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Abstract

We consider functions ϕ ∈ L2(Rd) such that {| det(D)| 12ϕ(Dx−λ) : D ∈ D, λ ∈ T }
forms an orthogonal basis for L2(Rd), where D ⊂Md(R) and T ⊂ R

d. Such a function
ϕ is called a wavelet with respect to the dilation set D and translation set T . We study
the following question: Under what conditions can a D ⊂ Md(R) and a set T ⊂ R

d

can be used as respectively the dilation set and the translation set of a wavelet? When
restricted to wavelets of the form ϕ = χ̌Ω, this question has a surprising tie to spectral
sets and their spectra.

Key words and phrases. Wavelet, wavelet set, dilation, translation, spectral set, spec-
trum, spectral pair, multiplicative tiling, complementing set.

1 Introduction

Let ϕ(x) ∈ L2(Rd). We call ϕ(x) a wavelet if there exist a set of d× d real matrices D and
a subset T of R

d such that{
|det(D)| 12ϕ(Dx− λ) : D ∈ D, λ ∈ T

}
(1.1)

forms an orthogonal basis for L2(Rd). The sets D and T are called the dilation set and the
translation set for the wavelet ϕ(x), respectively.

Problem. Characterize the pairs (D,T ) that are dilation sets and translation sets, respec-
tively, of some wavelets.

Wavelets arise in many applications in both pure and applied mathematics. They play a
key role in digital signal processing and scientific computations. The simplest wavelet is the
Haar wavelet ϕ(x) = χ[0,1/2](x) − χ[1/2,1)(x) for the dilation set D = {2n : n ∈ Z} and the
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translation set T = Z, constructed by A. Haar in 1910. Later Daubechies [Dau] constructs
a family of compactly supported wavelets for the same dilation and translation sets, which
can be made arbitrarily smooth. The methods in [Dau] have been used to construct a
wide variety of wavelets in R

d. However, all such wavelets have lattice translation sets and
dilation sets {An : n ∈ Z} for some expanding integer matrix A with |det(A)| = 2. (For
dilation matrix with |detA| > 2 more than one wavelet function are needed.)

In a different direction, several authors study wavelets from their Fourier transforms,
see e.g. [HW] and the references therein. Fang and Wang [FW] introduce the minimally
supported frequency wavelets (MSF wavelet), which are studied also in Hernández, Wang
and Weiss [HWW1], [HWW2] and by other authors. In particular Dai and Larson [DL]
consider a special kind of MSF wavelets ϕ, which satisfy ϕ̂ = χΩ for some measurable sets
Ω in R

d. They prove that such a ϕ(x) is a wavelet with dilation set D = {2n : n ∈ Z} and
translation set T = Z if and only if

(i) The sets {Ω + λ : λ ∈ Z} is a tiling of R.

(ii) The sets {2nΩ : n ∈ Z} is a tiling of R.

In other words, Ω must tile R both translationally and multiplicatively. Here we use the
term tiling loosely. A collection of measurable sets {Ωj} is a tiling of R

d if it is a measure-
wise disjoint partition of R

d. The result is later extended to higher dimensions in [DLS]
for T = Z

d and D = {An : n ∈ Z} where A is any expanding d × d matrix. Such an Ω is
refered to as a wavelet set (with respect to D and T ).

All the studies on wavelets so far, whether from multiresolution analyses or from fre-
quency constructions, consider wavelets whose dilation sets consist of all the powers of a
single matrix and whose translation sets are lattices. These dilation sets and translation sets
are rather “regular.” Naturally, we may ask whether there are other dilation and translation
sets. In particular, we may ask:

Question. Is it possible for a wavelet to have “irregular” dilation and translation sets D
and T ? Can we have an aperiodic T and a noncommutative D?

We will answer the above question in affirmative in this paper. To do so we consider
wavelet sets in the most general setting. Let D ⊆ GL(d,R), the set of all nonsingular d× d
matrices and T ⊆ R

d. A measurable set Ω ⊂ R
d with Lebesgue measure 0 < µ(Ω) < ∞ is

called a wavelet set with respect to the dilation set D and the translation set T if ϕ(x) =
χ̌Ω(x) is a wavelet with respect to D and T . We study the following question: For which
pairs of dilation sets D and translation sets T do there exist a wavelet set Ω?

