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Abstract

Let £ and K be two full rank lattices in R?. We prove that if v(£) = v(K), i.e. they
have the same volume, then there exists a measurable set  such that it tiles R? by both
L and K. A counterexample shows that the above tiling result is false for three or more
lattices. Furthermore, we prove that if v(£) < v(K) then there exists a measurable set
Q) such that it tiles by £ and packs by K. Using these tiling results we answer a well
known question on the density property of Weyl-Heisenberg frames.
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1 Introduction

Let £ and K be two full-rank lattices in R%, and let g(z) € L?(R?%). The Weyl-Heisenberg
family, also known as the Gabor family, is the following family of functions in L?(R%):

G(L,K,g) = {e%“wg(ag —w)|teLre lc} . (1.1)

Such a family was first introduced by Gabor [Ga] in 1946 for signal processing, and is still
widely used today. For recent developments on Weyl-Heisenberg (Gabor) analysis, we refer
to the book [F'S] by Feichtinger and Strohmer, and a survey paper [Ca] by Casazza.

In signal processing we often require the Weyl-Heisenberg family be either an orthonor-
mal basis (windowed Fourier transform) or a frame of L?(R?). Recall that a family of
functions {f;} in L?(RY) is a frame if there exist constants Cy,Cy > 0 such that

CUlfIE < Y KE P < Callf113 (1.2)
j
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for all f € L2(R%). If C; = Cy = 1 we say {f;} is a normalized tight frame. One of the well
known questions is the so-called density problem for Weyl-Heisenberg families:

Question 1: Let £ and K be two full-rank lattices in R%. Under what conditions can we find
a function g € L2(R?) such that the Weyl-Heisenberg family G(£, K, g) is an orthonormal
basis (frame) of L2(R%)?

Question 1 has been answered completely in the one dimension case. Let £ = aZ and
K = bZ. Suppose that |ab| < 1. Then it is trivial to show that G(L, K, g) is a tight frame
when g = ﬁx[()"bu, which is an orthonormal basis if |ab] = 1. Conversely, Rieffel [Rie]

proves the following density theorem, which asserts that it is necessary that |ab| < 1 for
G(L,K,g) to be complete in L?(R). In higher dimensions, analogous necessary conditions
have been established, see [RSh], [RSt] and [CDH]. Let £ = AZ? and K = BZ? where A
and B are real d x d nonsingular matrices. The density result states that one necessarily has
|det(AB)| =1 if G(L,K,g) is an orthonormal basis, and |det(AB)| < 1 if G(L,K,g) is a
frame. Interestingly the converse, which is trivial in the one dimension, remained unsolved.
In this paper we prove the converse by studying a seemingly unrelated problem concerning
lattice tiling in R

We now consider lattice tiling in R%. Let 2 be a measurable set in R? (not necessarily
bounded), and let £ be a full rank lattice in R%. We say Q tiles R? by £, or Q is a
fundamental domain of L, if

(1) Upes(Q+0) =R ae;
(i) (2+£)N(Q+ ) has Lebesgue measure 0 for any £ # ¢ in L.

We say that Q packs R? by L if only (ii) holds. Equivalently, Q tiles R? by £ if and only if

ZXQ(CE —/0) =1 for a.e. x € RY, (1.3)
lel

and Q packs R¢ by £ if and only if

ZXQ(CE —/0) <1 for ae. x € R (1.4)
lel

Let v(£) denote the volume of £, i.e. v(£) = |det(A)| for £L = AZ. Clearly, u(Q) = v(£)
if © tiles by £, and p(Q) < v(£) if Q packs by £. Furthermore, if  packs R? by £ and
() = v(L), then Q necessarily tiles R? by £. One of the questions we study here is:

Question 2: Let £1,Ls,...,L,, be full rank lattices in R? such that v(£1) = v(Ls) =
-+ =v(Ly,). Does there exist a measurable set 2 in R? such that § tiles R? by £; for each
1<j<m?

