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Abstract. Simultaneous tiling for several different translational sets has been studied
rather extensively, particularly in connection with the Steinhaus problem. The study of
orthonormal wavelets in recent years, particularly for arbitrary dilation matrices, has led
to the study of multiplicative tilings by the powers a matrix. In this paper we consider the
following simultaneous tiling problem: Given a lattice in Rd and a matrix A ∈ GL(d,R),
does there exist a measurable set T such that both {T + α : α ∈ L} and {AnT : n ∈ Z}
are tilings of Rd? This problem comes directly from the study of wavelets and wavelet
sets. Such a T is known to exist if A is expanding. When A is not expanding the problem
becomes much more subtle. Speegle [22] exhibited examples in which such a T exists for
some L and nonexpanding A in R2. In this paper we give a complete solutions to this
problem in R2.

1. Introduction

The history of tiling goes as far back as the beginning of civilization. Tiling has been

studied in the history of mankind in many different contexts and for differnt purposes.

Mathematically we usually study tiling in the context of having a finite set of “shapes”called

prototiles and using congruent copies of these prototiles to cover the whole Euclidean space

without overlapping. Translational tiling is one such example, in which only the translations

of the prototiles are used to tile the space.

Recently attentions have been given to multiplicative tilings. In a multiplicative tiling

there is a finite set of prototiles {T1, T2, . . . , Tm} and sets of nonsingular d × d matrices
D1,D2, . . . ,Dm such that

AjTj : Aj ∈ Dj , 1 ≤ j ≤ m

is a partition of Rd. Here we define a partition in the most general sense, namely the sets
are disjoint in Lebesgue measure and their union is Rd up to a measure zero set, see e.g.

Key words and phrases. wavelet, waveletset, lattice tiling, multiplicative tiling, simultaneous tiling, con-
tinued fraction.
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Wang [23] and Speegle [22]. These studies are motivated in large part by the connection

with orthonormal wavelets, which we shall discuss later.

We first introduce some notations and terminologies. We say a collection of measurable

sets {Tj} in Rd is a tiling of Rd if it is a partition of Rd in the sense just described above.
A measurable set T is said to tile translationally by J , where J is a subset of Rd, if
{T + α : α ∈ J } is a tiling of Rd. In this paper, we are primarily concerned with

translational tiling by a lattice. Let A ∈ GL(d,R) be a d× d nonsingular matrix. We say a
measurable set T tiles multiplicatively by A if {An T : n ∈ Z} is a tiling of Rd. The main
question we ask in this paper is:

Problem. Given a matrix A ∈ GL(d,R) and a lattice L in Rd, does there exist a measurable
set T in Rd such that T tiles translationally by L and multiplicatively by A?
Simultaneous translational tiling using more than one lattice have been studied rather

extensively. One of the best known problem in tiling is the classic Steinhaus problem posed

by H. Steinhaus sometime in the 1950’s, which asks for the existence of a T ⊂ R2 that
tiles translationally by all lattices of the form RθZ2 where Rθ is a rotation matrix. It was
shown by Jackson and Mauldin [16] that such a T exists, but in their construction T is not

measurable. The problem remains open for measurable sets. Han and Wang [8] proved that

for any two lattices L1,L2 in Rd with the same co-volume there always exists a measurable
T ⊂ Rd such that T tiles translationally by both L1 and L2. This problem is motivated by

the study of Weyl-Heisenberg orthonormal bases for L2(Rd). Kolountzakis [18] established
conditions on lattices L1,L2, . . . ,Ln in Rd with the same co-volume for which a measurable
T exists that tiles translationally by each Lj . There are many other related studies on
translational simultaneous tilings, see the references in the aforementioned papers.

In contrast, the study of simultaneous translational and multiplicative tiling has only

begun very recently. One of the motivations for studying this problem is the connection

to orthonormal wavelets. For A ∈ GL(d,R) we call a function f ∈ L2(Rd) an orthogonal
wavelet with dilation A if the set of functions

|det(A)|n2 f(Anx− α) : n ∈ Z,α ∈ Zd

is an orthogonal basis for L2(Rd). Again, in general we can substitute Zd with any full
rank lattice. Since the seminal work of Daubechies [5] there has been an explosion in the
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study of wavelets and their applications in image compression, digital signal processing and

numerical computations. We shall not go into details about wavelets here and shall refer

the readers to Daubechies [6]. It should be pointed out that in most studies on wavelets the

dilation matrix A is assumed to be expanding, i.e. all eigenvalues have |λ| > 1. Furthermore,
a single dilation matrix is involved. In [23], the concept of wavelets is broadened to allow

more than one dilation matrix as well as nonexpanding matrices.