This question is closely related to spectral sets and tiling. A set Ω ⊂ R
d with 0 <

µ(Ω) < ∞ is called a spectral set if there exists a T ⊆ R
d such that {e2πi〈λ,ξ〉 : λ ∈ T } is

an orthogonal basis for L2(Ω). In this case we call T a spectrum of Ω and (Ω,T ) a spectral
pair. Spectral sets relate to tiling by the following conjecture, due to Fuglede [Fug]:

The Spectral Set Conjecture. A set Ω ⊂ R
d with 0 < µ(Ω) <∞ is a spectral set if and

only if Ω tiles R
d by translation.
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The Spectral Set Conjecture is not resolved in either direction, even in dimension one.
There are many other questions concerning spectral sets, particularly related to tiling. Some
of these questions are very much related to the theme of this paper. We refer the readers
to [JP99], [LW97], [LRW], [Lab2] and the references therein for results on spectral sets.

We establish the following tie between wavelet sets and spectral sets:

Theorem 1.1 Let D ⊂ GL(d,R) and T ⊂ R
d. Let Ω be a subset of R

d with positive and
finite Lebesgue measure. If {DT (Ω) : D ∈ D} is a tiling of R

d and (Ω,T ) is a spectral pair,
then ϕ = χ̌Ω is a wavelet with respect to D and T . Conversely, if ϕ = χ̌Ω is a wavelet with
respect to D and T and 0 ∈ T , then {DT (Ω) : D ∈ D} is a tiling of R

d and (Ω,T ) is a
spectral pair.

It was shown by Fuglede [Fug] that Ω tiles by a lattice L if and only if (Ω,L∗) is a
spectral pair, where L∗ is the dual lattice of L. Therefore condition (i) in the theorem of
Dai and Larson [DL] stated earlier can be more appropriately stated as: (i’) (Ω,Z) is a
spectral pair. In fact, this is what the authors have shown.

The condition 0 ∈ T in Theorem 1.1 cannot be dropped, as shown by Example 1 in §4.
There are two main objectives in this paper: The study of the structure of the dilation

set D for a wavelet set, and the existence of wavelet sets for a given pair D and T . We show
that by allowing more general dilation sets D we can obtain some very elegant wavelets
through simple wavelet sets. This contrasts sharply with the more restricted notion of
wavelet sets where the dilation set D must have the form {An : n ∈ Z} for some expanding
matrix A, for which non-fractal like wavelet sets are difficult to construct.

For the rest of the paper, we state our other main theorems in §2. We then prove the
theorems in §3.

Throughout this paper, the Fourier transform is defined as ϕ̂(ξ) =
∫

R
e2πi〈ξ,x〉ϕ(x) dx

and the inverse Fourier transform is defined as ψ̌(x) =
∫

R
e−2πi〈x,ξ〉ψ(ξ) dξ.

The author wishes to thank David Larson; this paper is partly inspired by a conversation
with him during the 1999 AMS meeting in Charlotte. Many thanks should particularly go
to Jeff Lagarias, who made several valuable comments for improving the paper. Finally,
the author wishes to thank Steen Pedersen for pointing to several references.

2 Statement of Main Theorems

An important notion in the study of wavelet sets is multiplicative tiling.

Definition 2.1 Let D ⊆ GL(d,R). D is a multiplicative tiling set of R
d if there exists a

bounded Ω ⊂ R
d of positive Lebesgue measure, with dist (Ω, 0) > 0, such that {D(Ω) : D ∈

D} is a tiling of R
d. The set Ω is called a multiplicative D-tile. D is said to be A-invariant

for some A ∈ GL(d,R) if DA = D.

Note that in the case of a translational tile we often require the tile be bounded. Since in
some sense multiplicative tilings can be viewed as translational tiling after taking logarithm,
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the requirement dist (Ω, 0) > 0 is in fact natural and necessary for {log |ξ| : ξ ∈ Ω} to be
bounded.