Question 2 is closely related to a well known open problem of Steinhaus’, which asks
whether there exists a set (2 that tiles R? by every lattice of the form RyZ? where Ry is the
rotation matrix by the angle 0. Kolountzakis [Ko] shows that Question 2 has an affirmative



answer if the sum £} + --- 4+ Ly, is direct, where £} denotes the dual lattice of £;. A
summary on the problem of Steinhaus’ can also be found in [Ko]. It should be pointed out
that the requirement that the sum of the lattices be direct is rather strong. In particular it
is not satisfied if two of the matrices A; contain rational columns, where £; = AjZd. We
prove:

Theorem 1.1 Let £, K be two full rank lattices in R? such that v(L) = v(K). Then there
exists a measurable set  in R? such that Q tiles R? by both £ and K.

The answer to Question 2 is negative for m > 3 in general in dimensions d > 2, as first
pointed out in [Ko]. The following is a counterexample example:

Example 1.1. Consider the following three lattices in R?,

Lo=72 Lo=|2 O0z2 o= Y 9|22
0 5 -5 1

Then v(£;) = 1, and there exists no measurable set ) that tiles by each £;. The product

lattices £; x Z%~2 also yield a counterexample to Question 2 in dimensions d > 2 for m > 3.

Theorem 1.1 is in fact a corollary of the following more general theorem:

Theorem 1.2 Let £, K be two full rank lattices in R? such that v(L) > v(K). Then there
exists a measurable set Q in R% such that Q tiles R? by K and packs R?® by L.

We apply Theorems 1.1 and 1.2 to prove the following density theorem for Weyl-
Heisenberg families, answering Question 1:

Theorem 1.3 Let £, K be two full rank lattices in RY. Then

(i) There exists a g(z) € L*(RY) such that G(L,K,g) is an orthonormal basis of L*(R?)
if and only if v(L)v(K) = 1.

(ii) There exists a g(x) € L*>(R?) such that G(L,K,g) is a frame of L?>(R?) if and only if
v(L)v(K) < 1.

In §2 we prove our results on lattice tiling and packing. In §3 we prove several results
on Weyl-Heisenberg families, of which Theorem 1.3 is a corollary.
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of this research is done while he is a visitor.



2 Lattice Tiling

In this section we prove Theorem 1.2, which also implies Theorem 1.1. We first introduce
some notations. The torus R?/Z? is denoted by T¢, and 74 : R* — T¢ denotes the canonical
map. The Haar measure of T¢ will be denoted by v(-), with v(T%) = 1.

Before proceeding with our proofs we examine the structure of subgroups of T¢. A
subset S C T is called a subspace if S = 74(V) where V C R? is a linear subspace. The
subspace S is called rational if V is rational, i.e. it has a basis consisting of vectors in QZ. It
is known that any closed subspace of T¢ must be rational, and the closure of any subspace
S = mq(V) of T?¢ is m4(V') where V' is the smallest rational subspace in R? containing V'
(see e.g. Lagarias and Wang [LW1]).

Lemma 2.1 Let G be a closed subgroup of T¢. Then
G=SoeF (2.1)

where S is a rational subspace of T® and F is a finite group.

Proof. This result is Proposition 11 in Bourbaki [Bou], §1.5. It states that G = S @& F
where S is isomorphic to T” for some 0 < h < n and F is a finite subgroup of T¢. It is
clear in the proof that S = 74(V) for some vector subspace of R?. The rationality of V also
follows from the proof. Another proof of the rationality of V' can be found in [LW1]. [ |

For any s € T? let 75 denote the translation 7s(z) =z + s in T Suppose that €2 C T¢
and S is a countable subset of T¢. We say that € is S-shifted from §, or ) is an S-shift of
Q, if Q has a measure disjoint partition Q = J g Q) such that

Q=] @),

seSs

where the above union is measure disjoint. We say a subset Q of T? is a polytope (respec-
tively, cube, parallelopiped, etc.) if it is the projection of a polytope (respectively, cube,
parallelopiped, etc.) in R?.

An essential lemma for proving Theorem 1.2 is:

Lemma 2.2 Let S be a dense countable subset of T¢. Let Q and R be finite unions of
polytopes in T? such that v(Q) < v(R). Then there exists an S-shift Q of Q such that
QCR.