The role of tiling has appeared in the study of the following fundamental question in

wavelets: Given an expanding matrix A ∈ GL(d,R) is it always possible to find an orthog-
onal wavelet with dilation A? This question was answered by studying functions of the

form f = χT where T is a subset of Rd with finite measure. Dai and Larson [2]1proved the
following theorem:

Theorem 1.1 ([2]). Let A ∈ GL(d,R) and let T ⊂ Rd have finite measure. Then f = χT

is an orthogonal wavelet with dilation A if and only if T tiles Rd translationally by Zd and
multiplcatively by AT .

A set T that tiles Rd translationally by Zd and multiplcatively by AT simultaneously is
called a wavelet set with dilation A. Later, it was proved by Speegle, Dai and Larson [3]

that for an expanding or contracting A a wavelet set that is bounded exists. Many other

different constructions in the expanding case have been proposed, all of which involve cut

and paste, see e.g. [1, 3, 13, 21, 23]. One starts with a set T0 that tiles by A
T and covers Rd

translationally by Zd. The goal then is to move pieces of T0 around using a combination of
translations and dilations to get a wavelet set. The fact that A is expanding or contracting

plays a crucial role because it can be used multiplicatively to control the size of the pieces,

an important part of the constructions.

The existence of wavelet sets for nonexpanding matrices is a much more challenging

problem. Wang [23] exhibited an example of a wavelet set whose dilations consist more than

the powers of a single matrix, in which some dilations are neither expanding nor contracting.

But few people believed, or even thought about, the possibility of an orthogonal wavelet

with a single dilation matrix A that is neither expanding or contracting. However, Speegle

[22] recently has shown the existence of such wavelet sets (and hence orthogonal wavelets).

In particular, he has shown that for A = diag (a, b) where |b| < 1 and |ab| > 1 and the

1In their theorem the matrix A is assumed to be expanding, but it is clearly not needed.
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lattice L = Ze1+Z(e2+
√
5e1) there exists a measurable T that tiles Rd translationally by

Z2 and multiplcatively by A. More generally, the value
√
5 can be replaced with any β ∈ R

if β cannot be approximated by rationals to within certain order J = J(a, b). By a simple

linear transformation, one can show the existence of a matrix A ∈ GL(d,R) for d = 2 which
is neither expanding nor expanding, for which there is a wavelet set.

In this paper we give a complete classification in dimension d = 2 for the existence of

wavelet sets, or equivalently the existence of simultaneous tiling translationally by a lattice

and multiplicatively by A. We state our main theorems here.

Theorem 1.2. Let A ∈ GL(2,R) with |det(A)| ≥ 1. Let λ1,λ2 be the eigenvalues of A

with |λ1| ≥ |λ2|.

(a) If |λ1λ2| = 1, i.e. |det(A)| = 1, then there exists no wavelet set with dilation A.
(b) If |λ1| > 1 and |λ2| ≥ 1, then there exists a wavelet set with dilation A.
(c) If |λ1λ2| > 1 and |λ2| < 1, let v = [v1, v2]T be an eigenvector of AT for λ2. Then there

exists a wavelet set with dilation A if and only if v1/v2 ∈ R \Q.

Note that the assumption |det(A)| ≥ 1 is without any loss of generality. If a wavelet set
exists with dilation A then it is also a wavelet set with dilation A−1. We also remark that

part (a) of the theorem is due to [19], where it is shown that if |det(A)| = 1 then there

exists no T with finite measure such that T tiles multiplicatively by A. Furthermore, they

proved that a bounded wavelet set exists if and only if A is expanding or contracting. Our

next theorem is more general than Theorem 1.2, and it gives a complete classification of

the simultaneous tiling problem in R2.

Theorem 1.3. Let A ∈ GL(2,R) with |det(A)| ≥ 1 and eignevalues λ1,λ2, |λ1| ≥ |λ2|.
Let L = PZ2 be a lattice in R2 with P ∈ GL(2,R).

(a) If |λ1λ2| = 1, then there exists no measurable T ⊂ R2 such that T tiles translationally
by L and multiplicatively by A.