We say that a multiplicative tilings set D satisfies the interior condition if there exists
a multiplicative tile Ω for D such that Ω has nonempty interior. Similar to the interior
condition for multiplicative tiling sets, we say that a spectrum T has interior condition if
there exists a spectral set Ω with spectrum T whose interior is nonempty.

Theorem 2.1 Let D ⊂ GL(d,R) such that DT := {DT : D ∈ D} is a multiplicative tiling
set, and let T ⊂ R

d be a spectrum, with both DT and T satisfying the interior condition.
Suppose that DT is A-invariant for some expanding matrix A and T − T ⊆ L for some
lattice L of R

d. Then there exists a wavelet set Ω with respect to D and T .

The assumption T −T ⊆ L is equivalent to T ⊆ L+λ0 for some λ0 ∈ R
d. In dimension

one all known spectra have this property. Counterexamples exist in higher dimensions, the
simplest of which being the spectra for the unit cube. They can be rather aperiodic, see
[LRW] and [IP]. The assumption that DT and T have the interior condition is most likely
unnecessary. All known examples of multiplicative tiling sets admit a tile having nonempty
interior, and likewise for spectra.

Corollary 2.2 Let D ⊂ GL(d,R) such that DT is an A-invariant multiplicative tiling set
with interior condition, where A ∈ Md(R) is expanding. Let T be a lattice in R

d. Then
there exists a wavelet set Ω with respect to D and T .

Corollary 2.3 ([DLS]) Let D = {Aj : j ∈ Z} for some expanding A ∈ Md(R). Let T be
a lattice in R

d. Then there exists a wavelet set Ω with respect to D and T .

In the one dimension, the structure of positive multiplicative tiling sets follows from the
study by Lagarias and Wang [LW96] on translational tiles in R. A key notion here is a
special type of subsets of Z called complementing sets. Suppose that A ⊂ Z and let N > 1
be an integer. The set A is called a complementing set (mod N) if there exists a set B ⊂ Z

such that A + B is a direct sum and is a complete set of residues (mod N). The set B is
called a complement of A (mod N).

Theorem 2.4 Let D ⊂ R. Then

(i) Suppose that D ⊂ R
+. Then D is a multiplicative tiling set if and only if D =

{asβ : β ∈ E}, where a, s > 0, s 6= 1 and E = A + NZ for some complementing set
A (mod N).

(ii) Denote |D| := {|t| : t ∈ D} (counting multiplicity). Then D is a multiplicative
tiling set for a centrally symmetric multiplicative tile if and only if |D| is a positive
multiplicative tiling set, i.e. |D| = {asβ : β ∈ E}, where a, s > 0, s 6= 1 and
E = A +NZ for some complementing set A (mod N).
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Centrally symmetric wavelet sets are important, as the resulting wavelets are real. The-
orem 2.4 states that if we take a positive multiplicative tiling set D then we may change
the sign of any subset of D, and the resulting set is still a multiplicative tiling set for a
symmetric tile.

Theorem 2.5 Let D ⊂ R such that |D| is a multiplicative tiling set. Then

(i) For any spectrum T with the interior condition such that T −T ⊆ cZ for some c 6= 0
there exists a wavelet set Ω with respect to D and T .

(ii) For any lattice T there exists a centrally symmetric wavelet set Ω with respect to D
and T .

3 Proof of Theorems

Proof of Theorem 1.1. Let ϕ(x) = χ̌Ω(x). Then {ϕD,λ : D ∈ D, λ ∈ T } is an orthogonal
basis for L2(Rd) if and only if {ϕ̂D,λ : D ∈ D, λ ∈ T } is. Note that

ϕ̂D,λ(ξ) = |detD|− 1
2 eD−1λ(ξ)χDT (Ω)(ξ), (3.1)

where eω(ξ) := e2πi〈ω,ξ〉.

⇐ Since (Ω,T ) is a spectral pair, the set of exponentials {eλ(ξ) : λ ∈ T } is an orthogonal
basis for L2(Ω). It follows that {eD−1λ(ξ) : λ ∈ T } is an orthogonal basis for L2(DT (Ω)).
Now, Ω tiles R

d multiplicatively by {DT : D ∈ D}. Hence {eD−1λ(ξ) : D ∈ D, λ ∈ T } is
an orthogonal set of functions in L2(Rd). It is in fact a basis because {DT (Ω) : D ∈ D} is
a partition of R

d.