Proof. The idea of the proof is to cut R into small cubes and €2 into slightly smaller cubes
and translate the smaller cubes of €2 into the cubes of R using 75, applying the fact that S
is dense in T¢.

Since 2 and R are finite unions of polytopes we may find a finite set of measure dis-
joint cubes C = {C1,Cy,...,Cn} in  and a finite set of measure disjoint cubes £ =
{E1, Es,...,Ep} in R with the following properties:



(a) All cubes C; have the same size with length ¢ > 0, and all cubes E; have the same
size with length § > 0.

(b) %, v(Ci) > $v(Q) and )1, v(E;) > 3u(R).
(c) 6 >e>16.
Observe that properties (a) and (b) are clearly possible if we take ¢ and § sufficiently small.

Given C and &€ with properties (a) and (b) we can then always subdivide the cubes so that
property (c) is met.

Let L = max{N, M}. Since C; is strictly smaller in size than E;, and since S is dense
in T¢, we may find s; € S such that 7,(C;) C E; for 1 <i < L. Denote

Q=

-

7:(C;) and Q; = Q\ <L_LJ c)

=1

Claim: »(Q;) > 2~ @)y (Q).

To see this, if L = N then v(€;) = Zf\il v(C;) > 27w(Q), and the claim holds. On the
other hand, if L = M then

M S\ d
0 — N — d hd
v(Qy) = ;ley(cz) = Met > M<2>
1 M
= ﬁE v(E) > 27 Wy(R) > 27 @y()

This proves the claim.
To summarize, we have shown that the following procedure can be completed:

For any finite unions of polytopes Q and R in T¢ with v(Q) < v(R) there exists a finite
collection of disjoint cubes {C;: 1<i<L} in (), such that an S-shift Q1 of these cubes
satisfies v(Q1) > cor(Q) for co = 274 and Q; C R.

We perform the above procedure inductively for Q; and Ry in place of 2 and R, k =
0,1,2,..., starting with 9 = Q and Ry = R. From {2}, and Ry, we obtain some disjoint cubes
{Cgc : 1 <4< Ni}in Qy, such that an S-shift Qk+]_ of the cubes satisfies V(QkH) > cov ()
and Qk+]_ C Rg. Set Qi1 = Q \ (UZL:’“1 C’f) and Rgi1 = Ry \ Qk+1- Observe that the
procedure discribed in this proof guarantees that both ; and Ry are still finite unions
of polytopes in T?, since they are obtained by removing a finitely many cubes from finite

unions of polytopes.

Now we have obtained measure disjoint sets Q. for k> 1. Let Q = U k>1 Q). Then Q is
S-shifted from a subset of Q, and Q C R. But note that

V( Q1) = (%) — V(D) < (1= co)v(Q).



Hence v(€) < (1 —co)*v(Q) — 0 as k — oo. It follows that 2 is in fact S-shifted from the
entire €2, not just a subset of it. This proves the lemma. [ |

The notion of S-shift of a set obviously applies to R¢. For any s € R? we denote
7s(z) := x + s (a slight abuse of notation). Let S be a countable subset of RY and Q C R4
We say that Q is an S-shift of €1 if (2 has a measure disjoint partition Q = (J,c g Q) such

that
Q=)
seS
where the above union is measure disjoint.

Corollary 2.3 Let S be a countable subset of R% such that mg(S) is dense in T¢. Let §
and R be finite unions of polytopes in R and T¢, respectively, with () < v(R). Then
there exists an S-shift Q of Q0 such that mg: 0 — R is one-to-one.

