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Abstract. A generating IFS of a Cantor set F is an IFS whose attractor is F . For a
given Cantor set such as the middle-3rd Cantor set we consider the set of its generating
IFSs. We examine the existence of a minimal generating IFS, i.e., every other generating
IFS of F is an iterating of that IFS. We also study the structures of the semi-group
of homogeneous generating IFSs of a Cantor set F in R under the open set condition
(OSC). If dimH F < 1 we prove that all generating IFSs of the set must have logarithmic
commensurable contraction factors. From this Logarithmic Commensurability Theorem
we derive a structure theorem for the semi-group of homogeneous generating IFSs of F

under the OSC. We also examine the impact of geometry on the structures of the semi-
groups. Several examples will be given to illustrate the difficulty of the problem we study.

1. Introduction

In this paper, a family of maps Φ = {φj}
N
j=1 in Rd is called an iterated function system

(written as IFS for brevity) if for each j, φj(x) = ρjRj(x) + aj where ρj ∈ R with 0 <

|ρj | < 1, Rj is an orthogonal matrix and aj ∈ Rd. According to Hutchinsin [11], there is

a unique non-empty compact F = FΦ ∈ Rd, which is called the attractor of Φ, such that

F =
⋃N

j=1 φj(F ).

It is well known that the standard middle-third Cantor set C is the attractor of the IFS

{φ0, φ1} where

(1.1) φ0(x) =
1

3
x, φ1(x) =

1

3
x+

2

3
.

A natural question is: Is it possible to express C as the attractor of another IFS?

Surprisingly, the general question whether the attractor of an IFS can be expressed as the

attractor of another IFS, which seems a rather fundamental question in fractal geometry, has

1991 Mathematics Subject Classification. Primary 28A80; Secondary 28A78.
Key words and phrases. Iterated function systems, self-similar sets, open set condition, logarithmic com-

mensurability, Hausdorff dimension.
The first author is partially supported by the direct grant in CUHK, Fok Ying Tong Education Foundation

and NSFC (Grant 10571100).
The second author is supported in part by the National Science Foundation, grants DMS-0070586 and

DMS-0139261.

1



2 DE-JUN FENG AND YANG WANG

hardly been studied, even for some of the best known Cantor sets such as the middle-third

Cantor set.

A closer look at this question reveals that it is not as straightforward as it may appear.

It is easy to see that for any given IFS {φj}
N
j=1 one can always iterate it to obtain another

IFS with identical attractor. For example, the middle-third Cantor set C satisfies

C = φ0(C) ∪ φ1(C)

= φ0 ◦ φ0(C) ∪ φ0 ◦ φ1(C) ∪ φ1(C)

= φ0 ◦ φ0(C) ∪ φ0 ◦ φ1(C) ∪ φ1 ◦ φ0(C) ∪ φ1 ◦ φ1(C).

Hence C is also the attractor of the IFS {φ0 ◦ φ0, φ0 ◦ φ1, φ1} and the IFS {φ0 ◦ φ0, φ0 ◦

φ1, φ1 ◦ φ0, φ1 ◦ φ1}, as well as infinitely many other iterations of the original IFS {φ0, φ1}.

The complexity doesn’t just stop here. Since C is centrally symmetric, C = −C + 1, we

also have

C =
(
−

1

3
C +

1

3

)
∪
(
−

1

3
C + 1

)
.

Thus C is also the attractor of the IFS {− 1
3x+ 1

3 ,−
1
3x+ 1}, or even {− 1

3x+ 1
3 ,

1
3x+ 2

3}.

Definition 1.1. Let Φ = {φi}
N
i=1 and Ψ = {ψj}

M
j=1 be two IFSs. We say that Ψ is derived

from Φ if for each 1 ≤ j ≤M , ψj = φi1 ◦ · · · ◦ φik for some 1 ≤ i1, . . . , ik ≤ N . We say that

Ψ is an iteration of Φ if Ψ is derived from Φ, and it has the same attractor as Φ. Let F be

a compact set in Rd. A generating IFS of F is an IFS Φ whose attractor is F . A generating

IFS family of F is a set I of generating IFSs of F . A generating IFS family I of F is said

to have a minimal element Φ0 ∈ I if every Ψ ∈ I is an iteration of Φ0.

Example 1.1. In this example consider the question raised by Mattila: Is it true that any

self-similar subset F of the middle-third Cantor set C is trivial, in the sense that F has a

generating IFS that is derived from the generating IFS {φ0, φ1} of C given in (1.1)?

We give a negative answer here by constructing a counterexample. For now, let Φ =

{1
9x,

1
9(x+ 2

27), 1
9(x+ 2

36 )}. Then by looking at the ternary expansion of the elements in FΦ

it is easy to see that FΦ ⊂ C. But clearly Φ cannot be derived from the original IFS given

in (1.1).

The objective of this paper is to study the existence of a minimal IFS in a generating

IFS family of a self-similar set F ⊂ R. To see the complexity of this problem, we first give

the following example.
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Example 1.2. Let F be the attractor of the IFS Φ = { 1
10 (x + a) : a ∈ A} where A =

{0, 1, 5, 6}. Let GF denotes the set of all generating IFSs of F . We claim that GF does not

contain a minimal element.

To see the claim, note that any φ in a generating IFS of F must map either to the left or

to the right part of F , because the hole in the middle (having length diam(F )/2 ) would be

too large for a subset of F to be similar to F . Thus φ must have contraction factor ≤ 1/4.