⇒ Let Ω be a wavelest set with respect to T and D with 0 ∈ T . So {ϕ̂D,λ : D ∈ D, λ ∈ T }
is an orthogonal basis for L2(Rd). Fix λ = 0 ∈ T . Then {ϕ̂D,0 : D ∈ D} is orthogonal. By
(3.1)

ϕ̂D,0(ξ) = |detD|− 1
2χDT (Ω)(ξ).

Hence {DT (Ω) : D ∈ D} must be disjoint measure-wise. Furthermore, supp ϕ̂D,λ ⊆ DT (Ω).
It follows from the fact that {ϕ̂D,λ : D ∈ D, λ ∈ T } is a basis that {DT (Ω) : D ∈ D} must
be a tiling of R

d.

Now fix a D ∈ D. Since {DT (Ω) : D ∈ D} is a tiling, the set of exponentials
{eD−1λ(ξ) : λ ∈ T } must be an orthogonal basis for L2(DT (Ω)) by (3.1). This means
that {eλ(ξ) : λ ∈ T } must be an orthogonal basis for L2(Ω). Hence (Ω,T ) is a spectral
pair.

We give an example in §4 showing that the assumption 0 ∈ T cannot be removed.

To prove the existence of wavelet sets we first establish several lemmas concerning spec-
tral sets. Let L be a full rank lattice in R

d. The dual lattice L∗ of L is defined as

L∗ :=
{
α ∈ R

d : 〈α, β〉 ∈ Z for all β ∈ L
}
.
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The next two lemmas are have been proved in [Jor] and [JP92] respectively. We include
the proofs here for completeness.

Lemma 3.1 Let (Ω,T ) be a spectral pair such that T − T ⊆ L for some full rank lattice L
in R

d. Let α ∈ L∗. Then Ω and Ω + α are measure-wise disjoint.

Proof. Without loss of generality we may assume that 0 ∈ T . Therefore T ⊆ L. In
particular eλ(−α) = 1 for all λ ∈ T . Define

Ω1 =
{
ξ ∈ Ω : ξ + α ∈ Ω

}
and assume that µ(Ω1) > 0. We derive a contradiction. Partition Ω1 into subsets whose
diameters are all less than |α|. Let Ω′ be one of the subsets that has µ(Ω′) > 0. Clearly we
have Ω′ ∩ (Ω′ + α) = ∅. Let f = χΩ′ and g = χΩ′+α. Now

f =
∑
λ∈T

〈f, eλ〉L2(Ω)eλ, g =
∑
λ∈T

〈g, eλ〉L2(Ω)eλ.

Observe that eλ(ξ) = eλ(ξ)eλ(−α) = eλ(ξ − α) for all λ ∈ T . Hence

〈f, eλ〉L2(Ω) =
∫

Ω′
eλ(ξ) dξ =

∫
Ω′
eλ(ξ − α) dξ =

∫
Ω′+α

eλ(ξ) dξ = 〈g, eλ〉L2(Ω).

So f and g have the same Fourier series. But f and g are orthogonal. This is a contradiction.

We say that two measurable sets Ω and Ω∗ in R
d are L-congruent for some lattice L

if Ω has a partition Ω =
⋃

α∈L Ωα such that Ω∗ =
⋃

α∈L(Ωα + α) with the union being
measure-wise disjoint.

Lemma 3.2 Let (Ω,T ) be a spectral pair such that T − T ⊆ L for some full rank lattice L
in R

d. Let Ω∗ be L∗-congruent to Ω. Then (Ω∗,T ) is also a spectral pair.