Proof. Since () is a finite union of polytopes we may partition {2 into Q for k = 1,2,...,m,
each Q, a finite union of polytopes, such that 7z : € — T% is one-to-one. Now, partition
R into Ry for 1 < k < m with the properties that each Ry, is a finite union of polytopes and
v(Rg) > p(Q%). Let S* = my(S). S* is dense in T?, so by Lemma 2.2 there exist S*-shifts
QZ of mq(Q) such that Q}Z C Ry,. Since mq : Qi — T¢ is one-to-one, we may find a Q
in R? such that €, is an S-shift of Qj and 74(Q) = Q,’; Set ) = Uiy Qi. Then Q is an
S-shift of Q and m4:  — R is one-to-one. [ |

Proof of Theorem 1.2. Without loss of generality we may assume that £ = Z¢ and
K = AZ? where A € My(R) with |det A] < 1. We will call A good if there exists an Q that
tiles R? by AZ¢ and packs R by Z<.

Let J be any full-rank lattice in R4, Two measurable sets 7 and Q5 are said to be
J-congruent if 1 is a J-shift of {25. The lattice property assures that J-congruence is an
equivalent relation. Furthermore, suppose that ; and € are J-congruent. Then 2, tiles
(packs) by J if and only if Q9 does. Our goal is to find a fundamental domain Q9 of K and
construct a KC-congruent set €21 that packs by L.

Now note that m4(K) is a closed subgroup of T?¢. So 74(K) = S @ F for some rational
subspace S and finite set F. We divide our proof into three cases: S = T¢, S = {0} and
neither of the above. The last case is the most difficult case, and we hope the proof of the
first two cases will make the general idea more clear.

Case I: S =T¢

Under this condition 74(K) = 74(AZ?) is dense in T?. This case includes the condition
in [Ko] but not equivalent to it.

We will construct an € that tiles R? by K and packs by Z?. Start with ; being the
parallelopiped spanned by the columns of A. Since p(£21) < 1, it follows from Corollary 2.3
that there exists a C-shift  of Q; such that 7 : © — T% is one-to-one. Hence Q packs by
7%, Tt is K-congruent to € so it tiles by K. This proves the theorem in Case I.



Case II. S = {0}

In this case K = AZ? and Z% are commensurable. Equivalently, A € M;(Q) is a rational
matrix. To prove A is good we make use of the Smith canonical form.

Sub Lemma 1 Let P,Q € M,(Z) be unimodular matrices (i.e. |detP| = |det@| = 1).
Then A is good if and only if PAQ is good.

Proof. Suppose that A is good. Then there exists an  such that Q + AZ? is a tiling of R?
and Q + Z? is a packing of R%. So

P(Q) + PAZ¢ P(Q) + PAQQ'7Z¢

= P(Q)+ PAQZ?
is a tiling of RY. Similarly,
P(Q) + P7¢ = P(Q) 4+ 7

is a packing of R?. Hence PAQ is good. Conversely, if PAQ is good then it follows
immediately that A = P~1(PAQ)Q ! is good since P~!, Q! are unimodular matrices in
Md(Z) O

Since A € My(Q), A= %A with A € My(Z) for some q € Z. The Smith canonical form

(see Newman [New]) for A implies that there exist unimodular integral matrices P, Q such
that

i 0 -+ 0

_ 0 rg «-- 0
PAQ=| . . .
0 0 - rg

where each r; € Z and r;|ri+1. By Sub Lemma 1 we may without loss of generality assume
that

1
A= _dia’g (T17T2a o 7Td)a
q
where each r; € Z and 7;|ri41.
We prove A is good. Write
A = diag <;ﬂ, @,...,@), with (p;,q;) = 1.
q1 g2 dd
The rectangular parallelopiped spanned by the columns of A is

b1 bd
Q1 =10,—) x---x[0,—),
! [ Q1) [ Qd)

which is a fundamental domain of K. Let T be the smaller rectangular parallelopiped
T =10, ) %+ x[0,7). Then

k k
—1,...,—d]T: ng‘i<pi}::T+.7:.

91:T+{[
q1 dd



Our goal is to construct a K-shift 2 of {2; by translating the smaller rectangular paral-
lelopiped so that © packs by Z¢. To do so, observe that the unit cube [0,1)? satisfies

ko k
[0,1)d:T+{[q—i,...,q—j]T; 0<ki<q=T+G.