Assume that GF contains a minimal element Φ0, towards a contradiction. Then Φ0 = Φ,

because each map in Φ (with contraction factors > 1/16) cannot be a composition of two

maps in Φ0. However we can find another generating IFS of F given by

Ψ :=

{
x

100
,
x+ 1

100
,
x+ 1/2

10
,
x+ 15

100
,
x+ 16

100
,
x+ 5

10
,
x+ 6

10

}
,

which can not be derived from Φ0 since the map x+1/2
10 is not the composition of elements

in Φ0. It leads to a contradiction. To see that Ψ is a generating IFS of F , one can check

that F satisfies the following relation:

F =
F + {0, 1, 5, 6}

10
=
F + {0, 1, 5, 6, 10, 11, 15, 16}

100
∪
F + {5, 6}

10

=
F + {0, 1, 15, 16}

100
∪
F + 1/2

10
∪
F + {5, 6}

10
.

Naturally, one cannot expect the existence of a minimal IFS in a generating IFS family

I of a set F to be the general rule — not without first imposing restrictions on I and

F . But what are these restrictions? A basic restriction is the open set condition (OSC).

Without the OSC either the existence of a minimal IFS is hopeless, or the problem appears

rather intractable. But even with the OSC a compact set may have generating IFSs that

superficially seem to bear little relation to one another. One such example is the unit

interval F = [0, 1]. It is evident that other restrictions will be needed. We study this issue

in this paper.

While the questions we study in the paper appear to be rather fundamental questions of

fractal geometry in themselves, our study is also motivated by several questions in related

areas. One of the well known questions in tiling is whether there exists a 2-reptile that is

also a 3-reptile in the plane ([5]). Another question comes from the application of fractal

geometry to image compression, see Barnsley [2], Lu [14] and Deliu, Geronimo and Shon-

kwiler [7]. In this application, finding a generating IFS of a given set plays the central role,

and naturally, better compressions are achieved by choosing a minimal generating IFS. The
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other question concerns the symmetry of a self-similar set such as the Sierpinski Gasket,

see e.g. Bandt and Retta [4], Falconer and O’Conner [10] and Strichartz [19].

For any IFS Φ we shall use FΦ to denote its attractor. We call an IFS Φ = {ρjx+aj}
N
j=1

homogeneous if all contraction factors ρj are identical. In this case we use ρΦ to denote

the homogeneous contraction factor. We call Φ positive if all ρj > 0. A fundamental

result concerning the structures of generating IFSs of a self-similar set is the Logarithmic

Commensurability Theorem stated below. It is the foundation of many of our results in

this paper.

Theorem 1.1 (The Logarithmic Commensurability Theorem). Let F be the attrac-

tor of a homogeneous IFS Φ = {φi = ρx + ti}
N
i=1 in Rd satisfying the OSC. Suppose that

dimH F = s < 1. Let ψ(x) = λx + d such that ψ(E) ⊆ F for some Borel subset E of F

with positive s-dimensional Hausdorff measure, i.e., Hs(E) > 0. Then log |λ|/ log |ρΦ| ∈ Q,

that means |λ| = rk and |ρ| = rm for some r > 0 and positive integers k,m.

Note that the set of all homogeneous generating IFSs of a self-similar set F forms a semi-

group. Let Φ = {φi}
N
i=1 and Ψ = {ψj}

M
j=1 be two generating IFSs of F . We may define

Φ◦Ψ by Φ◦Ψ = {φi ◦ψj : 1 ≤ i ≤ N, 1 ≤ j ≤M}. Then clearly Φ◦Ψ is also a generating

IFS of F .

Definition 1.2. Let F be any compact set in Rd. We shall use IF to denote the set of

all homogeneous generating IFSs of form {ρx + ai}
N
i=1 in Rd of F satisfying the OSC,

augmented by the “identity” Id = {id(x) := x}. We shall use I+
F to denote the set of all

positive homogeneous generating IFSs of F in IF , augmented by the identity Id.

We augment the Identity into IF and I+
F so that they are not empty. Clearly both IF and

I+
F , equipped with the composition as product, are semi-groups. If F is not the attractor

of a homogeneous IFS with OSC then IF is trivial. The Logarithmic Commensurability

Theorem leads to the following structure theorem for IF and I+
F :

Theorem 1.2. Let F be a compact set in Rd with dimH F < 1. Then Both IF and

I+
F are finitely generated Abelian semi-groups. Furthermore assume that there exists a

Φ = {φi}
N
i=1 ∈ IF such that Φ 6= Id and N is not a power of another positive integer. Then

the following two statements hold.
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(i) If ρΦ > 0 then Φ is the minimal element for I+
F , namely I+

F =< Φ >:= {Φm : m ≥

0}. If ρΦ < 0 then either I+
F has a minimal element, or I+

F =< Φ2,Ψ > for some

Ψ with ρΨ = ρq
Φ where q ∈ N is odd and Ψ2 = Φ2q.

(ii) Either IF =< Φ > or IF =< Φ,Ψ > for some Ψ with ρΨ = −ρq
Φ where q ∈ N and

Ψ2 = Φ2q.

Definition 1.3. Let Φ = {φj}
N
j=1 be an IFS in R. We say Φ satisfies the separation

condition (SC) if φi(FΦ) ∩ φj(FΦ) = ∅ for all i 6= j. We say Φ satisfies the convex open set

condition (COSC) if Φ satisfies the OSC with a convex open set.