Proof. Let Ω∗ =
⋃

α∈L(Ωα + α) where Ω =
⋃

α∈L Ωα is a partition. We first prove that
{eλ : λ ∈ T } is orthogonal in L2(Ω∗). For any λ1, λ2 ∈ T we have eλ1−λ2(ξ−α) = eλ1−λ2(ξ)
for all α ∈ L∗. Hence ∫

Ω∗
eλ1−λ2(ξ)dξ =

∑
α∈L∗

∫
Ωα+α

eλ1−λ2(ξ)dξ

=
∑

α∈L∗

∫
Ωα

eλ1−λ2(ξ − α)dξ

=
∑

α∈L∗

∫
Ωα

eλ1−λ2(ξ)dξ

=
∫

Ω
eλ1−λ2(ξ)dξ

= 0.
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It remains to prove that {eλ : λ ∈ T } is a basis for L2(Ω∗). Without loss of generality
we assume that 0 ∈ T . Then T ⊆ L∗. If not there exists a nonzero f ∈ L2(Ω∗) such that
〈f, eλ〉L2(Ω∗) = 0 for all λ ∈ T . Define g ∈ L2(Ω∗) by g(ξ) = f(ξ + α) for ξ ∈ Ωα. Clearly
g 6= 0. We have for each λ ∈ T

〈g, eλ〉L2(Ω) =
∑

α∈L∗

∫
Ωα

f(ξ + α)eλ(ξ)dξ

=
∑

α∈L∗

∫
Ωα

f(ξ + α)eλ(ξ + α)dξ

=
∑

α∈L∗

∫
Ωα+α

f(ξ)eλ(ξ)dξ

=
∫

Ω∗
f(ξ)eλ(ξ) dξ

= 0.

This is a contradiction.

Let Ω and Ω̃ be measurable sets in R
d, and A ∈Md(R). We say Ω is A-congruent to Ω̃ if

there exists a partition Ω =
⋃

j∈Z
Ωj such that

⋃
j∈Z

Aj(Ωj) = Ω̃ is a partition of Ω̃. Observe
that A-congruence is an equivalent relation. Furthermore if Ω tiles R

d multiplicatively by
some A-invariant DT then so does Ω̃. This fact together with Lemma 3.2 allows us to prove
Theorem 2.1.

Proof of Theorem 2.1. Let Ωt
0 be a multiplicative tile by DT with nonempty interior

and dist (Ωt
0, 0) > 0. Let Ωs

0 be a spectral set with spectrum T and nonempty interior.
Since Ak(Ωt

0) is also a multiplicative DT -tile and A is expanding, we may without loss of
generality assume that Ωt

0 contains a sufficiently large ball. Furthermore, since any translate
of Ωs

0 is again a spectral set with spectrum T , we may without loss of generality further
assume that there exists an α∗ ∈ L∗ such that

α∗ ∈ (Ωs
0)

o, Ωs
0 ⊆ Ωt

0.

We construct a wavelet set with respect to D and T by constructing multiplicative
tiles {Ωt

n} and spectral sets {Ωs
n} with the property that Ωs

n ⊆ Ωt
n and limn→∞ Ωs

n =
limn→∞ Ωt

n = Ω. The sequence of sets are constructed iteratively using congruences, a
technique similar to the one used in Benedetto and Leon [BL99].

First we fix a sufficiently large K > 0 such that A−K(Ωt
0) + α∗ ⊆ Ωs

0. Since α∗ ∈ (Ωs
0)

o

this is always possible. Let

Ωs
1 = Ωs

0, Ωt
1 = Ωs

1 ∪ Ωe
1, Ωe

1 = A−K(Ωt
0 \ Ωs

0).

Note that Ωs
1 ∪ (Ωt

0 \ Ωs
0) is a partition of Ωt

0, so Ωt
1 is A-congruent to Ωt

0 and hence is a
DT -tile. (Here the letter ‘e’ in Ωe

1 stands for ‘extra’. This is the extra piece from which Ωt
1

differs Ωs
1.)

Observe that Ωe
1 + α∗ ⊆ Ωs

1, since Ωe
1 ⊆ A−K(Ωt

0). Define

Ωs
2 = Ωe

1 ∪
(
Ωs

1 \ (Ωe
1 + α∗)

)
, Ωt

2 = Ωs
2 ∪ Ωe

2, Ωe
2 = A−K(Ωe

1 + α∗). (3.2)
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Note that Ωs
2 is L∗-congruent to Ωs

1, so by Lemma 3.2 it is a spectral set with spectrum T .
Note also that Ωt

2 is a DT -tile because it is A-congruent to Ωt
1, since Ωt

1 = Ωs
2 ∪ (Ωe

1 + α∗).