(b) If |λ1| > 1 and |λ2| ≥ 1, then there exists a measurable T ⊂ R2 such that T tiles

translationally by L and multiplicatively by A.
(c) If |λ1λ2| > 1 and |λ2| < 1, let v = [v1, v2]

T be an eigenvector of PAP−1 for λ2.

Then there exists a measurable T ⊂ R2 such that T tiles translationally by L and

multiplicatively by A if and only if v1/v2 ∈ R \Q.
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2. Some General Results

We focus here on general results concerning simultaneous multiplicative and translational

tilings. These results will be used to prove our main theorems. First we introduce some

terminologies.

Let Ω ⊂ Rd be a measurable set. We say Ω packs Rd translationally by L or simply Ω
packs by L, where L is a lattice in Rd, if {Ω+α : α ∈ L} are disjoint in measure. Similarly,
we say Ω packs Rd multiplicatively by A or simply Ω packs by A, where A ∈ GL(d,R), if
{AnΩ : n ∈ Z} are disjoint in measure. Since the construction of wavelet sets and tiles
often involve cut and paste, the concept of packing plays an important role in this paper.

Lemma 2.1. Let A ∈ GL(d,R) and L = PZd with P ∈ GL(d,R). Then a set T tiles

multiplicatively by A and translationally by L if and only if P−1T tiles multiplicatively by
P−1AP and translationally by Zd.

Proof. If {AnT : n ∈ Z} is a tiling then clearly so is {P−1AnT = (P−1AP )nP−1T : n ∈ Z},
and conversely. Similarly, if {T +Pα : α ∈ Zd} is a tiling then so is {P−1T +α : α ∈ Zd},
and conversely.

In the study of multiplicative tiling it is useful to study the address map. Let Ω be a

multiplicative tiles by A ∈ GL(d,R). Then the address map (induced by Ω) is the map
τΩ : Rd−→Ω given by

τΩ(x) = y if x = Any, y ∈ Ω.(2.1)

Note that for almost all x ∈ Rd there exist unique n ∈ Z and y ∈ Ω such that x = Any, so
the map is well defined almost everywhere. If S ⊂ Rd packs by A then τΩ|S is one-to-one
almost everywhere on S, and conversely. Furthermore, for such an S we can define the

index map (induced by S and Ω) φ : Ω−→Z given by

φ(y) =
n if Any ∈ S for some n ∈ Z
0 otherwise.

(2.2)
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Theorem 2.2. Let A ∈ GL(d,R) and L be a lattice in Rd. Suppose there exists an S ⊂ Rd
such that S tiles multiplicatively by A and packs translationally by L. Then there exists a
T ⊂ Rd such that T tiles multiplicatively by A and translationally by L.

Proof. Note that we must have |det(A)| W= 1, for otherwise S would have infinite measure
and cannot pack translationally by L, see [19]. It is also proved in [19] that if |det(A)| W= 1
then we can find an S0 ⊂ Rd such that S0 tiles multiplicatively by A and furthermore, the
construction in the paper clearly shows that we can require S0 to have nonempty interior.

Now, set S∗ = nS0 for some n sufficiently large. Again S∗ tiles multiplicatively by A. But

now S∗ contains a set F that tiles by L. Also, since S packs by L, there exists an F ∗ that
tiles by L with S ⊆ F ∗.
Now since both F, F ∗ tiles translationally by L, there exists a bijection (in the sense of

almost everywhere) ρ : F ∗−→F such that ρ(x) = x+ α(x) for some unique α(x) ∈ L. The
map τS : S

∗−→S is also a bijection since both S, S∗ tile by A. Let φ = ρ|S and ψ = τS |F .
Then both φ : S−→F and ψ : F−→S are one-to-one.
By the Schröder-Cantor-Bernstein construction there exists a measurable bijection h :

S−→F having the form

h(x) =
φ(x) x ∈ E
ψ−1(x) x ∈ S \E

for some E ⊆ S. A more precise form of E can be found in [12]. Clearly for each x ∈ S
there exist a unique n(x) ∈ Z and a unique α(x) ∈ L such that h(x) = An(x)x+ α(x). Let

T = {An(x)x : x ∈ S}. It is obvious that T tiles multiplicatively by A because S does.

Furthermore, T is congruent to F modulo the lattice L, so T also tiles by L.
The above theorem is established in special forms in [15] and [22]. It shows that to

prove the existence of simultaneous multiplicative and translational tilings one only needs

to prove the existence of simultaneous multiplicative tiling and translational packing. This

is precisely the strategy we follow to prove our main theorems.