The following is another main theorem in this paper:

Theorem 1.3. Let F ⊂ R be a compact set with dimH F < 1 such that F is the attractor

of a homogeneous IFS satisfying the COSC. Let Φ be any generating homogeneous IFS of

F with the OSC. Then Φ also satisfies the COSC. Furthermore we have:

(i) The semi-group I+
F has a minimal element Φ0, namely I+

F =< Φ0 >.

(ii) Suppose that F is not symmetric. Then IF has a minimal element Φ0, IF =< Φ0 >.

(iii) Suppose that F is symmetric. Then there exist Φ+ and Φ− in IF with ρΦ+
=

−ρΦ−
> 0 such that every Ψ ∈ IF can be expressed as Ψ = Φm

+ if ρΨ > 0 and

Ψ = Φm
+ ◦ Φ− if ρΨ < 0 for some m ≥ 0.

In the following we give an example to show that the condition COSC in Theorem 1.3

cannot be replaced with the SC.

Example 1.3. Let F be the attractor of the IFS Φ = { 1
16 (x + a) : a ∈ A} where A =

{0, 1, 64, 65}. It is not difficult to check that Φ satisfies the SC but does not satisfy the

COSC. We prove that I+
F does not contain a minimal element by contradiction. Assume

this is not true. Let Φ0 = {ρx + ci}
N
i=1 be the minimal element of I+

F . By the dimension

formula and Theorem 1.1, log ρ/ log 16−1 = logN/ log 4 ∈ Q. Therefore N = 2 and ρ = 1
4

or N = 4 and ρ = 1
16 . But it is easy to check that if N = 2 then the IFS Φ0 must satisfy

the COSC, but Φ does not, a contradiction to Theorem 1.3. Hence we must have N = 4

and hence Φ0 = Φ by Proposition 2.1. Now let Ψ = { 1
64 (x + b) : a ∈ B} where q = 64

and B = {0, 1, 16, 17, 256, 257, 272, 273}. One can check directly B + qB = A + pA + p2A.

Thus Ψ2 = Φ3, which implies Ψ ∈ IF . However Ψ is not derived from Φ, which leads to a

contradiction. Hence I+
F does not contain a minimal element.
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We organize the paper as follows. Due to the technical nature of the proof of the Logarith-

mic Commensurability Theorem we shall postpone it until §3. In §2 we prove Theorem 1.2

and Theorem 1.3. In §4 we determine all the generating IFSs for the standard middle-third

Cantor set.

The authors wish to thank Zhiying Wen and Jun Kigami for helpful comments.

2. Structures of the Semi-groups and the Convex Open Set Condition

In this section we prove Theorem 1.2 and Theorem 1.3, and examine the impact of

geometry to the structures of the semi-groups IF and I+
F . We first give two essential

propositions.

Proposition 2.1. Let Φ = {φi(x) := ρRx+ai}
N
i=1 and Ψ = {ψj(x) := ρRx+ bj}

M
j=1 be two

homogeneous IFSs in Rd satisfying the OSC, where R is an orthogonal matrix. If FΦ = FΨ,

then Φ = Ψ.

Proof. Denote F = FΦ = FΨ. It is easy to see N = M by comparing the Hausdorff dimen-

sion of FΦ and FΨ. Let ν be the normalized s-dimensional Hausdorff measure restricted to

F , where s = dimH F , i.e. ν = 1
Hs(F )H

s. It is well known that ν is the self-similar measure

defined by Φ ( as well as Ψ) with equal weights, i.e.

ν =
1

N

N∑

j=1

ν ◦ φ−1
j =

1

N

N∑

j=1

ν ◦ ψ−1
j .

Now taking the Fourier transform of ν and applying the self-similarity yield

ν̂(ξ) = A(ξ)ν̂(ρR−1ξ) = B(ξ)ν̂(ρR−1ξ)

where A(ξ) := 1
N

∑N
j=1 e

2πiajξ and B(ξ) := 1
N

∑N
j=1 e

2πibjξ. Since ν(ρR−1ξ) 6= 0 on a

neighborhood V of 0, A(ξ) = B(ξ) on V . It implies {aj} = {bj}, proving the lemma.

Proposition 2.2. Let Φ = {φi(x) := ρRx+ ai}
N
i=1 and Ψ = {φi(x) := λSx+ bj}

M
j=1 be two

homogeneous IFSs in Rd satisfying the OSC, where R,S are two orthogonal matrices. Then

FΦ = FΨ if Φ ◦ Ψ = Ψ ◦ Φ. Conversely, if RS = SR and FΦ = FΨ, then Φ ◦ Ψ = Ψ ◦ Φ.

Proof. Suppose that Φ ◦ Ψ = Ψ ◦ Φ then Φ ◦ Ψm = Ψm ◦ Φ for any m ∈ N. Therefore

Φ ◦Ψm(FΨ) = Ψm ◦Φ(FΨ). But Ψm(E) −→ FΨ as m−→∞ in the Hausdorff metric for any

compact set E. Taking limit we obtain Φ(FΨ) = FΨ. Therefore FΦ = FΨ.
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Conversely, if FΦ = FΨ and RS = SR, then both Φ ◦ Ψ and Ψ ◦ Φ are generating IFSs

of F with the identical linear part, and both satisfy the OSC. Hence Φ ◦ Ψ = Ψ ◦ Φ by

Proposition 2.1.