It is now easy to see how we construct Ωs
n and Ωt

n iteratively. We let

Ωs
n+1 = Ωe

n ∪
(
Ωs

n \ (Ωe
n + α∗)

)
, Ωt

n+1 = Ωs
n+1 ∪ Ωe

n+1, Ωe
n+1 = A−K(Ωe

n + α∗). (3.3)

The set Ωs
n+1 is L∗-congruent to Ωs

n, and Ωt
n+1 is A-congruent to Ωt

n. So all Ωs
n are spectral

sets with spectrum T and all Ωt
n are multiplicative DT -tiles. Furthermore by induction the

Lebesgue measure of the extra set Ωe
n satisfies

µ(Ωe
n) = µ(Ωt

n \ Ωs
n) = |detA|−Kµ(Ωe

n−1) ≤ |detA|−nKµ(Ωt
0). (3.4)

Finally we show that limn→∞ Ωs
n = limn→∞ Ωt

n = Ω up to a measure zero set. This can
be seen from the fact that

Ωs
n+1 4 Ωs

n = Ωe
n ∪ (Ωe

n + α∗), and so µ(Ωs
n+1 4 Ωs

n) = c rn, (3.5)

where c = 2µ(Ωt
0) and r = |detA|−K < 1. In other words the difference betwee successive

terms decays exponentially measure-wise. Now we have

Ωs
n 4

⋂
k≥n Ωs

k = Ωs
n \

⋂
k≥n Ωs

k ⊆
⋃

k≥n(Ωs
k \ Ωs

k+1).

Hence
µ
(
Ωs

n 4
⋂

k≥n Ωs
k

)
≤ crn + crn+1 + · · · = c1r

n.

Similarly
µ
(
Ωs

n 4
⋃

k≥n Ωs
k

)
≤ c2r

n.

It follows that lim supn Ωs
n = lim infn Ωs

n up to a measure zero set. Let Ω be the limit. By
(3.5) Ω = limn Ωt

n up to a mesurable set. Thus Ω is a wavelet set with respect to D and T .

Proof of Corollaries 2.2 and 2.3. For Corollary 2.2 we only need to note that by [Fug]
any lattice T is a spectrum of any fundamental domain of the dual lattice T ∗, which can
obviously be chosen to have nonempty interior. For Corollary 2.3 we note that DT is AT -
invariant, and need to show that it is a multiplicative tiling set with interior condition. Let
B1(0) be the unit ball centered at 0 and let Ω0 =

⋂
n≥0(A

T )n(B1(0)). The intersection
is finite since (AT )n(B1(0)) ⊇ B1(0) for sufficiently large n. So Ω0 is open. Set Ω =
AT (Ω0) \ Ω0. Then Ω is a multiplicative tile with interior, and dist (Ω, 0) > 0.

Proof of Theorem 2.4. (i) Write Ω = Ω+ ∪ Ω− where Ω+ = Ω ∩ R
+ and Ω− = Ω ∩ R

−.
Since D ⊂ R

+, D(Ω+) := {dΩ+ : d ∈ D} is a tiling og R
+. Taking logarithm we see

that logD := {log d : d ∈ D} is a tiling set of R, with tile log Ω+ := {log x : x ∈ Ω+}.
Observe that log Ω+ is bounded because dist (Ω, 0) > 0. The structure of logD is classified
in Lagarias and Wang [LW96]. Part (i) of the theorem follows directly from Theorem 3 of
[LW96].
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(ii) By central symmetry of Ω we can write Ω as Ω = Ω+ ∪ (−Ω+) where Ω+ = Ω ∩ R
+.

Observe that dΩ = |d|Ω for any d ∈ D. So D is a multiplicative tiling set for Ω if and only
if |D| is.

Proof of Theorem 2.5. First we note that D = DT . By the structure result in Theorem
2.4 D is sN -invariant, where s,N are as in Theorem 2.4. It is also s−N -invariant. One of sN

and s−N is greater than 1. Furthermore D must satisfy the interior condition, see [LW96].
Theorem 2.1 now immediately implies (i).

The proof of (ii) is essentially identical to the proof of Theorem 2.1. Only minor modi-
fications are needed.