Lemma 2.3. Let Ω ⊂ Rd with µ(Ω) < ∞ tile by A ∈ GL(d,R), |det(A)| > 1. Let Sn

pack Rd by A and φn : Ω−→Z be the index map induced by Sn and Ω. Assume that

limn→∞ µ(Sn) = 0 and lim infn φn(x) > −∞ for almost all x ∈ Ω. Then limn→∞ µ(τΩ(Sn)) =
0.
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Proof. Assume that µ(Ω) and µ(Sn) are all bounded by c > 0. Each Sn has a unique

decomposition Sn = m∈ZA
mRn,m (up to a null set) where Rn,m ⊆ Ω. Furthermore, τΩ is

injective on Sn so the sets {Rn,m} are disjoint in measure, and τΩ(Sn) = m∈ZRn,m. We

have

m∈Z
µ(Rn,m) ≤ µ(Ω) ≤ c,

m∈Z
βmµ(Rn,m) = µ(Sn) ≤ c,(2.3)

where β := |det(A)| > 1. For any ε > 0, note that m≥N βmµ(Rn,m) ≤ c so

m≥N
µ(Rn,m) ≤ cβ−N .

Hence for all N ≥ N0(ε) we have m≥N µ(Rn,m) < ε.

Since lim infn φn(x) > −∞ for almost all x ∈ Ω, there exists an N1 = N1(ε) such that

for all N,n ≥ N1 we have

µ({x ∈ Ω : φn(x) < −N}) < ε,

which is equivalent to m<−N µ(Rn,m) < ε. Now pick N ≥ N0, N1 and we have

|m|>N
µ(Rn,m) =

m>N

µ(Rn,m) +
m<−N

µ(Rn,m) < 2ε.

In addition,

|m|≤N
βmµ(Rn,m) ≤ µ(Sn)−→0 as n→∞.

So there exists an N2 such that |m|≤N µ(Rn,m) < ε for all n ≥ N2. Thus for n ≥ N2 we
have

m∈Z
µ(Rn,m) < 3ε.

It follows that µ(τΩ(Sn)) = m∈Z µ(Rn,m)−→0 as n→∞.

Lemma 2.4. Let Ω ⊂ Rd with µ(Ω) <∞ tile by A ∈ GL(d,R), |det(A)| > 1. Let Sn pack
Rd by A and φn : Ω−→Z be the index map induced by Sn and Ω. Assume S∗ ⊂ Rd with
µ(S∗) <∞ such that limn→∞ µ(Sn∆S∗) = 0, where ∆ denotes the symmetrical difference.

Then

(a) S∗ packs Rd multiplicatively by A.
(b) Assume that limn→∞ µ(τΩ(Sn)∆Ω) = 0 and lim infn φn(x) > −∞ for almost all x ∈ Ω.

Then S∗ tiles Rd multiplicatively by A.
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Proof. (a) is stated in [22] without a proof. It is quite straightforward, but we will furnish

a proof here. Assume it is false then µ(AkS∗ ∩ AlS∗) = δ > 0 for some k W= l. But

limn µ(Sn∆S
∗) = 0. It follows that µ(AkSn ∩ AlSn) ≥ δ/2 > 0 for sufficiently large n, a

contradiction.

We now prove (b) by proving τΩ(S
∗) = Ω. Assume it is false. Then µ(Ω \ τΩ(S∗)) > 0.

Hence there exists a δ > 0 such that µ(τΩ(Sn)\τΩ(S∗)) > δ for all sufficiently large n. Thus

µ(τΩ(Sn \ S∗) > δ for sufficiently large n. We shall derive a contradiction.

Set Rn = Sn \ S∗. Then limn µ(Rn) = 0. Note that by assumption lim infn φn(x) > −∞
for almost all x ∈ Ω. Let ψn be the index map induced by Rn and Ω. Then either

ψn(x) = φn(x) or ψn(x) = 0 because Rn ⊆ Sn. Thus lim infn ψn(x) > −∞ for almost all

x ∈ Ω. It follows from Lemma 2.3 that limn µ(τΩ(Rn)) = 0, a contradiction.

The next theorem is a stronger and more general version of Theorem 3.2 in [22]. We also

give a different proof here, using the above lemmas.