Now order the elements of F and G (say lexicographically),

F = {al,ag,...,a]\/[}, g:{ﬁlaﬁ%"wﬁ]\f}‘

It follows from |det(A)| < 1 that M < N. We prove that there exists a v; € K for each
1 <17 < M such that
a; + 7 = F; (mod 1). (2.2)
To do so, note that
K= {[ﬁml,...,@md]T T m; € Z}

q1 4d
Assume that . k:
1 d ni nq
Oéi:[—,...,—]T, ﬁi:[—,...,—]T.
q1 dd q1 dd
Since (pj,q;) = 1, there exists an m; such that k; + p;m; = n; (mod g¢;) for each j. Taking
i = [Iq’—iml, el %md]T yields a; +v; = 8; (mod 1).

Finally, set @ =T + {o; + 7 : 1 <1i < M}. The fact that 7; € K implies that Q is
KC-congruent to €; and so it tiles by K. It also follows from (2.2) that € is Z%-congruent to
T+ {B;: 1<i< M}, asubset of [0,1)%. Hence Q packs by Z<.

A corollary of the proof is that we may choose our €2 to be bounded — in fact, a finite
union of congruent parallelopiped.

Case III. None of the Above

Here we have K(mod 1) = S @ F where S is a rational subspace of dimension e with
0<e<d.

Sub Lemma 2 There exist unimodular matrices P and Q such that
| Ay B
PAQ = [ hoB ] ,
where D = diag (r1,...,74_c) for r; € Q, and [A; B]Z% (mod 1) is dense in [0,1]°.

Proof. Let S = m4(V) where V is a e-dimensional rational subspace of RY. It is known (see
e.g. [Sch]) that there exists a unimodular P; € My(Z) such that

PV =R® x {0} c R,



namely P; maps V to the first e coordinates of RY. Hence

_ | B
PIA_[E2],

where E; is e x d and E;(Z%) (mod 1) is dense in [0,1]¢. Clearly, E, is rational, or
E5(Z%) (mod 1) would be infinite. Now the Smith canonical form applied to E» yields
P,E>Q = [0 D], where D = diag (r1,...,rq—.) for r; € Q.

By denoting E; = [4; B] we obtain

0 D

PyPLAQ = [ Ar B ]

proving Sub Lemma 2. O

So by Sub Lemma 2 we may without loss of the generality assume that

A B
=% 5]
with D = diag (5,..., q =) for (pi,qi) =1, ¢; > 0, and [A; B)Z® (mod 1) dense in [0, 1]°.

For simplicity denote r= d —e. An element o of K has the form a = [ae, a,]T, in which

€ [A; B]Z% and a, = [%,...,p’"qm’"] € DZ" for my,...,m, € Z.

Sub Lemma 3 Let (51, B2 € R" such that

k k. l L

=2, 2 B=[2,..., 21", where all ks, I; € Z.
q1 qr q1 qr

Let J = {[ae, )T € K: By +a, = B2 (mod 1)}. Then there exists a v € K such that

J Ov+ NK, where N =qiq2---qr.
Proof. Since (p;,q;) = 1 it is well known that the solutions to the linear Diophantine
equation k; + p;x = l; (mod 1), which is equivalent to

ki l;
Sy BTG (mod 1),
q; qi q;
are x € ¢;Z + a; for some a; € Z. Therefore the set
Z, :={a, € DZ": B1+ a, = 2 (mod 1)}
satisfies Z, O D(NZ" + ;) for v, = [a1,...,a,]T. Hence

J = {ae,ar ek: aTEI}

Ze . e r
D) {[ }[NZT_FVT].ZEEZ,ZTEZ}
Re . e r
2 {[ }[Nzr]—F’y.zeeZ,zTEZ}
f; B}[O}
DO NK -+, where v:= .

9



This proves the sub lemma. O

Sub Lemma 4 Let J be as in Sub Lemma 3. Then the set
{ae (mod 1) : [ae, )T € T for some . € R"}

is dense in [0, 1]¢.