Without loss of generality we assume that T = Z, and |D| is a-invariant where a >
1. Let Ωt

0 be a centrally symmetric multiplicative tile by D with nonempty interior and
dist (Ωt

0, 0) > 0. Since ak(Ωt
0) is also a centrally symmetric multiplicative D-tile we may

without loss of generality assume that [−m0− 1
2 ,−m0]∪ [m0,m0 + 1

2 ] ⊆ Ωs
0 for some positive

integer m0. Set Ωs
0 = [−m0− 1

2 ,−m0]∪[m0,m0+ 1
2 ]. Then Ωs

0 is a spectral set with spectrum
T = Z.

As in the proof of Theorem 2.1 we construct a centrally symmetric wavelet set with
respect to D and T by constructing centrally symmetric multiplicative tiles {Ωt

n} and cen-
trally symmetric spectral sets {Ωs

n} with the property that Ωs
n ⊆ Ωt

n and limn→∞ Ωs
n =

limn→∞ Ωt
n = Ω.

First we fix a sufficiently large K > 0 such that a−K(Ωt
0) ⊆ (−1

2 ,
1
2). This is always

possible because a > 1. Let

Ωs
1 = Ωs

0, Ωt
1 = Ωs

1 ∪ Ωe
1, Ωe

1 = a−K(Ωt
0 \ Ωs

0).

As in the proof of Theorem 2.1, Ωt
1 is a-congruent to Ωt

0 and hence is a multiplicative |D|-
tile. Furthermore, it is centrally symmetric so it is also a multiplicative D-tile. Note that
Ωs

1, Ωt
1 and Ωe

1 are all centrally symmetric.

For any set S in R we define p+(S) := S ∩ R
+ and p−(S) := S ∩ R

−. Now a−K(Ωt
0) ⊆

(−1
2 ,

1
2) implies that p+(Ωe

1) +m0 ⊂ p+(Ωs
1) = [m0,m0 + 1

2 ] and p−(Ωe
1) −m0 ⊂ p−(Ωs

1) =
[−m0 − 1

2 ,−m0]. Let τm0(S) := (p+(S) +m0) ∪ (p−(S) −m0).

Ωs
2 = Ωe

1 ∪
(
Ωs

1 \ τm0(Ω
e
1)

)
, Ωt

2 = Ωs
1 ∪ Ωe

2, Ωe
2 = a−Kτm0(Ω

e
1). (3.6)

Note that Ωs
2 is T ∗-congruent to Ωs

1 (T ∗ = Z), so by Lemma 3.2 it is a spectral set with
spectrum T . Note also that Ωt

2 is a |D|-tile because it is a-congruent to Ωt
1. Furthermore

Ωs
2, Ωt

2 and Ωe
2 are all centrally symmetric. Thus Ωt

2 is also a multiplicative D-tile.

It is now easy to see how we construct Ωs
n and Ωt

n iteratively. We let

Ωs
n+1 = Ωe

n ∪
(
Ωs

n \ τm0(Ω
e
n)

)
, Ωt

n+1 = Ωs
n+1 ∪ Ωe

n+1, Ωe
n+1 = a−Kτm0(Ω

e
n). (3.7)

All these sets are centrally symmetric. The set Ωs
n+1 is T ∗-congruent to Ωs

n, and Ωt
n+1 is

a-congruent to Ωt
n. So all Ωs

n are spectral sets with spectrum T and all Ωt
n are multiplicative

|D|-tiles. Furthermore by induction the Lebesgue measure of the extra set Ωe
n satisfies

µ(Ωe
n) = µ(Ωt

n \ Ωs
n) = a−Kµ(Ωe

n−1) ≤ a−Knµ(Ωt
0). (3.8)
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Finally we show that limn→∞ Ωs
n = limn→∞ Ωt

n = Ω up to a measure zero set. This can
be seen from the fact that

Ωs
n+1 4 Ωs

n = Ωe
n ∪ τm0(Ω

e
n), and so µ(Ωs

n+1 4 Ωs
n) = c a−Kn, (3.9)

where c = 2µ(Ωt
0). In other words the difference betwee successive terms decays exponen-

tially measure-wise. Now we have

Ωs
n 4

⋂
k≥n Ωs

k = Ωs
n \

⋂
k≥n Ωs

k ⊆
⋃

k≥n(Ωs
k \ Ωs

k+1).