Proof of Theorem 1.2. By Proposition 2.2, IF is Abelian, and so is I+
F . To see that

IF and I+
F are finitely generated, we assume that IF is non-trivial and fix an arbitrary

Γ = {γk}
M
k=1 ∈ IF with Γ 6= Id. Write M = Ln where L is not a power of another positive

integer. Denote ρ = |ρΓ|
1

n .

Suppose that Ψ = {ψj}
J
j=1 ∈ IF and Ψ 6= Id. Then the dimension formula M = |ρΓ|

−s

and J = |ρΨ|
−s where s = dimH F implies that logM/ log J = log |ρΓ|/|ρΨ| ∈ Q, by

Theorem 1.1. It follows that J = Lm and ρΨ = ±|ρΓ|
m
n = ±ρm for some m ∈ N.

Define P+ = {m : ρm = ρΨ for some Ψ ∈ IF} and P− = {m : ρm = −ρΨ for some Ψ ∈

IF}. We will show that I+
F is finitely generated. Set a = gcd(P+). Let Ψ1, . . . ,Ψn ∈ IF with

ρΨj
= ρmj such that gcd(m1,m2, . . . ,mn) = a. By a standard result in elementary number

theory every sufficiently large integer ma ≥ N0 can be expressed as ma =
∑n

j=1 pjmj with

pj ≥ 0. Thus every Ψ ∈ I+
F with ρΨ = ρma, ma ≥ N0, can be expressed as Ψ = Πn

j=1Ψ
pj

j

since the two IFSs have the same contraction factor. Let {Ψn+1, . . . ,ΨK} ⊆ I+
F consist of

all elements Ψ ∈ I+
F with ρΨ ≥ ρN0 that are not already in {Ψ1, . . . ,Ψn}. Then I+

F =<

Ψ1,Ψ2, . . . ,ΨK >, and it is finitely generated. The proof that IF is finitely generated is

virtually identical, and we omit it.

Now we turn to the proof of (i). Assume that Φ = {φi}
N
i=1 ∈ IF such that Φ 6= Id

and N is not a power of another positive integer. Let Ψ = {ψj}
J
j=1 ∈ I+

F with Ψ 6= Id.

Since N is not a power of another integer and |ρΦ|/ρΨ ∈ Q, we have J = Nm for some

m, which implies that ρΨ = |ρΦ|
m. If ρΦ > 0 then Ψ = Φm via Proposition 2.1 because

they have the same contraction factor. Thus I+
F =< Φ >. Suppose that ρΦ < 0. We have

two cases: Either every Ψ ∈ I+
F has ρΨ = |ρΦ|

2m′

for some m′, or there exists a Ψ ∈ I+
F

with ρΨ = |ρΦ|
m for some odd m. In the first case every Ψ ∈ I+

F has Ψ = (Φ2)m again by

Proposition 2.1. Hence I+
F =< Φ2 >. In the second case, let q be the smallest odd integer

such that ρΨ0
= |ρΦ|

q for some Ψ0 ∈ I+
F . For any Ψ ∈ I+

F we have ρΨ = |ρΦ|
m. If m = 2m′

then Ψ = (Φ2)m
′

. If m is odd then m ≥ q and m − q = 2m′. Thus ρΨ = ρΦ2m′◦Ψ0
, and

hence Ψ = Φ2m′

◦ Ψ0. It follows that I+
F =< Φ2,Ψ0 > with Ψ2

0 = (Φ2)q. This proves (i).

We next prove (ii), which is rather similar to (ii). Again, any Ψ ∈ IF must have ρΨ =

±|ρΦ|
m for some m. If IF =< Φ > we are done. Otherwise there exists a Ψ0 ∈ IF such that
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Ψ0 6∈< Φ > and it has the largest contraction factor in absolute value. Since ρΨ0
= ±|ρΦ|

q

for some q, and Ψ0 6= Φq, we must have ρΨ0
= −ρq

Φ. We show that IF =< Φ2,Ψ0 >.

For any Ψ ∈ IF either Ψ = Φm for some m or ρΨ = −ρm
Φ . In the latter case m ≥ q. So

ρΨ = ρΦm−q◦Ψ0
, implying that Ψ = Φm−q ◦ Ψ0. Also it is clear Ψ2

0 = Φ2q because they have

the same contraction factor. We have proved (ii). This finishes the proof of Theorem 1.2.

In the remaining part of this section we prove Theorem 1.3. We shall first prove several

results about the COSC.

Lemma 2.3. Let Φ = {φj} be an IFS in R. Then Φ satisfies the COSC if and only if for

all i 6= j we have φi(x) ≤ φj(y) for all x, y ∈ FΦ or φi(x) ≥ φj(y) for all x, y ∈ FΦ.

Proof. It follows immediately from the definition of the COSC.

Lemma 2.4. Let Φ and Ψ be two homogeneous IFSs in R satisfying the OSC such that

ρΦ = −ρΨ and FΦ = FΨ. Assume that Φ satisfies the COSC. Then FΦ must be symmetric.

Proof. Let Φ = {φi(x) := ρx+ai}
N
i=1 and Ψ = {ψj(x) := −ρx+bj}

M
j=1. Then Ψ also satisfies

the COSC by Theorem 1.3 (See the proof below; the proof of that part does not depend

on this lemma). Without loss generality we assume that ρ > 0 and a1 < a2 < · · · < aN ,

b1 < b2 < · · · < bM . Denote A = {ai} and B = {bj}. The OSC for Φ and Ψ now implies

Φ2 = Ψ2. Observe that

Φ2 = {ρ2x+ ai + ρaj}
N
i,j=1, Ψ2 = {ρ2x+ bi − ρbj}

M
i,j=1.