Proof. By Sub Lemma 3 the set {c.} contains the set N[A; B]Z% 4 v, for some v, € R®.
since [A; B]Z? (mod 1) is dense in [0,1]¢, N[A; B]Z% + . (mod 1) is also dense in [0, 1]°.
a
Now a fundamental domain of K = AZ? is
Q=0°xQ", where Q°= 4,([0,1)¢), Q" = D([0,1)").

Let 77 = [0, ;-) x -+ x [0, ). Then

k ky,
Q" =T"&® F,, where F, = {[—1,...,—]T: 0<k; <p¢},
q1 dr
which yields
Q=0x(T"eF)= ] & x T +a) (2.3)
Oéefr‘

Meanwhile, the Z-tile [0,1)? has a decomposition
0,14 =[0,1)° x [0,1)" = | J Ra x[0,1)", (2.4)
a€F,

in which [0, 1)€ is partitioned into | F, | disjoint rectangular parallelopiped R, of equal volume
in R€ indexed by the elements of F,.. Since p(€2) < 1 we have u(Q° x (T" + «)) < p(Ry X

[0,1)").

Sub Lemma 5 For each o € F, there exists a K-shift Qy of Q¢ x (IT" + «) such that
g : Qo —> Re x [0,1)" is one-to-one, where we view Ry, x [0,1)" as a subset of TY.

Proof. Observe that

k k,
0,1)" =T" &G,, where G, = {[—1,...,—]T L 0<k; < q}
q1 qr
Therefore
Ry x [0,1)" = Ra x (T" ®G,) = | Ra x (I" + ). (2.5)
BEGr

Since 2¢ = A4;([0,1)) is a parallelopiped, we may partition it into Q¢ = (Jgcg, €25 in which
all Q% are parallelopiped with the same volume. Hence

x(T"+ o) = UQﬁ’X (T" + ).
BEGr

10



We only need to prove that there exists a K-shift £, g of 25 x (T" + o) such that
g Qo —> Ry x (T + ) is one-to-one. (2.6)

To prove (2.6), let
J ={lae,n]" €K: a+a, =5 (mod 1)}.

Then by Sub Lemma 4 the set
Je = {ac €R®: [ove, o] € K for some o € R"}

has the property that J. (mod 1) is dense in [0, 1]°. It follows from Corollary 2.3 that there
exists a J.-shift Q% of Q% such that

e : Q%—)Ra is one-to-one, (2.7)
where we view R, as a subset of T¢. The J.-shift Q% of Q% has the form
Q5= {J @5, +v
’YEJ&
where {Q5_ } is a partition of 7. Set
Qo= U <Qf377 X (T" 4+ a) + 7')
YETe

where for each v € 7, the element ' is any element in J whose first e coordinates is 7.
Clearly Q, g is a J-shift of Q¢ x (T" 4+ «). Furthermore,

7 Qap — Ro x (T + 3) is one-to-one

as a result of (2.7). The sub lemma is proved by letting Qo = Uscg, o8- O

To conclude the proof of Theorem 1.2 in Case III we let

0= U Q.

aefr

Then € is a K-shift of the fundamental domain Q of K. Hence  tiles R% by K. Furthermore
by Sub Lemma 5,

g Q— U Ro x (T" + ) =[0,1)? is one-to-one.
Oéefr‘

This proves the theorem in Case III, which completes the overall proof of the theorem. M

Corollary 2.4 Let £,K be two full rank lattices in R? such that v(L) > v(K). Suppose
that L and IC are commensurable. Then there exists an §2 that is a finite union of congruent
rectangular parallelopipeds in R? such that Q tiles R by K and packs R® by L.

11



In general it is not known whether we can always make the set {2 a bounded set.

Proof of Theorem 1.1. By Theorem 1.2 we may find a measurable set {2 such that
tiles R? by K and packs by £. But v(£) = v(K). So if  packs by £ then it must tile by L.
This proves the theorem. [ |

Proof of Example 1. Here we give a Fourier analysis proof of the nonexistence, which
differs for that of [Ko]. Assume that there exists an  that tiles R? by each of the three
lattices £;. By a standard result in Fourier analysis, the zero set of xq(£) must contain
L3\ {0} for each i, where £} is the dual lattice of £;. Now,

] Y/

= Rl

10 1
* 2 * 2 2 *
Ly =172 £2_[0 2]2, ﬁg_[o

Observe that £] U L35 U L3 contains the lattice

Hence
{€:xa(§) =0} 2 T\ {0}.

