set J = Y"(B,_|pku(2)), where u = diamF. By Lemma 3.3,

icA
Hence
(3.11) Hs(jﬁ F)>H?* <¢"< U ¢1(F))> =M |\"* \p\ks HE(F).
ieM
Define

R = {ie{l,--- B LaLE <z5i(F)ﬂj7é(Z)}

and R = #R. It is clear that (J;cp ¢i(F) D J N F. Since A" > |p|™, we have ¢;(F) C J
for any i € R. Thus

H (I N F) 21 6i(F) = R [p|™0° 15(F) 2 (T 0 F).
ieER
Combining the second inequality with (3.11) we obtain R > M and thus R > M + 1. Hence

we have

(M +1) |p| "% 1o (F)

(M +1) (L=2)* [A™ |p|* H*(F)
(M +1/2) [N |pl** H*(F)

max A" (2r)* ('by (3.6))

S
max /]

H(JNF)

Y

vV vV vV

d
d

This is a contradiction, finishing the proof of the theorem. [ |
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4. THE GENERATING IFSs FOR C

In this section we determine all the generating IFSs for the standard middle-third Cantor
set C.

Let ® = {¢g, ¢1} be the standard generating IFS of C' given by (1.1). Denote by {0,1}*
(resp. {0,1}Y) the collection of all finite (resp. infinite) words over the alphabet {0,1}. A
finite subset B of {0,1}* is called complete if each infinite word (i) ; has a prefix in B.
For i = i1ig . . .4y, Write ¢ = ¢, o---o¢;, , and define ¢; by ¢;(x) = —¢;(x) + ¢5(0) + ¢5(1).
Since C' is symmetric, we always have ¢;(C) = ¢;(C). The following result characterizes all

the generating IFSs for C.

Proposition 4.1. An IFS V¥ = {1&]—}9’:1 is a generating IFS of C if and only if there exists
a complete subset B of {0,1}* such that

(i) For each j, ¢j = ¢ or 1 = ¢; for some i € B.
(ii) For each i € B, at least one of ¢; and ¢; belongs to V.

The proof of Proposition 4.1 is based on the following lemma.

Lemma 4.2. Let ¢ be a contracting similitude on R so that (C) C C. Then ¢ = ¢; or ¢;
for some i€ {0,1}*.

Proof. Denote by A the contraction factor of . Let k be the unique integer k so that
37%=1 < X\ < 37*. Since the middle hole in (C) has length less than 3=*+1 the interval
¥([0,1]) intersects exactly one of the intervals ¢ ([0, 1]), u € {0,1}*+1. Denote this interval
by ¢i([0,1]). Then ¢;([0,1]) contains the two endpoints of ([0,1]), and its length is not
great than that of ¥([0,1]). It guarantees that ([0, 1]) = ¢;([0,1]). Hence 1) = ¢; or ¢;. B

Proof of Proposition 4.1. Suppose that B is a complete set in {0,1}* so that the condi-
tions (i) and (ii) hold. Take any y € C. Then there exists an infinite word w = (i,,)72; such
that y = limy, o0 @i, 0 -+ 0 ¢, (0). Since B is complete, there exists u € B such that u is a
prefix of w. Thus y € ¢u(C) = ¢,(C), and hence y € 1;(C) for some 1 < j < N by the con-
dition (ii). This means C' C (J;;(C). Note that the condition (i) implies C' 2 J; 1;(C).
Hence C' = |J; ¢;(C), i.e., ¥ is a generating IFS of C'.
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Conversely, suppose C' = Ujvzl ¥;(C). By Lemma 4.2, each 9; equals ¢y, or ¢,, for some
u € {0,1}*. Define B = {u € {0,1}* : ¢y = ¥j or ¢, = ¢; for some j}. It is clear that B
satisfies the condition (i) and (ii). We only need to show that B is complete. To see it, take

an arbitrary infinite word w = (i,,)22; and let y = lim;, oo 5, 0 -+ 0 ¢;,(0). Then y € C
and thus y € 1;(C) for some j. Therefore y € ¢y(C) = ¢,(C) for some u € B. It implies

that u is a prefix of w. Therefore B is complete, and we are done. [ |

(1]

(16]
(17]
(18]

(19]
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