It follows from the COSC for Φ2 that the lexicographical order for {ai + ρaj}
N
i,j=1 also

yields a strictly increasing order for the set. Similarly, the lexicographical order for {bi −

ρbM+1−j}
M
i,j=1 also yields a strictly increasing order for the set. Therefore M = N and

ai + ρaj = bi − ρbN+1−j for all i, j. Fix j = 1 yields ai = bi + c for some constant c. Fix

i = 1 yields aj = −bN+1−j + c′ for some constant c′. Thus aj = aN+1−j + c′′ for some

constant c′′. Hence A is symmetric, which implies that FΦ is symmetric.

Proof of Theorem 1.3. We prove that Ψ satisfies the COSC if Φ does. By Theorem

1.1 there exist integers m,n such that ρn
Φ = ρm

Ψ . It follows from Proposition 2.1 that

Φn = Ψm. Assume that Ψ does not satisfy the COSC. Then there exist ψi, ψj ∈ Ψ so that

ψi(x) < ψj(y) and ψi(z) > ψj(w) for some x, y, z, w ∈ F . If ρm−1
Ψ is positive, then the same

inequalities will hold if we replace ψi, ψj by ψm−1
1 ◦ψi and ψm−1

1 ◦ψj , respectively; otherwise
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if ρm−1
Ψ is negative then the reverse inequalities will hold. But this is impossible because

both ψm−1
1 ◦ ψi and ψm−1

1 ◦ ψj are in Ψm, and hence in Φn, which satisfies the COSC.

To prove the rest of the theorem we first prove the following claim.

Claim. Let Φ,Ψ be any two elements in IF with |ρΦ| > |ρΨ|. Then there exists a Γ ∈ IF

such that Ψ = Φ ◦ Γ, where Φ ◦ Γ := {φ ◦ γ : φ ∈ Φ, γ ∈ Γ}.

Proof of Claim: Let Φ = {φi(x)}
N
i=1 and Ψ = {ψj(x)}

M
j=1. Since both Φ and Ψ satisfy

the COSC, we may without loss of generality assume that φ1(F ) ≤ · · · ≤ φM (F ) and

ψ1(F ) ≤ · · · ≤ ψN (F ), where X ≤ Y for two sets X and Y means x ≤ y for all x ∈ X and

y ∈ Y . Set e = minF , f = maxF and F0 = [e, f ]. Clearly each φi(F0) (resp. Ψj(F0)) is a

sub-interval of F0, with end points φi(a) and φi(b) (resp. ψi(a) and ψi(b)). The COSC for

Φ and Ψ now imply that φ1(F0) ≤ · · · ≤ φM (F0) and ψ1(F0) ≤ · · · ≤ ψN (F0).

It follows from Theorem 1.1 that log |ρΦ|
log |ρΨ| = log N

log M = n
m for some positive integers m and n

with gcd(m,n) = 1. Thus Nm = Mn, or N = M
n
m . This forces K = M

1

m to be an integer,

for otherwise the co-primeness of n,m makes N = M
n
m an irrational number. Therefore

M = Km and N = Kn. In particular, M
N = L ∈ N.

Now Φq = Ψr by Proposition 2.1, where q = 2m and r = 2n. For each i = i1i2 · · · iq ∈

{1, . . . , N}q denote φi := φi1 ◦ · · · ◦ φiq , and similarly define ψj for j ∈ {1, . . . ,M}r. Then

Φq = {φi : i ∈ {1, . . . , N}q} and Ψr = {ψj : j ∈ {1, . . . ,M}r}. It is clear that both Φq and

Ψq satisfy the COSC. We order the maps in Φq and Ψr according to the orders of φi(F0) and

ψj(F0) respectively. Then the first N q−1 maps in Φq are J1 = {φ1i′ : i′ ∈ {1, . . . , N}q−1},

while the first N q−1 maps in Ψr are J2 = {ψj1j′ : 1 ≤ j1 ≤ L, j′ ∈ {1, . . . ,M}r−1}. Therefore

J1 = J2. Note that

⋃

ϕ∈J1

ϕ(F ) = φ1(F ),
⋃

ϕ∈J2

ϕ(F ) =
L⋃

j=1

ψj(F ).

It follows that F =
⋃L

j=1 φ
−1
1 ◦ ψj(F ), so Γ1 := {φ−1

1 ◦ ψj}
L
j=1 is a generating IFS for F . It

clearly satisfies the COSC.

We can continue the same argument by counting the next N q−1 elements in the two

sequences. This yields F =
⋃2L

j=L+1 φ
−1
2 ◦ ψj(F ), so Γ2 := {φ−1

2 ◦ ψj}
2L
j=L+1 is a generating

IFS for F . Continuing to the end yields Γ1, . . . , ΓN in IF , with the property that

(2.1) {ψj : (k − 1)L+ 1 ≤ j ≤ kL} = {φk ◦ ϕ : ϕ ∈ Γk}.
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But all Γk are equal because they have the same contraction factor. It follows from (2.1)

that Ψ = Φ ◦ Γ, with Γ := Γk. This proves the Claim.