It follows that {e*™(®?) . o € J} is an orthogonal family of exponentials in L?(Q). But
this would imply that €2 is the union of fundamental domains of J*, the dual lattice of J
(see [JoPe] or [LW2]), which yields the contradiction p(2) > 2. |

3 Weyl-Heisenberg Frames

Let £ = AZ% and K = BZ® where A and B are real d x d nonsingular matrices. We prove
density results for Weyl-Heisenberg families G(L£, K, g) in higher dimensions.

We first give a more detailed survey of existing results. As mentioned earlier, in the one
dimension d = 1 where £ = aZ and K = bZ, the condition |ab| = 1 (|b] < 1) is obviously
sufficient for the existence of a Weyl-Heisenberg orthonormal basis (frame) G(L, K, g) for
L?(R), by simply taking g = 1/|al X{o,jp))- However, the sufficiency is much more complicated
in higher dimensions, as the geometry of lattices can be quite complex. It is the main
objective of this section to prove the sufficiency.

In the other direction, it is known that in the one dimension |ab| < 1 is also the necessary
condition for the existence of a function g € L?*(R) such that G(£,K,g) is complete (not
necessarily a frame) in L?(R). Rieffel [Rie] proves this as a corollary of results on von
Neumann algebras associated with two lattices of Lie groups. For the case that |ab| > 1 is
rational Daubechies [Dau| provides a constructive proof of the incompleteness of G(L, K, g)
through the use of Zak transform. In higher dimensions density results similar to Rieffel’s
have been established in various contexts. Ramanathan and Steger [RSt] introduces a
technique that applies to Weyl-Heisenberg frames in R in which the lattices are replaced
by countable, non-lattice sets that are uniformly separated. They are also able to recapture
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the density result of Rieffel in R? ([RSt], Corollary 1). Ron and Shen ([RSh], Corollary
2.7) prove that if there exists a g € L2(RY) such that G(£,K,g) is a frame for L?(R%)
then |det(AB)| < 1. Christensen, Deng and Heil [CDH] extend results of Ramanathan
and Steger to multiple generating functions, from which the density result of Ron and Shen
also follows. In [GH1] and [GH2] Gabardo and the first author introduce a simple and
general approach to the incompleteness property for arbitrary group-like unitary systems,
and prove in particular that if there is a function g € L?(R) such that G(£, K, g) is complete
for L?(R?) then | det AB| < 1. For the purpose of self-containment, we will provide here a
very elementary and short proof for |det AB| < 1 by assuming that there exists a function
g € L*(R) such that G(L,K,g) is a frame for L?(R9).

A function g € L?(R%) is called a pre-frame function (with respect to £ and K) if
G(L,K,g) is a Bessel sequence, i.e. there exists a constant C' > 0 such that

Y. e 9@ —R)P < OlfII3

lel,reK

for all f € L?(R%). For a pre-frame function g we define an analysis operator &, : L?(R%) —
I2(L x K) by
Sof = > (£ g(a — k))eq,

teL, ke

where {eg, } is the standard orthonormal basis for [2(£ x K). Clearly &, is a bounded linear
operator, and hence GG, is a bounded linear operator on L? (Rd). It easy to check that
6,6, commutes with the modulation operator 9, and the translation operator ¥,; defined
by

Mf =0 f(2),  Tef = fl@—r).

Lemma 3.1 There exist pre-frame functions {f, : o« € Z%} (with respect to the lattices
L = AZ% and K = BZ® such that

ZG;QGJCQ — 7
and Y, [|fall3 = |det AB.

Proof. Without loss of generality we consider the case B = I. Let Q = (0,1]¢ and G, =
ATQ N (Q + a) for a € Z%. Note that {Q + o : a € Z?} is a partition of R%. Thus
UaEZd Ga = ATQ, and Uand(AT)_lGa = ().