Theorem 2.5. Let L be a lattice in Rd and A ∈ GL(d,R) with |det(A)| > 1. Suppose

that for any bounded set S ⊂ Rd there are infinite many n ∈ N such that A−nS packs

translationally by L. Then there exists a T ⊂ Rd such that T tiles Rd multiplicatively by A
and translationally by L.

Proof. By [19] there exists an Ω with µ(Ω) = c <∞ and Ω tiles multiplicatively by A. If Ω

is also bounded then we can find m1 > 0 such that A
−m1Ω packs by L. Since A−m1Ω also

tiles by A, the theorem follows from Theorem 2.2. Thus we shall assume Ω is unbounded.

Denote Ωn = Ω ∩ [−Mn,Mn]
d, where 0 < M1 < M2 < · · · with the property that

µ(Ω \ Ωn) ≤ 4−nc. Write Ω0 = ∅ and Rn = Ωn \ Ωn−1 for n ≥ 1. Then {Rn} are disjoint
and

Ω =
∞

k=1

Rk, Ωn =
n

k=1

Rk.

The idea is to use {Rn} to construct a sequence of sets {Sn} satisfying the conditions of
Lemma 2.4 (b).

Let S1 = A−m1Ω1 such that S1 packs by L. This m1 exists since Ω1 is bounded. We

construct recursively Sn for n ≥ 2 satisfying the following properties:

(a) Sn packs by L and τΩ(Sn) = Ωn.
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(b) µ(Sn∆Sn−1) ≤ 4−nµ(S1).
(c) Each φn is bounded and the set Xn := {x ∈ Ω : φn(x) W= φn−1(x)} has µ(Xn) ≤ 2c/4n,

where c = µ(Ω) and φn is the index map induced by Sn and Ω.

Assume such Sn’s exist. Observe that for all n > m we have

µ(Sn∆Sm) ≤
n−1

k=m

µ(Sk+1∆Sk) ≤
n−1

k=m

1

4k+1
µ(S1) <

2

4m
µ(S1).(2.4)

So {Sn} is a Cauchy sequence in the sense of symmetrical difference, and there exists an
S∗ such that limn µ(Sn∆S∗) = 0. Furthermore, taking m = 1 in (2.4) yields µ(Sn∆S1) <

µ(S1)/2, so µ(Sn) > µ(S1)/2. This means S
∗ has positive measure. By Lemma 3.1 in [22],

S∗ packs by A and L. Now let

Yn := x ∈ Ω : φn(x) W= φk(x) for all k > n .

Then (c) yields

µ(Yn) ≤
k>n

µ(Xk) ≤
k>n

2c

4k
<
c

4n
.

Since each φn is bounded on Ω, it follows that lim infn φn(x) > −∞ for almost all x ∈ Ω.
Hence S∗ tiles multiplicatively by A. The theorem follows from Theorem 2.2.

It remains to prove that such Sn’s exist. Assume Sn−1 has been constructed, n > 1. We

construct Sn. Let mn > 0 such that A
−mnΩn packs by L. Let

Un = Sn−1 ∩ A−mnΩn + L .

Since both Sn−1 and A−mnΩn pack by L, it is easy to see that

µ(Un) ≤ µ(A−mnΩn) ≤ |det(A)|−mn 4−nc.

Now φn−1 is bounded, so φn−1(x) ≥ −an−1 for some an−1 > 0. This means that for

each x ∈ Sn−1 there exists a k ≤ an−1 such that x = A−kτΩ(x). Hence µ(τΩ(Un)) ≤
|det(A)|an−1µ(Un). By choosing mn ≥ an−1 sufficiently large we have µ(τΩ(Un)) ≤ 4−nc
and µ(A−mnΩn) ≤ 4−nµ(S1). We now define

Sn = (Sn−1 \ Un) ∪A−mnτΩ(Un) ∪A−mnRn.

It is clear that Sn packs by L, and τΩ(Sn) = τΩ(Sn−1)∪Rn = Ωn. So (a) is satisfied. Also,

µ(Sn∆Sn−1) ≤ µ(Un) + µ(A−mn(τΩ(Un) ∪Rn)) ≤ 2µ(A−mnΩn) ≤ µ(S1)
4n

.
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So (b) is satisfied. Finally, observe that φn(x) = −mn for x ∈ τΩ(Un) ∪ Rn but φn(x) =
φn−1(x) everywhere else. So φn is bounded. Furthermore,

µ(Xn) ≤ µ(τΩ(Un) ∪Rn) < 2c

4n
.