To prove part (i) of the theorem, let Φ0 ∈ I+
F have the largest contraction factor. Such

a Φ0 exists because for any Φ ∈ I+
F we must have ρΦ = N−1/ dimH(F ) for some positive

integer N . Now any Φ 6= Φ0 in I+
F we have ρΦ < ρΦ0

. By the Claim, Φ = Φ0 ◦ Γ1 for

some Γ1 ∈ I+
F . If Γ1 = Φ0 then Φ = Φ2

0, and we finish the proof. If not then ρΓ < ρΦ0
,

yielding Γ1 = Φ0 ◦ Γ2 for some Γ2 ∈ I+
F . Apply the Claim recursively, and the process will

eventually terminate. Hence Φ = Φk
0 for some k. The proof of part (i) is now complete.

To prove part (ii) of the theorem, if IF = I+
F then there is nothing we need to prove.

Assume that IF 6= I+
F . Let I−

F ⊂ IF consisting of all homogeneous IFSs with negative

contraction factors, and Φ− ∈ I−
F have the largest contraction factor in absolute value. Let

Φ+ ∈ I+
F have the largest contraction factor in I+

F . If |ρΦ−
| = ρΦ+

then F is symmetric

by Lemma 2.4, a contradiction. So |ρΦ−
| 6= ρΦ+

. Note that Φ2
− = Φm

+ for some m by part

(i). Thus m = 1 or m > 2. If m > 2 then ρΦ+
> |ρΦ−

|. Following the Claim we have

Φ− = Φ+ ◦ Γ for some Γ ∈ IF . But ρΓ < 0 and |ρΓ| > |ρΦ−
|. This is a contradiction.

Therefore m = 1 and Φ2
− = Φ+. Part (ii) of the theorem follows from part (i) and the

Claim.

Finally we prove (iii). If F is symmetric, then for any IFS Ψ ∈ IF there is another

Ψ′ ∈ IF such that ρΨ = −ρΨ′ because F = −F + c for some c. Let Φ+ and Φ− be the

elements in IF whose contraction factors have the largest absolute values, ρΦ+
= −ρΦ−

> 0.

Proposition 2.1 and the same argument to prove part (i) now easily apply to prove that for

any Ψ ∈ IF , Ψ = Φm
+ if ρΨ > 0 and Ψ = Φm

+ ◦ Φ− if ρΨ < 0 for some m ∈ N.

3. Logarithmic Commensurability of Contraction Factors

In this section we prove Theorem 1.1. We first prove several lemmas.

Lemma 3.1. Let F be the attractor of an IFS Φ = {φi}
N
i=1 in Rd satisfying the OSC.

Denote s = dimH F . Let E ⊆ F be a Borel set with Hs(E) > 0. Then for any ε > 0, there

exist k ∈ N and i ∈ {1, . . . , N}k such that Hs(φi(F ) ∩E) ≥ (1 − ε)Hs(φi(F )).

Proof. By the classical density theorems for s-sets (see, e.g., [9, Corollary 2.5-2.6]),

lim sup
r→0

Hs(E ∩ Ur(x))

(2r)s
= lim sup

r→0

Hs(F ∩ Ur(x))

(2r)s
≥ 2−s for Hs-a.e. x ∈ E,
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where Ur(x) denotes the open ball of center x and radius r. It together with E ⊆ F yields

lim sup
r→0

Hs(E ∩ Ur(x))

Hs(F ∩ Ur(x))
= 1 for Hs-a.e. x ∈ E.

Hence for given ε > 0, there exists an open ball Ur(x) such that Ur(x) ∩E 6= ∅ and

(3.1) Hs(E ∩ Ur(x)) ≥ (1 − ε)Hs(F ∩ Ur(x)).

Set Ak = {i ∈ {1, . . . , N}k : φi(F ) ⊂ Ur(x)} for k ∈ N. Then F∩Ur(x) = limk→∞
⋃

i∈Ak
φi(F )

and E ∩ Ur(x) = limk→∞
⋃

i∈Ak
φi(F ) ∩E. Since Φ satisfies the OSC, we have

Hs(E ∩ Ur(x)) = lim
k→∞

∑

i∈Ak

Hs(φi(F ) ∩E), Hs(F ∩ Ur(x)) = lim
k→∞

∑

i∈Ak

Hs(φi(F )).

These two equalities together with (3.1) yield the desired existence result of the lemma.

Lemma 3.2. Let F be the attractor of a homogeneous IFS Φ = {φi = ρx + ti}
N
i=1 in

Rd satisfying the OSC. Denote s = dimH F . Assume that ψ(x) = λx + e is a map such

that ψ(E) ⊆ F for some Borel set E ⊆ F with Hs(E) > 0. Then there exists a map

ξ(x) = λρmx+ c such that m ∈ N and ξ(F ) ⊆ F .

Proof. By Lemma 3.1, for each n ∈ N we can choose an integer kn and a word in ∈

{1, . . . , N}kn such that

(3.2) Hs(E ∩ φin(F )) ≥ (1 − 1/n)Hs(φin(F )).

Since ψ(E) ⊆ F , we have ψ(E ∩ φin(F )) ⊆ F and thus

(3.3) φ−1
in

(ψ(E ∩ φin(F )) ⊆ φ−1
in

(F ) =
⋃

j∈{1,...,N}kn

φ−1
in
φj(F ).