Write E, = (AT)"'G,. Then {E, : a € Z%} is a partition of Q. Let f, = 1/|det A|xg, .
Since ATE, —a = G4 —a C Q, it is easy to check that {2™482) f (z) : B € Z%} is a
normalized tight frame for L?(E,). Therefore G(L,K, f,) is a normalized tight frame for
L2 (Upeza(Ba + ) ).

Let F, = Ugega(Ea + B). Then {F,} is a partition of R?. Thus I = Y, ;4 &7 &,
and

> llfal3 = ldet Al > pu(Ea) = | det A| p(Q) = |det A|.

a€Z4 a€Z4
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Lemma 3.2 Assume that there exists a function g € L*(R?) such that G(L,K,g) is a
frame for L*>(R?). Then |det AB| < 1.

Proof. Let &, be the analysis operator associated with G(L, K, g). Observe that 6,6,
commutes with both the translation and the modulation operators, so (6;69)71/ 2g gen-
erates a normalized tight Weyl-Heisenberg frame for L?(R?%). This means without loss the
generality we may assume that G(L, K, g) is already a normalized tight frame for L?(R?).
Denote ()¢, = e2mil6) f (g — k) for any function f and let f, be as in Lemma 3.1. Since

|<ga (fa)f,n” = |<(g)—€,—m fa>|a

it follows that

1 > gllz = (9.9
> (8%.64.9,9)

acZd

= Z <6faga 6foég>
a€Zd

= Z < Z <g’ (fa)f,n>ef,m Z <g’ (fa)é,n>ef,n>
acZd LeLl,keEK lel,kek

= Z Z g, fozén’

acZd LeELKEK

S DRID DRI Ry AT

acZd LeLl,keEK

= > fal} =|det AB.

a€Zd
[ |

Note that the above argument also implies that ||g||3 = | det AB| for any normalized
tight frame G(L, K, g) for L2(R%).

Theorem 3.3 Let £L = AZ? and K = BZ® be two full rank lattices in R:. Then the
following statements are equivalent:

(i) There exists g € L?(RY) such that G(L,K, g) is a normalized tight frame for L*(R).
(ii) There exists g € L*(R?) such that G(L, K, g) is complete in L?(R%).
(iii) v(£)v(K) = |det(AB)| < 1.

Proof. (i) = (ii) is obvious. Lemma 3.2 gives the implication (i) = (iii). Now, (ii) = (i)
follows from Theorem 2.1 of [GH2].
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Finally, we prove (iii) = (i). Since |det(AB)| < 1, we have |det B| < |det(AT)~!].

By Theorem 1.2 there exists a measurable set Q in R¢ such that Q tiles R¢ by BZ¢ and

packs R? by (AT)~1Z9. An elementary argument will imply that g = \/\dle—tA\ X generates

a normalized tight Weyl-Heisenberg frame for L?(R%). [ |

We remark that if the matrices B and (A?)~! commensurate and |det(AB)| < 1 then
by Corollary 2.4 we may find a compactly supported function g(x) such that G(L, K, g) is
a normalized tight frame for L?(R?).

Proof of Theorem 1.3. It suffices to note that if G(£, K, g) is a normalized tight frame
for L2(R%), then ||g||3 = |det AB| (see the remark following the proof of Lemma 3.2), and
that a normalized tight frame G(L,X,g) is an orthonormal basis for L2(R%) if and only if
lgll2 = 1. u

Since every Weyl-Heisenberg frame G(L, K, g) is similar to a normalized tight Weyl-
Heisenberg frame G(L, IC, h) in the sense that there exists a bounded invertible operator 3
on L?(R%) such that (Lg) e = hey for all £ € £ and k € K, the following corollary follows
immediately:

Corollary 3.4 Let £L = AZ% and K = BZ® be two full rank lattices in RY. Then the
following statements are equivalent:

(i) v(£L)v(K) = |det AB| = 1.
(ii) Bvery Weyl-Heisenberg frame G(L,KC, g) is a Riesz basis for L?>(R%).
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