This yields (c). The proof of the theorem is now complete.

3. Proof of Main Theorems

We now prove our main theorems. The proofs are divided into several propositions for

different cases. A key ingredient is the approximation of irrational numbers by rational

numbers.

We first consider the case in which A ∈ GL(2,R) has eigenvalues λ1,λ2 with |λ1| > |λ2| =
1. In this case, both λ1,λ2 are necessarily real, and λ2 = ±1.

Proposition 3.1. Let A ∈ GL(2,R) with eigenvalues λ1,λ2, |λ1| > |λ2| = 1. Assume A

has no rational eigenvectors for λ2. Then there exists a measurable T ⊂ R2 such that T
tiles translationally by Z2 and multiplicatively by A.

Proof. Let v1 and v2 be eigenvectors of A for λ1 and λ2, respectively. By assumption we

may assume v2 = [1,β]
T where β ∈ R \Q. We use Theorem 2.5 to complete the proof. Let

S be any bounded set in R2. We prove A−nS packs translationally by Z2 for all sufficiently
large n. Since S ⊆ {sv1 + tv2 : |s|, |t| ≤ K} for some K > 0, we may without loss of

generality assume S = {sv1 + tv2 : |s|, |t| ≤ K}. Observe that
A−nS = {sv1 + tv2 : |s| ≤ |λ1|−nK, |t| ≤ K},

which approaches the straightline segment L = {tv2 : |t| ≤ K} in Hausdorff metric.
Now v2 = [1,β]

T has irrational slope, so the line segments {L+α : α ∈ Z2} are disjoint.
Let ε0 = dist (L,Z2 \ {0}) > 0. Then the distance between L+α1 and L+α2 is at least ε0

for any α1 W= α2. It follows that for sufficiently large n, by making |λ1|−nK < ε0/3, the sets

{A−nS +α : α ∈ Z2} are disjoint. Thus A−nS packs by Z2 for sufficiently large n, proving
the proposition.

Proposition 3.2. Let A ∈ GL(2,R) with eigenvalues λ1,λ2, |λ1| > |λ2| = 1. Assume A

has a rational eigenvector for λ2. Then there exists a measurable T ⊂ R2 such that T tiles
translationally by Z2 and multiplicatively by A.
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Proof. Let v2 = [p, q]
T be an eigenvector of A for λ2, with p, q ∈ Z and gcd (p, q) = 1. Let

v1 ∈ Z2 with the property that P = [v1,v2] has det(P ) = 1, where the columns of P are

v1 and v2. For this P we have

P−1AP = λ1 0
b λ2

, PZ2 = Z2.

Now, take Q = 1 0
t 1 with t = b

λ1−λ2 . Then Q−1P−1APQ = diag(λ1,λ2). Let B =

diag(λ1,λ2). By Lemma 2.1 it suffices to prove there exists a T such that T tiles transla-

tionally by Q−1P−1Z2 = Q−1Z2 and multiplicatively by B.

We prove the existence by an explicit construction. Denote Un = [−an, an+1)∪ (an+1, an]
where an =

1
2 |λ1|−n. It is clear that λ−11 Un = Un+1, {Un} is a partition of R, and ∞

n=0 Un =

[−1/2, 1/2] up to a null set. Let In = [−12 − n,−n] ∪ [n, n+ 1
2 ] and Ωn = Un × In, n ≥ 0.

Observe that each In tiles R translationally by Z. So Ωn + {0} × Z = Un × R. Set

T = ∞
n=0Ωn.

Now, B−kΩn = Un+k × In. Thus k∈ZB
−kΩn = R × In with the union disjoint. So

k∈ZB
−kT = R2 with the union disjoint. Hence T tiles by B. It remains to prove T tiles

R2 by Q−1Z2. This follows from the observation that {T + [0, k]T : k ∈ Z} is a partition of
[−1/2, 1/2]× R. Hence T tiles translationally by Q−1Z2.
The more difficult part of our theorems concerns the case in which |λ1| > 1 and |λ2| < 1.

In this case again both λ1,λ2 ∈ R, so there exists a P ∈ GL(2,R) such that P−1AP =

diag (λ1,λ2). It thus suffices to consider a diagonal matrix and ask which lattices L lead to
simultaneous translational and multiplicative tilings by L and A.