Denote Fn = φ−1
in

(E ∩ φin(F )). Then the set in the left-hand side of (3.3) can be written

as λFn + cn for some cn ∈ Rd, whilst the set in the right-hand side can be written as
⋃

j∈{1,...,N}kn (F + dj) with dj ∈ Rd. Since Φ satisfies the OSC, these dj’s are uniformly

discrete, i.e., there exists a δ > 0 independent of n such that |dj − dj′ | > δ for j 6= j′. Hence

we have

(3.4) λFn ⊆
⋃

j∈{1,...,N}kn

(F + tj)

where tj = dj − cn.

Note that Fn ⊂ F , and limn→∞Hs(Fn) = Hs(F ) by (3.2). Due to (3.4) and the fact

that tj’s are uniformly discrete, a compactness argument yields that there exists a closed

set F̃ ⊆ F with Hs(F̃ ) = Hs(F ) and finitely many vectors a1, . . . , a` ∈ Rd such that
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λF̃ ⊆
⋃`

k=1(F + ak). Since Φ satisfies the OSC, the above conditions for F̃ guarantee that

F̃ = F . Thus we have

(3.5) λF ⊂
⋃̀

k=1

(F + ak).

Without loss of generality, we assume that the above ` is the minimal one. Then there exists

x ∈ F such that λx ∈ (F+a1)\(
⋃`

k=2(F+ak)). Since λx 6∈
⋃`

k=2(F+ak), there exists a large

integer m and a word i ∈ {1, . . . N}m such that x ∈ φi(F ) and λφi(F )∩
⋃`

k=2(F + ak) = ∅.

According to (3.5), we have λφi(F ) ⊆ F +a1, which implies the desired result of the lemma

by setting ξ(x) = λφi(x) − a1.

Lemma 3.3. Let F be the attractor of a homogeneous IFS Φ = {φi = ρx + ti}
N
i=1 in Rd

satisfying the OSC with s = dimH F < 1. Then there exist a closed ball Br(x) of center

x and radius r, and a positive integer k, such that Br(x) ∩ F 6= ∅ and the following two

statements hold:

(i) F ∩
{
y ∈ Rd : r − |ρ|ku ≤ |y − x| ≤ r + |ρ|ku

}
= ∅, where u = diamF .

(ii) Denote A =
{
i ∈ {1, · · · , N}k : φi(F ) ⊂ Br(x)

}
and M = #A. Then

(3.6) (M + 1/2) |ρ|ks Hs(F ) > dmax (2r)s,

where dmax is defined by

(3.7) dmax = sup{Hs(F ∩Br′(y))/(2r
′)s : y ∈ Rd, r′ > 0}.

Proof. Since 0 < s < 1, using L’Hospital’s rule we have

lim
x→0

(1 + hx)s − 1

xs
= 0, ∀ h > 0.

Therefore there exist ` ∈ N and ε > 0 such that

(3.8)
1

2
ρ`sHs(F ) − ε > dmax

(
(1 + 8 ρ`−1diamF )s − 1

)
.

By the definition of dmax there exists a ball Br′(x) such that Br′(x) ∩ F 6= ∅ and

Hs(F ∩Br′(x)) ≥ (dmax − ε) (2r′)s.
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We may furthermore assume that Hs(∂Br′(x)) = 0. Let n be the integer so that ρn+1 <

2r′ ≤ ρn. Then we have

Hs(F ∩Br′(x)) +
1

2
ρ(n+`)sHs(F ) > (dmax − ε) (2r′)s +

1

2
ρ`sHs(F ) (2r′)s

≥

(
dmax − ε+

1

2
ρ`s Hs(F )

)
(2r′)s

≥ dmax

(
1 + 8 ρ`−1diamF

)s
(2r′)s (by (3.8))

≥ dmax

(
2r′ + 8 ρ`−1(2r′)diamF

)s

≥ dmax

(
2r′ + 8 ρ`+ndiamF

)s
.

That is

(3.9) Hs(F ∩Br′(x)) +
1

2
|ρ|(n+`)sHs(F ) > dmax

(
2r′ + 8 |ρ|`+ndiamF

)s
.

Define k = `+ n and r = r′ + 2|ρ|ku, where u = diamF . In the following we show that the

statements (i) and (ii) hold for Br(x) and k.

Assume that (i) is not true, towards a contradiction. Then

F ∩
{
y ∈ Rd : r′ + |ρ|ku ≤ |y − x| ≤ r′ + 3|ρ|ku

}
6= ∅.

Therefore there exists at least one i ∈ {1, . . . , N}k such that

φi(F ) ⊂
{
y ∈ Rd : r′ ≤ |y − x| ≤ r′ + 4|ρ|ku

}
.

It together with (3.9) yields

Hs(F ∩Br′+4|ρ|ku(x)) ≥ Hs(F ∩Br′(x)) + Hs(φi(F ))

≥ Hs(F ∩Br′(x)) + |ρ|ksHs(F )

> dmax(2r
′ + 8 |ρ|ku)s,

which contradicts the maximality of dmax. This finishes the proof of (i).

To prove (ii), observe that
⋃

i∈A φi(F ) ⊇ F ∩Br′(x). Thus

M |ρ|ks Hs(F ) ≥ Hs(F ∩Br′(x)).

Combining it with (3.9), we have

(M + 1/2) |ρ|ks Hs(F ) ≥ Hs(F ∩Br′(x)) + 1/2 |ρ|ks Hs(F )

> dmax(2r
′ + 8 |ρ|ku)s > dmax(2r)

s

and we are done.
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Proof of Theorem 1.1. By Lemma 3.2, it suffices to prove the theorem under the stronger

assumption that ψ(F ) ⊂ F . Let Br(x), k, A and M and dmax be given as in Lemma 3.3.