Hence
µ
(
Ωs

n 4
⋂

k≥n Ωs
k

)
≤ ca−Kn + ca−K(n+1) + · · · = c1a

−Kn.

Similarly
µ
(
Ωs

n 4
⋃

k≥n Ωs
k

)
≤ c2a

−Kn.

It follows that lim supn Ωs
n = lim infn Ωs

n up to a measure zero set. Let Ω be the limit. By
(3.7) Ω = limn Ωt

n up to a mesurable set. Thus Ω is a wavelet set with respect to D and T .

4 Examples

In this section we present several examples of wavelet sets to emphasize various aspects of
the complexity of the problem.

Example 1. The condition 0 ∈ T in Theorem 1.1 cannot be dropped. Let Ω = [−1,−1
2 ]∪

[12 , 1]. Let D = {2n : n ∈ Z} ∪ {−2n : n ∈ Z} and T = 2Z + 1
6 . Then Ω is a wavelet set

with respect to D and T . But D is not a multiplicative tiling set of Ω, nor is T a spectrum
of Ω.

To prove that Ω is indeed a wavelet set with respect to D and T , we observe that the
corresponding wavelet

ϕ = χ̌Ω =
sin(πx) − sin(2πx)

πx
(4.1)

is real and even. So ϕ(−2nx−λ) = ϕ(2nx+ λ). Therefore ϕ is a wavelet with respect to D
and T if and only if it is a wavelet with respect to D′ = {2n : n ∈ Z} and T ′ = T ∪ (−T ).
Now, Ω tiles multiplicatively by D′. Furthermore, T ′ = 2Z + {1

6 ,−
1
6} satisfies T ′ − T ′ ⊂

ZΩ ∪{0} where Zϕ denotes the set of zeros of χ̂Ω = ϕ(−x). Hence (Ω,T ′) is a spectral pair
(c.f. [Ped] or [LW97]). By Theorem 1.1 ϕ is a wavelet with respect to D′ and T ′, so it is a
wavelet with respect to D and T .

Example 2. A multiplicative tiling set D ⊂ R
d does not have to be A-invariant for some

matrix A 6= I, even in the one dimension. For the Ω in Example 1, the set D = {εn2n : n ∈
Z} where εn ∈ {1,−1} is always a multiplicative tiling set for Ω. If we choose (εn : n ∈ Z)
to be aperiodic then D is not a-invariant for any a 6= 1.

Example 3. The translation set T for a wavelet set Ω needs not be periodic, nor satisfy
T − T ⊆ L for some lattice L in R

d. Furthermore, the dilation matrices in D need not
commute.
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Let Ω be the unit square centered at (0, 3
2), i.e. Ω = [−1

2 ,
1
2 ]2 + (0, 3

2 ). Let

D = {±2nC1, ‘ ± 2nC2 : n ∈ Z}

where C1 and C2 are given by

C1 =
[
2 0
0 1

]
, C2 =

[
0 1

2
2 0

]
.

Let R denote the rectangle [−1, 1] × [−2, 2]. Note that

C1Ω ∪ (−C1Ω) ∪ C2Ω ∪ (−C2Ω) = R \ 1
2
R.

So Ω tiles R
2 multiplicatively by D.

It is well known that all cubes are spectral sets. The spectra for cubes in R
d have been

completely classified by several authors, see [JP99] for d = 2, 3, and [IP] or [LRW] for
general d. A set T is a spectrum for the unit cube Ω if and only if T is a tiling set for the
unit cube (this unit cube should be viewed as the dual of Ω). For example, we may take

T = {(n,m+ en) : m,n ∈ Z}.

Then (Ω,T ) is a spectral pair. So Ω is a wavelet set with respect to D and T . Observe
that T neither is periodic, nor satisfies T − T ⊆ L for any lattice L. Furthermore, not all
matrices in D commute, C1C2 6= C2C1.

The corresponding wavelet is

ϕ(x1, x2) = e−3πix2 · sin(πx1) sin(πx2)
π2x1x2

.
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