Lemma 3.3. Let β ∈ R \Q and let pn/qn be the n-th convergent of the continued fraction

expansion of β, qn > 0. DenoteMn = qn−1. Let c, ε > 0. Then there exists an n0 = n0(c, ε)
such that if n ≥ n0 the for any p, q ∈ Z with gcd(p, q) = 1, 1 ≤ q ≤Mn we have

β − p
q
≥ c

qM1+ε
n

.

Proof. Choose n0 so that for all n ≥ n0 we have c/M
ε
n < 1/2, and qk ≤ qn − 2 for all

1 ≤ k < n. Assume the lemma is false, then there exist p∗, q∗ ∈ Z, gcd(p∗, q∗) = 1 and

1 ≤ q∗ ≤Mn such that

β − p
∗

q∗
<

c

q∗M1+ε
n

<
1

2q∗Mn
≤ 1

2q∗2
.(3.1)
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It follows that p∗/q∗ = pk/qk for some k < n, see e.g. [17]. But we know from the properties

of continued fractions that

β − p
∗

q∗
= β − pk

qk
≥ 1

qk(qk+1 + qk)
,

see also [17]. Now qk ≤ qn − 2, so qk+1 + qk ≤ 2Mn. Thus β − p∗
q∗ ≥ 1

2q∗Mn
, which

contradicts (3.1).

Proposition 3.4. Let A = diag (λ1,λ2) with |λ1| > 1 > |λ2| and |λ1λ2| > 1. Let L =
Zu + Zv be a full rank lattice in R2 with u = [u1, u2]

T and v = [v1, v2]
T . Assume that

u1/v1 ∈ R \Q. Then there exists a measurable T ⊂ R2 such that T tiles translationally by
L and multiplicatively by A.

Proof. Write a = |λ1| and b = |λ2|−1. Then we have a > b > 1. We use Theorem 2.5 and

prove that for any bounded S ⊂ R2 there exist infinitely many n > 0 such that A−nS packs
by L. Assume this is false then there exists a bounded S ⊂ R2 such that A−nS does not
pack by L for all suffciently large n. We derive a contradiction.
Without loss of generality we assume that S = [−r, r]2 for some r. Hence A−nS =

[−ra−n, ra−n]× [−rbn, rbn]. Assume that A−nS does not pack translationally by L. Since
L is a laatice, we can find an α W= 0 in L such that A−nS ∩ (A−nS + α) W= ∅. Therefore
α ∈ A−nS − A−nS, which gives α ∈ [−2ra−n, 2ra−n]× [−2rbn, 2rbn]. Let α = qu+ pv for
p, q ∈ Z. Since u,v are independent, there exists a C > 0 such that |p|, |q| ≤ Cbn.
Now write α = [x0, y0]

T . Then qu1 + pv1 = x0. Note that |x0| ≤ 2ra−n. It follows that
u1
v1
+
p

q
≤ 2r|v1|

−1

|q|an .(3.2)

Choose n = mk such that Cb
mk ≤ Mk < Cbmk+1 where Mk are defined in Lemma 3.3.

Write a = b1+ε, ε > 0. Then

amk ≥ bmk 1+ε ≥ (Cb)−1−εM1+ε
k .

Thus from (3.2) we obtain

u1
v1
+
p

q
=
u1
v1
− p0|q| ≤

2r|v1|−1(bC)1+ε
|q|M1+ε

k

,(3.3)

where p0/|q| = −p/q. Note that |q| ≤Mk. By Lemma 3.3 we have

u1
v1
− p0|q| >

2r|v1|−1(bC)1+ε
|q|M1+ε

k
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for all sufficiently large k. This is a contradiction.

Proposition 3.5. Let A = diag (λ1,λ2) with |λ1| > 1 > |λ2| and |λ1λ2| > 1. Let L =
Zu + Zv be a full rank lattice in R2 with u = [u1, u2]

T and v = [v1, v2]
T . Assume that

u1/v1 ∈ Q. Then there exists no measurable T ⊂ R2 such that T tiles translationally by L
and multiplicatively by A.

Proof. We first consider the case u = [1, c]T and v = [0, 1]T . Then F = (−1/2, 1/2]2
is a fundamental domain of L, i.e. it tiles by L. We also observe that the set Ω =

{[x1, x2]T : |λ1|−1 < 2|x1| ≤ 1, x2 ∈ R} tiles multiplicatively by A.
Assume that a measurable T ⊂ R2 exists such that T tiles translationally by L and

multiplicatively by A. Because T tiles by L there is a map pF : T−→F , which is one-to-one
a.e., such that x = pF (x) + α(x) for some unique α(x) ∈ L. We have already introduced
the address map τT induced by T in (2.1). since both Ω and T tile by A, τT : Ω−→T is
bijective a.e.. Let φ : Ω−→F be given by φ = pF ◦ τT .
By definition of τT we have τT (x) = A

n(x)x for some n(x) ∈ Z. Let
Ωn = {x ∈ Ω : τT (x) = Anx}.