Assume that Theorem 1.1 is false, that is, log |λ|/ log |ρ| 6∈ Q. We derive a contradiction.

Choose ε > 0 such that (1 − ε)s(M + 1) ≥ (M + 1/2). Since log |λ|/ log |ρ| 6∈ Q, there

exist m,n ∈ N such that 1− ε < |ρ|m/|λ|n < 1. Define J = ψn(Br(x)). We will deduce that

(3.10) Hs(J ∩ F ) > dmax |J |s,

which contradicts the maximality of dmax.

To show (3.10), set J̃ = ψn(Br−|ρ|ku(x)), where u = diamF . By Lemma 3.3,

J̃ ∩ F ⊇ J̃ ∩ ψn(F ) = ψn(Br−|ρ|ku(x) ∩ F ) = ψn

(
⋃

i∈A

φi(F )

)
.

Hence

(3.11) Hs(J̃ ∩ F ) ≥ Hs

(
ψn
( ⋃

i∈M

φi(F )
))

= M |λ|ns |ρ|ks Hs(F ).

Define

R :=
{
i ∈ {1, · · · , N}m+k : φi(F ) ∩ J̃ 6= ∅

}

and R = #R. It is clear that
⋃

i∈R φi(F ) ⊃ J̃ ∩ F . Since |λ|n > |ρ|m, we have φi(F ) ⊂ J

for any i ∈ R. Thus

Hs(J ∩ F ) ≥ Hs(
⋃

i∈R

φi(F )) = R |ρ|(m+k)s Hs(F ) ≥ Hs(J̃ ∩ F ).

Combining the second inequality with (3.11) we obtain R > M and thus R ≥M+1. Hence

we have

Hs(J ∩ F ) ≥ (M + 1) |ρ|(m+k)s Hs(F )

> (M + 1) (1 − ε)s |λ|ns |ρ|ks Hs(F )

> (M + 1/2) |λ|ns |ρ|ks Hs(F )

> dmax |λ|ns (2r)s ( by (3.6))

= dmax |J |s.

This is a contradiction, finishing the proof of the theorem.
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4. The generating IFSs for C

In this section we determine all the generating IFSs for the standard middle-third Cantor

set C.

Let Φ = {φ0, φ1} be the standard generating IFS of C given by (1.1). Denote by {0, 1}∗

(resp. {0, 1}N) the collection of all finite (resp. infinite) words over the alphabet {0, 1}. A

finite subset B of {0, 1}∗ is called complete if each infinite word (in)∞n=1 has a prefix in B.

For i = i1i2 . . . im, write φi = φi1 ◦ · · · ◦φim , and define φi by φi(x) = −φi(x)+φi(0)+φi(1).

Since C is symmetric, we always have φi(C) = φi(C). The following result characterizes all

the generating IFSs for C.

Proposition 4.1. An IFS Ψ = {ψj}
N
j=1 is a generating IFS of C if and only if there exists

a complete subset B of {0, 1}∗ such that

(i) For each j, ψj = φi or ψ = φi for some i ∈ B.

(ii) For each i ∈ B, at least one of φi and φi belongs to Ψ.

The proof of Proposition 4.1 is based on the following lemma.

Lemma 4.2. Let ψ be a contracting similitude on R so that ψ(C) ⊂ C. Then ψ = φi or φi

for some i ∈ {0, 1}∗.

Proof. Denote by λ the contraction factor of ψ. Let k be the unique integer k so that

3−k−1 ≤ λ < 3−k. Since the middle hole in ψ(C) has length less than 3−(k+1), the interval

ψ([0, 1]) intersects exactly one of the intervals φu([0, 1]), u ∈ {0, 1}k+1. Denote this interval

by φi([0, 1]). Then φi([0, 1]) contains the two endpoints of ψ([0, 1]), and its length is not

great than that of ψ([0, 1]). It guarantees that ψ([0, 1]) = φi([0, 1]). Hence ψ = φi or φi.

Proof of Proposition 4.1. Suppose that B is a complete set in {0, 1}∗ so that the condi-

tions (i) and (ii) hold. Take any y ∈ C. Then there exists an infinite word ω = (in)∞n=1 such

that y = limn→∞ φi1 ◦ · · · ◦ φin(0). Since B is complete, there exists u ∈ B such that u is a

prefix of ω. Thus y ∈ φu(C) = φu(C), and hence y ∈ ψj(C) for some 1 ≤ j ≤ N by the con-

dition (ii). This means C ⊆
⋃

j ψj(C). Note that the condition (i) implies C ⊇
⋃

j ψj(C).

Hence C =
⋃

j ψj(C), i.e., Ψ is a generating IFS of C..
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Conversely, suppose C =
⋃N

j=1 ψj(C). By Lemma 4.2, each ψj equals φu or φu for some

u ∈ {0, 1}∗. Define B = {u ∈ {0, 1}∗ : φu = ψj or φu = ψj for some j}. It is clear that B

satisfies the condition (i) and (ii). We only need to show that B is complete. To see it, take

an arbitrary infinite word ω = (in)∞n=1 and let y = limn→∞ φi1 ◦ · · · ◦ φin(0). Then y ∈ C

and thus y ∈ ψj(C) for some j. Therefore y ∈ φu(C) = φu(C) for some u ∈ B. It implies

that u is a prefix of ω. Therefore B is complete, and we are done.
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