Then {Ωn : n ∈ Z} is a partition of Ω. Since translations are measure preserving we have
µ(φ(Ωn)) = |det(A)|nµ(Ωn). It follows that for n ≥ 0

∞

n=0

µ(Sn) =
∞

n=0

|det(A)|−nµ(φ(Ωn)) ≤
∞

n=0

µ(φ(Ωn)) ≤ 1.(3.4)

For n < 0 observe that An[x1, x2]
T = [λnx1,λ

n
2x2]

T . Now |x1| ≤ 1/2 for any [x1, x2]T ∈ Ωn.
So pF (A

n[x1, x2]
T ) = [λnx1, z2]

T for some |z2| ≤ 1/2, and thus
φ(Ωn) ⊆ [−|λ1|n/2, |λ1|n/2]× [−1/2, 1/2].

Hence µ(φ(Ωn)) = |det(A)|nµ(Ωn) ≤ |λ1|n, which yields µ(Ωn) ≤ |λ2|−n. Thus
∞

n<0

µ(Ωn) =
∞

n<0

|λ2|−n <∞.(3.5)

Combining (3.4) and (3.5) yields µ(Ω) <∞, a contradiction.
We now complete the proof of the proposition. In the general case, let u1/v1 ∈ Q. Thus

we can find a β ∈ R such that βu1 = p, βv1 = q for some p, q ∈ Z, gcd(p, q) = 1. By

Lemma 2.1 it suffices to prove there exists no measurable T such that T tiles translationally
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by βL and multiplicatively by A. Let r, s ∈ Z such that rp + sq = 1, and let Q = r −q
s p .

Then det(Q) = 1,

βL = p q
βu2 βv2

Z2 = p q
βu2 βv2

QZ2 = 1 0
b1 b2

Z2

for some b1, b2 ∈ R. Finally, set P1 = diag(1, b−12 ). Then P
−1
1 AP1 = A and P1(βL) =

Z[1, c]T + Z[0, 1]T where c = b1/b2, and it suffices to prove there exists no measurable T

such that T tiles translationally by Z[1, c]T + Z[0, 1]T and multiplicatively by A. But this
is precisely what we have proved earlier.

Proof of Theorem 1.3. Let L = PZ2 with P ∈ GL(2,R). By Lemma 2.1 there exists a
measurable set T that tiles by L and A if and only if there exists a measurable set T1 that
tiles by Z2 and P−1AP .

(a) If |det(A)| = 1 then there exists no T such that µ(T ) <∞ and T tiles multiplicatively

by A. Thus any T that tiles by A cannot tile translationally by L.
(b) By Propositions 3.1 and 3.2, there exists a measurable T1 ⊂ R2 such that T1 tiles by Z2
and P−1AP . So there exists a measurable set T ⊂ R2 that tiles by L and A.
(c) Let B = P−1AP . In this case both λ1 and λ2 are real. Hence there exists aQ ∈ GL(2,R)
such that Q−1BQ = diag(λ1,λ2). By Lemma 2.1 the existence of a measurable T1 that

tiles R2 translationally by Z2 and multiplicatively by B is equivalent to the existence of

a measuable T2 such that T2 tiles R2 translationally by Q−1Z2 and multiplicatively by
Q−1BQ = diag(λ1,λ2). Let Q = [u,v] where u,v are the columns of Q, which are the

eigenvectors of B = P−1AP for the eigenvalues λ1 and λ2, respectively. Hence

Q =
u1 v1
u2 v2

, Q−1 =
1

det(Q)

v2 −v1
−u2 u1

.

By Propositions 3.4 and 3.5, a measurable T2 that tiles translationally by Q
−1Z2 and

multiplicatively by diag(λ1,λ2) if and only if v1/v2 ∈ R \Q. This proves the theorem.

Proof of Theorem 1.2. Since a wavelet set in R2 is a measurable set T that tiles trans-
lationally by Z2 and multiplicatively by AT , this theorem is a clearly corollary of Theorem

1.3.
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